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Evolve-and-Resequence experiments10

Abstract11

For over a decade, experimental evolution has been combined with high-throughput sequencing12

techniques in so-called Evolve-and-Resequence (E&R) experiments. This allows testing for13

selection in populations kept in the laboratory under given experimental conditions. However,14

identifying signatures of adaptation in E&R datasets is far from trivial, and it is still necessary to15

develop more efficient and statistically sound methods for detecting selection in genome-wide16

data. Here, we present Bait-ER – a fully Bayesian approach based on the Moran model of allele17

evolution to estimate selection coefficients from E&R experiments. The model has overlapping18

generations, a feature that describes several experimental designs found in the literature. We19

tested our method under several different demographic and experimental conditions to assess its20

accuracy and precision, and it performs well in most scenarios. Nevertheless, some care must be21

taken when analysing trajectories where drift largely dominates and starting frequencies are low.22

We compare our method with other available software and report that ours has generally high23

accuracy even for trajectories whose complexity goes beyond a classical sweep model.24

Furthermore, our approach avoids the computational burden of simulating an empirical null25

distribution, outperforming available software in terms of computational time and facilitating its26

use on genome-wide data.27

We implemented and released our method in a new open-source software package that can be28

accessed at https://github.com/mrborges23/Bait-ER.29

Keywords: targets of selection, E&R, pool-seq, selection coefficients, Moran model, Bayesian30

inference31
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1 Introduction32

Natural selection is a complex process that can dramatically alter phenotypes and genotypes over33

remarkably short timescales. Researchers have successfully tested theoretical predictions and34

collected evidence for how strong laboratory selection acting on phenotypes can be. However, it is35

not as straightforward to measure selection acting on the genome. Many confounding factors can36

lead to spurious results. This is particularly relevant if we are interested in studying how37

experimental populations adapt to laboratory conditions within tens of generations, in which case38

we need to take both experiment- and population-related parameters into account.39

A powerful approach to gathering data on the genomics of adaptation is to combine experimental40

evolution, where populations are exposed to a controlled laboratory environment for some number41

of generations (Kawecki et al., 2012), with genome resequencing throughout the experiment.42

This approach is referred to as Evolve-and-Resequence (E&R, fig. 1). E&R studies are becoming43

increasingly more common and have already made remarkable discoveries on the genomic44

architecture of short-term adaptation. Examples of experimental evolution studies include those45

on yeast (Burke et al., 2014), red flour beetles (Godwin et al., 2017) and fruit flies (Turner et al.,46

2011; Debelle et al., 2017). The E&R set-up allows for describing the divergence between47

experimental treatments while accounting for variation among replicate populations (Schlötterer48

et al., 2015). This is true both at the phenotype and genotype level. Consequently, the optimal49

approach to finding signatures of selection, is to not only monitor allele frequency changes but to50

also search for consistent changes across replicates. Moreover, experimental populations are51

often sampled and pooled for genome sequencing. The motivation for sequencing pooled samples52

of individuals (pool-seq) is that it is cost-effective and it produces largely accurate estimates of53

population allele frequencies (Futschik and Schlötterer, 2010). Thus, statistical methods tailored54

for E&R studies are especially valuable. Notably so when investigating allele frequency trajectories55

originating from pooled samples of small populations.56

Several statistical approaches have been proposed to analyse these data and detect signatures of57

selection across the genome. A few such methods consider allele frequency changes between two58

time points. These simply identify those loci where there is a consistent difference in frequency59

between time points. One such approach is the widely-used Cochran-Mantel-Haenszel (CMH)60

test (Cochran, 1954). Such tests are often preferred since they are very fast, which makes them61

suitable for genome-wide datasets. Other approaches allow for more than two time points: for62
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example, Wiberg et al. (2017) used generalised linear models, and introduced a quasi-binomial63

distribution for the residual error; and Topa et al. (2015) employed Gaussian Process models in a64

Bayesian framework to test for selection while accounting for sampling and sequencing noise.65

While the latter methods use more sophisticated statistical approaches, they remain descriptive66

with respect to the underlying evolutionary processes. In contrast, mechanistic approaches67

explicitly model evolutionary forces, such as genetic drift and selection. Such models have the68

advantage that they can properly account for drift, which may generate allele frequency changes69

that can easily be mistaken for selection. Indeed, this is usually the case for E&R experimental70

populations with low effective population sizes (Ne), where genetic drift is the main evolutionary71

force determining the fate of most alleles.72

The Wright-Fisher (WF) model is the most used mechanistic model for allele frequencies from73

time series data. There have been numerous studies that rely on approximations of the WF74

process, e.g., its diffusion limit (Bollback et al., 2008), a one-step process where there is a finite75

number of allele frequency states (Malaspinas et al., 2012), a spectral representation of the76

transition density function (Steinrücken et al., 2014), or a delta method to approximate the mean77

and variance of the process (Lacerda and Seoighe, 2014). Others have additionally considered the78

importance of haplotypes arising in a population via mutation (Illingworth and Mustonen, 2012;79

