References:
1. Kaser, A., S. Zeissig, and R.S. Blumberg, Genes and
Environment: How Will Our Concepts on the Pathophysiology of IBD Develop
in the Future? Digestive Diseases, 2010. 28 (3): p. 395-405.
2. Limbergen, J.V., D.C. Wilson, and J. Satsangi, The Genetics of
Crohn’s Disease. 2009. 10 (1): p. 89-116.
3. Ananthakrishnan, A.N., Environmental risk factors for
inflammatory bowel disease. Gastroenterology & hepatology, 2013.9 (6): p. 367-374.
4. Eichele, D.D. and K.K. Kharbanda, Dextran sodium sulfate
colitis murine model: An indispensable tool for advancing our
understanding of inflammatory bowel diseases pathogenesis. World
journal of gastroenterology, 2017. 23 (33): p. 6016-6029.
5. Kiesler, P., I.J. Fuss, and W. Strober, Experimental Models of
Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol, 2015.1 (2): p. 154-170.
6. Chassaing, B., et al., Dextran sulfate sodium (DSS)-induced
colitis in mice. Curr Protoc Immunol, 2014. 104 : p.
15.25.1-15.25.14.
7. Perše, M. and A. Cerar, Dextran Sodium Sulphate Colitis Mouse
Model: Traps and Tricks. Journal of Biomedicine and Biotechnology,
2012. 2012 : p. 718617.
8. Yan, Y., et al., Temporal and spatial analysis of clinical and
molecular parameters in dextran sodium sulfate induced colitis. PLoS
One, 2009. 4 (6): p. e6073.
9. Laska, M.J., et al., Human Endogenous Retroviral Genetic
Element With Immunosuppressive Activity in Both Human Autoimmune
Diseases and Experimental Arthritis. Arthritis Rheumatol, 2017.69 (2): p. 398-409.
10. Bahrami, S., et al., Immunomodulating peptides derived from
different human endogenous retroviruses (HERVs) show dissimilar impact
on pathogenesis of a multiple sclerosis animal disease model. Clin
Immunol, 2018. 191 : p. 37-43.
11. Di, L., et al., Inhibition of the
K<sup>+</sup> channel
KCa3.1 ameliorates T cell–mediated colitis. 2010. 107 (4): p.
1541-1546.
12. Hansen, L.K., The role of T cell potassium channels, KV1.3 and
KCa3.1, in the inflammatory cascade in ulcerative colitis. Dan Med J,
2014. 61 (11): p. B4946.
13. Castle, N.A., Therapeutic potential of KCa3.1 blockers: recent
advances and promising trends AU - Wulff, Heike. Expert Review of
Clinical Pharmacology, 2010. 3 (3): p. 385-396.
14. Begenisich, T., et al., Physiological roles of the
intermediate conductance, Ca2+-activated potassium channel Kcnn4. J
Biol Chem, 2004. 279 (46): p. 47681-7.
15. Cahalan, M.D. and K.G. Chandy, Ion channels in the immune
system as targets for immunosuppression. Curr Opin Biotechnol, 1997.8 (6): p. 749-56.
16. Cahalan, M.D. and K.G. Chandy, The functional network of ion
channels in T lymphocytes. Immunological reviews, 2009.231 (1): p. 59-87.
17. Paul, G., et al., Interferon-γ alters downstream signaling
originating from epidermal growth factor receptor in intestinal
epithelial cells: functional consequences for ion transport. J Biol
Chem, 2012. 287 (3): p. 2144-55.
18. Strøbæk, D., et al., NS6180, a new K(Ca) 3.1 channel inhibitor
prevents T-cell activation and inflammation in a rat model of
inflammatory bowel disease. British journal of pharmacology, 2013.168 (2): p. 432-444.
19. Reich, E.P., et al., Blocking ion channel KCNN4 alleviates the
symptoms of experimental autoimmune encephalomyelitis in mice. Eur J
Immunol, 2005. 35 (4): p. 1027-36.
20. Wojtulewski, J.A., et al., Clotrimazole in rheumatoid
arthritis. Annals of the rheumatic diseases, 1980. 39 (5): p.
469-472.
21. Holm, C.K., et al., Influenza A virus targets a
cGAS-independent STING pathway that controls enveloped RNA viruses. Nat
Commun, 2016. 7 : p. 10680.
22. Nguyen, H.T., et al., CD98 expression modulates intestinal
homeostasis, inflammation, and colitis-associated cancer in mice. J
Clin Invest, 2011. 121 (5): p. 1733-47.
23. Viennois, E., et al., Dextran sodium sulfate inhibits the
activities of both polymerase and reverse transcriptase: lithium
chloride purification, a rapid and efficient technique to purify RNA.BMC Res Notes, 2013. 6 : p. 360.
24. Sankaranarayanan, A., et al.,Naphtho[1,2-<em>d</em>]thiazol-2-ylamine
(SKA-31), a New Activator of KCa2 and KCa3.1 Potassium Channels,
Potentiates the Endothelium-Derived Hyperpolarizing Factor Response and
Lowers Blood Pressure. 2009. 75 (2): p. 281-295.
25. Lytton, J., M. Westlin, and M.R. Hanley, Thapsigargin inhibits
the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium
pumps. J Biol Chem, 1991. 266 (26): p. 17067-71.
26. Chen, R. and S.H. Chung, Molecular dynamics simulations of
scorpion toxin recognition by the Ca(2+)-activated potassium channel
KCa3.1. Biophys J, 2013. 105 (8): p. 1829-37.
27. Lam, J. and H. Wulff, The Lymphocyte Potassium Channels Kv1.3
and KCa3.1 as Targets for Immunosuppression. Drug development research,
2011. 72 (7): p. 573-584.
28. Chou, C.C., C.A. Lunn, and N.J. Murgolo, KCa3.1: target and
marker for cancer, autoimmune disorder and vascular inflammation?Expert Rev Mol Diagn, 2008. 8 (2): p. 179-87.
29. Ohya, S. and H. Kito, Ca(2+)-Activated K(+) Channel KCa3.1 as
a Therapeutic Target for Immune Disorders. Biol Pharm Bull, 2018.41 (8): p. 1158-1163.
30. O’Connor, W., Jr., et al., A protective function for
interleukin 17A in T cell-mediated intestinal inflammation. Nat
Immunol, 2009. 10 (6): p. 603-9.
31. Hansen, L.K., et al., Expression of T-cell KV1.3 potassium
channel correlates with pro-inflammatory cytokines and disease activity
in ulcerative colitis✩. Journal of Crohn’s and Colitis, 2014.8 (11): p. 1378-1391.
32. Simms, L.A., et al., KCNN4Gene Variant Is Associated With
Ileal Crohn’s Disease in the Australian and New Zealand Population.2010. 105 (10): p. 2209-2217.
33. Yu, Z.H., et al., Targeted inhibition of KCa3.1 channel
attenuates airway inflammation and remodeling in allergic asthma. Am J
Respir Cell Mol Biol, 2013. 48 (6): p. 685-93.
34. Chen, Y.J., et al., The KCa3.1 blocker TRAM-34 reduces
infarction and neurological deficit in a rat model of
ischemia/reperfusion stroke. J Cereb Blood Flow Metab, 2011.31 (12): p. 2363-74.
35. Ataga, K.I., et al., Efficacy and safety of the Gardos channel
blocker, senicapoc (ICA-17043), in patients with sickle cell anemia.Blood, 2008. 111 (8): p. 3991-7.
36. Alvarez, J., M. Montero, and J. Garcia-Sancho, High affinity
inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450
inhibitors. J Biol Chem, 1992. 267 (17): p. 11789-93.