Nené et al., 2018), or implemented an approximation to the multi-locus WF process over tens of80

generations (Terhorst et al., 2015). Amongst these methods, most infer selection parameters in81

the form of selection coefficients, whilst some can also estimate the population size, allele age,82

mutation rate and even the dominance coefficient. Such parameters are key for understanding83

the process of genetic adaptation. Nonetheless, there are only a few approaches that couple84

parameter estimation with explicitly testing for selection (Feder et al., 2014; Terhorst et al.,85

2015; Iranmehr et al., 2017; Taus et al., 2017; Kojima et al., 2019). While these approaches are86

useful for detecting selected variants whilst estimating the strength of selection, not all of them87

are implemented in software packages that can be used genome-wide for E&R experiments.88

Most approaches assume linkage equilibrium, and consequently each trajectory is analysed89

independently from the effects of neighbouring sites. In reality, allele frequencies at linked loci90

co-vary which causes selection to be overestimated around selected sites. Some have tried to91

measure the impact of linked selection through analysing autocovariances between adjacent sites92

(Buffalo and Coop, 2019), and others have investigated the correlation between nearby loci to93

identify selected haplotypes (Franssen et al., 2017). Whilst these efforts are a step in the right94
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direction, neither approaches directly estimate selection coefficients nor do they test for selection.95

These two approaches do not rely on modelling evolutionary processes explicitly.96

To provide a review of methods that are available for analysing E&R experiments, Vlachos et al.97

(2019) have produced a comprehensive benchmarking analysis of such methods. Their study98

compares the programs in terms of overall performance including parameter estimation using99

simulated data. It features a number of approaches, but not all estimate selection coefficients100

whilst performing statistical testing for each locus individually. Based on Vlachos et al.’s work,101

three mechanistic methods are thus particularly relevant in an E&R context: Wright-Fisher102

Approximate Bayesian Computation (WFABC, Foll et al. (2015)), Composition of Likelihoods for103

E&R experiments (CLEAR, Iranmehr et al. (2017)) and LLS (Linear Least Squares, Taus et al.104

(2017)). These methods differ in how they model drift and selection, the inferential approach to105

estimate selection coefficients, the hypothesis testing strategy, and the extent to which they106

consider specific experimental conditions (table 1). WFABC employs an ABC approach that uses107

summary statistics to compare simulated and real data. It jointly infers the posterior of both Ne108

and the selection coefficient at some locus in the genome using allele frequency trajectory109

simulations. Real and simulated summary statistics must agree to a certain predefined scale. This110

makes WFABC computationally intensive. CLEAR computes maximum-likelihood estimates of111

selection parameters using a hidden Markov model tailored for small population sizes. LLS112

assumes that allele frequencies vary linearly with selection coefficients such that the slope113

provides the coefficient estimate. Although all three methods have been shown to accurately114

estimate selection coefficients, they rely heavily on empirical parameter distributions to perform115

hypothesis testing: (i) WFABC is highly dependent on how accurately the chosen set of summary116

statistics describes the underlying evolutionary forces determining the observed trajectories; (ii)117

CLEAR relies on genome-wide simulations to calculate an empirical likelihood-ratio statistic to118

assess significance; and (iii) LLS computes an empirical distribution of p-values simulated under119

neutrality. One other common thread amongst these tools is that they do not account for linked120

selection. Be it background selection or hitchhiking, these software estimate selection without121

looking into how linked loci might affect other sites’ trajectories. Additionally, the three software122

vary substantially in computational effort. Therefore, currently available methods are still limited123

in their use for genome-wide hypothesis testing.124

Here, we propose a new Bayesian inference tool – Bait-ER – to estimate selection coefficients in125

E&R time series data. It is suitable for large genome-wide polymorphism datasets and particularly126
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useful for small experimental populations. As our new approach was implemented in a Bayesian127

framework, it gives posterior distributions of any selection parameters while considering sources of128

experimental uncertainty. Bait-ER jointly tests for selection and estimates selection contrary to129

other state-of-the-art methods. It does not rely on empirical or simulation-based approaches that130

might be computationally intensive, and it properly accounts for specific shortcomings of E&R131

experimental design. As it currently stands, Bait-ER is not concerned with the impact of linked132

selection. To test Bait-ER and other software, we explore individually simulated trajectories,133

whole chromosome arm simulations with linkage and an analysis of real data. We show that134

Bait-ER is faster than other available software, when accounting for hypothesis testing, and still135

performing accurately in some particularly difficult scenarios.136
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2 Material and Methods137

2.1 Method outline138

E&R experiments produce a remarkable amount of data, namely allele frequencies for thousands139

to millions of loci. We created a Bayesian framework to infer and test for selection at an140

individual locus that is based on the Moran model. It estimates the selection coefficient, σ, for141

each allele frequency trajectory, which relies on the assumption that the variant in question is a142

potential causative locus. The Moran model is especially useful for studies that have overlapping143

generations, such as insect cage experimental designs (fig. 1). Such cage experiments are easier144

to maintain in the lab and allow for larger experimental population sizes avoiding potential145

inbreeding depression and crashing populations (Kawecki et al., 2012). Furthermore, Bait-ER146

combines modelling the evolution of an allele that can be under selection while accounting for147

sampling noise to do with pooled sequencing and finite sequencing depth. Our method takes148

allele count data in the widely-used sync format (Kofler et al., 2011) as input. Each locus is149

described by allele counts per time point and replicate population. The algorithm implemented150

includes the following key steps:151

1. Bait-ER calculates the virtual allele frequency trajectories accounting for Ne that is152

provided by the user. This step includes a binomial, or beta-binomial, sampling process that153

corrects for pool-seq-associated sampling noise.154

2. The log posterior density of σ is calculated for a given grid of σ-values. This step requires155

repeatedly assessing the likelihood function (equation 3 in section 2.2).156

3. The log posterior values obtained in the previous step are fitted to a gamma surface157

(details on surface fitting can be found in supplementary fig. ??).158

4. Bait-ER returns a set of statistics that describe the posterior distribution of σ per locus. In159

particular, the average σ and the log Bayes Factor (BF) are the most important quantities.160

In this case, BFs test the hypothesis that σ is different from 0. Bait-ER also returns the161

posterior shape and rate parameter values, α and β, respectively. These can be used to162

compute other relevant statistics (e.g., credible intervals, variance).163
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2.2 Model description164

Let us assume that there is a biallelic locus with two alleles, A and a. The evolution of allele A in165

time is fully characterised by a frequency trajectory in the state space {nA, (N − n)a}, where n is166

the total number of individuals that carry allele A (in a population of size N). Supposing the allele167

evolves according to the Moran model, the transition rates for the process are the following168

n → n − 1 : n(N−n)
N

n → n + 1 : n(N−n)
N (1 + σ)

, (1)

where 1 + σ is the fitness of any A-type offspring and σ the selection coefficient for allele A. If169

σ = 0, i.e. A is evolving neutrally, then none of the alleles is preferred at reproduction. Let Xt be170

the number of copies of A in a population of N individuals; the probability of a given allele171

trajectory X can be defined using the Markov property as172

p(X | σ) = p(X0 = x0)

T∏
t=1

p(Xt = xt | Xt−1 = xt−1, σ) , (2)

where T is the total number of time points measured in generations at which the trajectory was173

assayed. The conditional probability on the left-hand side of the equation has one calculating174

Xt = eQdtXt−1, where Q is the rate matrix defined in (1) and dt the difference in number of175

generations between time point t and t − 1. The probability of a single allele frequency trajectory176

can be generalised for R replicates by assuming their independence177

p(X | σ) =

R∏
r=1

p(Xr0 = x r0)

T∏
t=1

p(Xrt = x rt | Xrt−1 = x rt−1, σ) . (3)

The main caveat for pool-seq data is the fact that it provides estimates for allele frequencies, not178

true frequencies. For that reason, we assume that the allele counts are generated by a binomial179

or beta-binomial sampling process which depends on the frequency of allele A and the total180

sequencing depth C obtained by pool-seq. We then recalculate the probability of the Moran181

states given an observed allele count c , which becomes the following with binomial sampling182

p({nA, (N − n)a} | {c, C}) ∝
(
C

c

)( n
N

)c (
1−

n

N

)C−c
, n = 0, . . . , N . (4)

This step is key for it corrects for sampling noise generated during data acquisition. This is183

particularly relevant for low frequency alleles and poorly covered loci.184
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2.3 Inferential framework185

We used a Bayesian framework to estimate σ. It requires allele counts and coverage for each time186

point and replicate population {c,C} at each position as input. The posterior distribution can be187

obtained by188

p(σ|{c,C}) ∝ p(σ)p({c,C}|σ) . (5)

Our algorithm is defined using a gamma prior on σ. The posterior cannot be formally obtained,189

hence we define a grid of σ values for which we calculate the posterior density. Estimating the190

posterior distribution p(σ|{c,C}) is a time consuming part of our algorithm because the191

likelihood is computationally costly to compute. To avoid this burden, we fit the posterior to a192

gamma density193

log p(σ|{c,C}) = c + (α− 1) logσ − βσ , (6)

where α and β are the shape and rate parameters, respectively, and c the normalization constant.194

The gamma fitting represents a good trade-off between complexity, since it only requires two195

parameters, but its density may take many shapes. As one requires the values of α and β that196

best fit the gamma density for further analyses, we find the least squares estimates of α and β197

(and c), such that the error is minimal. The estimation is as follows198

α̂ =
−(s2s4 + s24 − s6 − s7)(s21 − s8)− (s3 + s1s2 + s1s4 + s5)(s1s4 − s5)

s7s
2
1 − 2s4s5s1 + s25 + s24 s8 − s7s8

∧

β̂ =
−s3s24 + s2s5s4 + s1s6s4 − s5s6 − s1s2s7 + s3s7

s7s
2
1 − 2s4s5s1 + s25 + s24 s8 − s7s8

,

(7)

where s1 =
∑
i xi/N, s2 =

∑
i yi/N, s3 =

∑
i xiyi/N, s4 =

∑
i log xi/N, s5 =

∑
i xi log xi/N,199

s6 =
∑
i yi log xi/N, s7 =

∑
i log2 xi/N and s8 =

∑
i x
2
i /N. We evaluated the fitting of the gamma200

density for neutral and selected loci, and observed that a gamma surface with five points201

describes the log posterior of selected and neutral loci well (fig. ??).202

Bait-ER was implemented with an allele frequency variance filter that is applied before performing203

the inferential step of our algorithm. This filtering process excludes any trajectories that do not204

vary or vary very little throughout the experiment from further analyses. To do that, we assess205

the trajectories’ frequency increments and exclude loci with frequency variance lower than 0.01.206

These correspond to cases where trajectories are too flat to perform any statistical inference on.207

Trajectories such as these typically have both inflated σ̂ and BFs. This filtering step allows us to208

improve computational efficiency as we remove trajectories that are statistically uninformative209
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since allele frequencies are essentially constant. Such trajectories are still included in the output210

file, despite Bait-ER not performing the selection inference step on them. This results in Bait-ER211

being suitable for large genome-wide datasets without losing any relevant information on212

trajectories that might be initially flat but can eventually escape drift very quickly.213

Bait-ER is implemented in C++ and freely available for download at214

https://github.com/mrborges23/Bait-ER (accessed on April 9th 2021). Here, we provide a215

tutorial on how to compile and run Bait-ER, including a toy example with 100 loci taken from216

Barghi et al. (2019).217

2.4 Simulated data218

We tested our algorithm’s performance under several biologically relevant scenarios using (1) a219

Moran model allele frequency trajectory simulator, and (2) the individual-based forward simulation220

software MimicrEE2 (Vlachos and Kofler, 2018).221

The Moran model simulator was used, firstly, for benchmarking Bait-ER’s performance across a222

range of experimental conditions, and, secondly, to compare our estimates of σ to those of223

CLEAR (Iranmehr et al., 2017), LLS (Taus et al., 2017) and WFABC (Foll et al., 2015). We224

started out by testing Bait-ER under different combinations of experimental and population225

parameters. A full description of these parameters can be found in table ??. Scenarios that226

explored several experimental designs included those with varying coverage (20x, 60x and 100x),227

number of replicate populations (2, 5 and 10) and number of sampled time points (2, 5 and 11).228

In addition to simulating even sampling throughout the experiment, we tested our method on229

trajectories where we varied sampling towards the start or towards the end of said experiment.230

Total study length might also affect Bait-ER’s estimation, therefore we tracked allele frequency231

trajectories for 0.2Ne and 0.4Ne generations.232

We set out to compare Bait-ER to other selection estimation software using experimental233

parameters that resemble realistic E&R designs. Our base experiment replicate populations234

consist of 300 individuals that were sequenced to 60x coverage. There are five such replicates235

that were evenly sampled five times throughout the experiment. We then simulated 100 allele236

frequency trajectories for all starting frequencies and selection coefficients mentioned above. We237

simulated trajectories for 0.25Ne as well as 0.5Ne generations.238

The performance of both CLEAR and LLS was assessed by running the software with a fixed239
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population size of 300 individuals (flag –N=300 and estimateSH(..., Ne = 300), respectively).240

Additionally, to estimate the selection coefficient under the LLS model, we used the241

estimateSH(...) function assuming allele codominance (argument h = 0.5). WFABC was tested242

with a fixed population size of Ne individuals (flag -n 300), lower and upper limit on the selection243

coefficient of -1 and 1, respectively (flags -min s -1 and -max s 1), maximum number of244

simulations of 10000 (flag -max sims 10000) and four parallel processes (flag -n threads 4). The245

program was run for 1200 seconds, after which the process timed out to prevent it from running246

indefinitely in case it fails to converge. This caused trajectories with starting allele frequencies of247

5% and 1% not to be analysed at all. We have thus only been able to include results for alleles248

starting at 10% and 50% frequencies.249

Finally, we used data simulated with MimicrEE2 (Vlachos and Kofler, 2018) by Vlachos et al.250

(2019) to benchmark Bait-ER and compare it extensively with other relevant statistical methods.251

MimicrEE2 allows for whole chromosomes to be simulated under a wide range of parameters252

mimicking the effects of an E&R set-up on allele frequencies (see ???????????????? for a253

comparison of population parameters, including nucleotide diversity, with real experimental data).254

This dataset consisted of 10 replicate experimental populations, and each experimental population255

consisted of 1,000 diploid organisms evolving for 60 generations. The haplotypes used to find the256

simulated populations were based on 2L chromosome polymorphism patterns from Drosophila257

melanogaster fly populations (Bastide et al., 2013). Recombination rate variation was based on258

the D. melanogaster recombination landscape (Comeron et al., 2012). 30 segregating loci were259

randomly picked to be targets of selection. Sites were initially segregating at a frequency between260

0.05 and 0.95. Benchmarking Bait-ER using these data also allowed us to look into our method’s261

robustness when the data generating model is not Moran: the first scenario includes allele262

frequency trajectories simulated under a Wright-Fisher model of a selective sweep; and the second263

consists of trajectories simulated under a quantitative trait model with truncating selection. In264

the former, each of the targets of selection were simulated with a selection coefficient of 0.05.265

For the latter, 80% of the individuals with the largest trait values were chosen to reproduce.266

2.5 Application267

We applied our algorithm to the recently published dataset from an E&R experiment in 10268

replicates of a Drosophila simulans population to a hot temperature regime for 60 generations269

(Barghi et al., 2019). All populations were kept at a census size of 1000 individuals. The270
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experimental regime consisted of light and temperature varying every 12 hours. The temperature271

was set at either 18◦C or 28◦C to mimic night and day, respectively. The authors extracted272

genomic DNA from each replicate population every 10 generations using pool-seq. The273

polymorphism datasets are available at https://doi.org/10.5061/dryad.rr137kn in sync274

format. The full dataset consists of more than 5 million SNPs. We subsampled the data such275

that Bait-ER was tested on 20% of the SNPs. Subsampling was performed randomly across the276

whole genome.277
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3 Results278

3.1 Prior fitting with Bait-ER279

Bait-ER employs a Bayesian approach outlined in section 2.1 – Method outline – and described in280

further detail in the section 2.2 – Model description. Bayesian model fitting depends on the prior281

distribution implemented and requires further testing. Bait-ER uses a gamma prior for which the282

shape α and rate β parameters have to be defined beforehand. We tested the impact of283

uninformative (α = β = 0.001) and informative (α = β = 105) gamma priors on the posterior284

distribution of σ under standard (60x coverage, 5 time points and 5 replicates) and sparse (20x285

coverage, 2 time points and 2 replicates) E&R experiments. Our results show that the prior286

parameters have virtually no impact on the posterior estimates when α = β < 100 (fig. 2 and287

supplementary fig. ??), and thus, by default, Bait-ER sets both prior parameters to 0.001.288

Calculating the posterior distribution of σ is a computationally intensive step because it requires289

solving the exponential Moran matrix for several σ-values. To reduce the number of times290

Bait-ER assesses the log-posterior, we fit the posterior density to a gamma distribution. We291

found that a gamma surface fits the posterior well, and further that five points are enough to292

provide a good estimate of its surface. This remains valid even for neutral scenarios, where the293

log-likelihood functions are generally flatter (fig. ??).294

3.2 Impact of E&R experimental design on detecting targets of selection295

Bait-ER not only models the evolution of allele frequency trajectories but it also considers aspects296

of the experimental design specific to E&R studies. Bait-ER can thus be used to gauge the297

impact of particular experimental conditions in pinpointing targets of selection. We simulated298

allele frequency trajectories by considering a range of experimental parameters, including the299

number and span of sampled time points, the number of replicated populations, and coverage.300

Each of these settings was tested in different population scenarios that we defined by varying301

population size, starting allele frequency, and selection coefficient. We assessed the error of the302

estimated selection coefficients by calculating the absolute bias in relation to the true value. In303

total, we investigated 576 scenarios (Supplementary table ??). Heatmaps in fig. 3A-C show304

the error for each scenario.305

Heatmaps A, B, and C in fig. 3 show that the initial frequency is a determining factor in the306
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accuracy of σ̂ in E&R experiments. We observed that trajectories starting at very low frequencies307

(around 0.01) may provide unreliable estimates of σ. However, σ̂’s accuracy on those trajectories308

can be improved by either increasing the sequencing depth (fig. ??) or the number of replicates309

(fig. ??). Similar results have been obtained using other methods such as in Kofler and310

Schlötterer (2014) and Taus et al. (2017). Designs with high coverage and several replicates may311

be appropriate when potential selective loci appear at low frequencies (e.g., dilution experiments).312

Surprisingly, alternative sampling schemes do not seem to substantially impact the accuracy of σ313

(supplementary text S1). These results have practical importance because sampling additional314

time points is time-consuming and significantly increases the cost of E&R experiments.315

3.2.1 A note on population size316

When using Bait-ER to estimate selection coefficients, one needs to specify the effective317

population size, Ne . However, as effective population size and strength of selection are318

intertwined, mispecifying Ne will directly affect estimates of selection. The effective population319

size is often not known at the start of the experiment, but plenty of methods can estimate it from320

genomic data, e.g., Jonas et al. (2016). To assess the impact of misspecifying Ne on σ posterior,321

we simulated allele frequency trajectories using a fixed population size of 300 individuals. We then322

ran Bait-ER setting the effective population size to 100 or 1000. By doing so, we are increasing323

and decreasing, respectively, the strength of genetic drift relative to the true simulated population.324

Bait-ER produces highly accurate estimates of σ regardless of varying Ne (fig. 4 and fig. ??).325

Misspecifying it merely rescales time in terms of Moran events rather than changing the326

relationship between Ne and the number of Moran events in the process. Further, we observed327

that the BFs are generally higher when the specified Ne is greater than the true value, suggesting328

that an increased false positive rate. The opposite pattern is observed when the population size329

one specifies is lower than the real parameter. Additionally, we investigated the relationship330

between BFs computed with the true Ne and those produced under a misspecified Ne . We found331

that these BFs are highly correlated (Spearman’s correlation coefficients were always higher than332

0.99; fig. 4 and fig. ??). Taken together, our results indicate one should use a more stringent333

BF acceptance threshold if estimates of the real Ne have wide confidence intervals.334

Furthermore, we assessed Bait-ER’s computational performance by comparing the relative CPU335

time while varying several user-defined experimental parameters. We found that increasing Ne336
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affects our software’s computational performance most substantially (31-fold increase in CPU337

time when increasing the simulated population size from 300 to 1000 individuals; supplementary338

table ??).339

3.3 Benchmarking Bait-ER with LLS, CLEAR and WFABC340

3.3.1 Simulated Moran trajectories341

To compare the performance of Bait-ER to that of other relevant software, we set out to342

simulate Moran frequency trajectories under the base experiment conditions described above. We343

tested Bait-ER as well as CLEAR (Iranmehr et al., 2017), LLS (Taus et al., 2017) and WFABC344

(Foll et al., 2015) on 100 trajectories for four starting frequencies (from 1% to 50%) and four345

selection coefficients (0 6 Neσ 6 10). All population parameters were tested for both 75 and 150346

generations of experimental evolution. Fig. 5 shows the σ estimates for Bait-ER, LLS and347

CLEAR under two starting frequency scenarios – 10% and 50% – and two Neσ. CLEAR and LLS348

largely agree with Bait-ER’s estimates of σ, even though the level of statistical significance is349

often not the same. It is evident that LLS produces estimates that are not as accurate as350

CLEAR’s. This might have to do with the former not explicitly considering sampling bias in351

pool-seq data as a direct source of error. On the other hand, WFABC systematically disagrees352

with Bait-ER’s estimates because its distribution is very skewed towards high Neσ (greater than353

180; see fig. ??). This is perhaps unsurprising given that WFABC does not consider replicate354

populations nor finite sequencing depth unlike the other three methods. We have included355

WFABC in our study to compare Bait-ER with another Bayesian method. However, WFABC was356

not designed for E&R experiments with multiple replicates, hence its poor performance.357

Regarding computational performance, Bait-ER seems to be the fastest of the four methods,358

even though it is comparable to WFABC (see fig. 6). However, we tested WFABC on the first359

replicate population data rather than the five experimental replicates used for the remaining360

methods. Additionally, WFABC does not provide any statistical testing output such as a Bayes361

Factor. In contrast, CLEAR and LLS are slower than the other two approaches. While CLEAR362

takes less than 40 seconds on average to analyse 100 sites, LLS is the slowest of the four,363

averaging around 4 minutes. Overall, these results suggest Bait-ER is just as accurate and364

potentially faster than other currently available approaches, which makes it a good resource for365

testing and inferring selection from genome-wide polymorphism datasets.366
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3.3.2 Complex simulation scenarios with recombination367

For a more comprehensive study of Bait-ER’s performance, we have analysed a complex368

simulated dataset produced by Vlachos et al. (2019). The authors simulated an E&R experiment369

inspired by the experimental set-up of Barghi et al. (2019) and used polymorphism data from a370

Drosophila melanogaster population. Vlachos et al. (2019) have produced this dataset to371

standardise software benchmarking by simulating a series of experimental scenarios that are372

relevant in an E&R context. We have used it to assess Bait-ER’s performance at inferring373

selection under linkage and varying recombination rates. In particular, we choose to focus on the374

classic sweep scenario as well a quantitative trait model with truncating selection, which are two375

of three complex scenarios simulated in Vlachos et al. (2019). Each experiment had 30 targets of376

selection randomly distributed along the chromosome arm.377

ROC (Receiver Operating Characteristic) curves are compared for five methods, Bait-ER,378

CLEAR, the CMH test (Agresti, 2003), LLS and WFABC, similarly to fig. 2A in Vlachos et al.379

(2019). Bait-ER performs well with an average true positive rate of 80% at a 0.2% false positive380

rate (fig. 7 (a)). Its performance is as good as the CMH test’s, but it does underperform slightly381

in comparison to CLEAR. Bait-ER, CLEAR and the CMH test greatly outperform LLS and382

WFABC. FIT1 and FIT2 (Feder et al., 2014) are also included for comparison. These methods383

both use a t-test for allele frequencies and are inaccurate in a classical sweep dataset. A similar384

picture to that of the sweep simulation emerges for the truncating selection scenario (fig. 7 (b)).385

Bait-ER is amongst the top three methods despite the generating quantitative trait model being386

completely misspecified during inference. It is only slightly outperformed by CLEAR.387

ROC curves serve the purpose of showing how a method’s level of statistical significance388

compares to other methods’, may it be a p-value or a BF. It addresses whether the method places389

the true targets of selection amongst its highest scoring hits. While this is informative, it fails to390

account for the importance of finding a suitable significance threshold. For example, fig. 7391

suggests that Bait-ER and the CHM test perform very similarly. However, the CMH test returns392

more potential targets than Bait-ER when comparable thresholds are used for both methods (e.g.393

fig. 10 that shows the comparison between Bait-ER logBFs and CMH test p-values for a real D.394

simulans dataset). Additionally, whilst the CMH might be more prone to identifying high395

coverage sites, Bait-ER is not affected by sequencing depth (??). Altogether, this indicates that396

Bait-ER is more conservative and that the CMH test is more prone to producing false positives.397
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To assess why Bait-ER seems to be outperformed by CLEAR, we further investigated CLEAR’s398

selection coefficient estimates. We note that Bait-ER assumes a continuous-time Moran model,399

whilst CLEAR uses a WF model for inference, much like the simulated data analysed here.400

Comparison of selection coefficients estimated by Bait-ER and CLEAR showed that Bait-ER is401

slightly more accurate at estimating true targets’ σ (fig. ??). In addition, it seems that those402

trajectories that scored highest with CLEAR are also the highest Bait-ER σ̂ (fig. ??). True403

targets of selection mostly score in the top half of Bait-ER’s Neσ scale (??). Overall, Bait-ER404

and CLEAR perform to a similar high standard. However, the frequency variance filter405

implemented in Bait-ER seems to explain our method’s slight underperformance shown in fig. 7.406

Whilst the two method’s false positive rates seem to be comparable, Bait-ER excluded a few407

selected sites from further analyses as they had changed very little in frequency throughout the408

experiment. Despite having excluded fewer than 70 (out of 30 targets times 100 experiments)409

targets of selection, Bait-ER’s filtering step has also classified approximately the same amount of410

neutral trajectories for being too flat for inferring selection.411

Our results also indicate that there is interference between linked selected sites. This412

phenomenon hinders adaptation as it reduces the fixation probability for each locus -413

Hill-Robertson Interference, HRI (Hill and Robertson, 1966). It can result in both incomplete and414

soft sweeps, which are often hard to detect because neither causes the characteristic trough in415

diversity around causative sites. Bait-ER estimated scaled selection coefficients ranged from 5.85416

to 43.2, which suggests each target was under strong selection. Such values should be enough for417

selection to overcome genetic drift unless there is some degree of interference between selected418

sites within a 16Mb region. Nevertheless, even with realistic amounts of linked selection, Bait-ER419

identifies most targets along the chromosome arm and results in narrow peaks of significant BFs420

(fig. ??). For the undetected targets of selection, HRI and inconsistent responses between421

replicate populations might cause Bait-ER not to perform optimally.422

3.4 Analysing E&R data from hot adapted Drosophila simulans populations423

We have applied Bait-ER to a real E&R dataset that was published by Barghi et al. (2019). The424

authors exposed 10 experimental replicates of a Drosophila simulans population to a new425

temperature regime for 60 generations. Each replicate was surveyed using pool-seq every 10426

generations. This dataset is particularly suited to demonstrate the relevance of our method, as427

Barghi et al. (2019) observed a strikingly heterogeneous response across the 10 replicates. The428
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highly polygenic basis of adaptation has proved challenging to measure and summarise thus far.429

The D. simulans genome dataset is composed of six genomic elements: chromosomes 2-4 and430

chromosome X. For each element, we have estimated selection parameters using Bait-ER (mean431

σ̂ distributions can be found in fig. ??). Fig. 8 shows a Manhattan plot of BFs for the right arm432

of chromosome 3. We can observe that there are two distinct peaks across the chromosome arm433

that seem highly significant (BF greater than 9). These two peaks – one at the start and another434

just before the centre of the chromosome – should correspond to loci that responded strongly to435

selection in the new lab environment. Such regions display a consistent increase in frequency436

across replicate populations (see ?? for the relationship between allele frequency changes and σ).437

Overall, there are only a few other peaks that exhibit very strong evidence for selection across the438

genome (fig. ??). Those are located on chromosomes 2L, 2R and 3L. When compared to the439

CMH test results as per Barghi et al., Bait-ER’s most prominent peaks seem to largely agree with440

those produced by the CMH (see fig. ??). The same is true for high BF regions on chromosomes441

2L and 2R where there are similarly located p-value chimneys at the start of these genomic442

elements (fig. ??). Both Bait-ER and the CMH test did not produce clear signals of selection on443

chromosomes 3L, 4 and on the X.444

One of the advantages of Bait-ER is that we have implemented a Bayesian approach for445

estimating selection parameters, which means we can calculate both the mean and variance of446

the posterior distributions. To examine both of these statistics, we looked into how the posterior447

variance varies as a function of mean σ. Fig. 9 shows the relationship between variance and448

mean selection coefficient for the X chromosome. We observe that the highest mean values also449

correspond to those with the highest variance. Interestingly, most of those do seem to be450

statistically significant at a fairly lenient threshold (BF = 2). This suggests that the strongest451

response to selection, i.e. the highest estimated σ values, are also those showing a highly452

heterogeneous response across replicates. The remaining genomic elements seem to show similar453

patterns, apart from chromosome 4 (see fig. ??). This is consistent with other reports that454

inferring selection on this chromosome is rather difficult due to its size and low levels of455

polymorphism (Jensen et al., 2002).456

Finally, we compared the p-values obtained by Barghi et al. (2019) and the BFs computed by457

Bait-ER. Barghi and colleagues performed genome-wide testing for targets of selection between458

first and last time points using the CMH test. The tests seem to largely agree for the most459

significant BFs correspond to the most significant p-values. However, Bait-ER appears to be460
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more conservative than the CMH test. This follows from the finding that there is quite a461

substantial proportion of loci (less than 10% of all loci) that are deemed significant by a p-value462

threshold of 0.01, which are not accepted as such by Bait-ER. This is true even for a BF463

threshold of 2 such as that shown in fig. 10 for chromosome 2L. Similar patterns are found in464

other genomic elements (fig. ??).465
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3.5 Discussion466

One of the main aims of E&R studies is to find targets of selection in genome-wide datasets. For467

that, we developed an approach that uses time series allele frequency data to test for selection468

whilst estimating selection parameters for individual loci. As Bait-ER does not rely on simulations469

for statistical testing, it sets itself apart from other currently available methods. Bait-ER’s470

implementation of the time-continuous Moran model makes it especially suitable for experimental471

set-ups with overlapping generations. In addition, we designed Bait-ER to be well suited for small472

population experiments where genetic drift has a substantial impact on the fate of polymorphisms.473

This is because random frequency fluctuations can force alleles to be more readily lost and, thus,474

overlooked by selection. When considering such polymorphisms, our stochastic modelling475

approach to describe their frequency trajectory is most fitting. We assume that the effect of drift476

is pervasive and that there is added noise from sampling a pool of individuals from the original477

population. We show that Bait-ER is faster and just as accurate as other relevant software.478

Overall, these features make it a desirable approach that can be used in many E&R designs.479

Firstly, we addressed Bait-ER’s performance at inferring selection. For that, we carried out a480

comprehensive analysis of simulated trajectories where we explored the parameter space for481

coverage, number of experimental replicates, user-defined population size, starting allele frequency482

and sampling scheme (figs. 3 and 4 and ????????). Our results suggest that Bait-ER’s inference483

is mostly affected by low starting allele frequencies. This can be overcome should the sequencing484

depth or the number of experimental replicates be increased. Our simulations show that Bait-ER485

estimates selection coefficients accurately even if an allele’s starting frequency is low but provided486

coverage is high and there are at least 5 replicates (fig. 3). Although increasing the number of487

replicates increases the cost of setting up an E&R experiment substantially, improving sequencing488

depth is certainly within reach. This interesting result might help guide future research.489

Encouragingly, Bait-ER performed well with small manageable population sizes, suggesting490

replication is key, but large populations are not necessarily required for achieving good results.491

We also assessed Bait-ER’s performance on a complex chromosome arm dataset simulated by492

Vlachos et al. (2019). We then compared it to other selection inference programs of which most493

are suited for time series allele frequency data. Despite numerous similarities, they vary494

substantially in terms of model assumptions and what sort of experimental set-up they are a good495

fit for. For example, WFABC seems to underperform in comparison with the other methods for496
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E&R experiments. This is likely to be the case because it was modelled for relatively large497

populations. As Foll et al. (2015) show in their original study, WFABC is accurate for population498

sizes of 1000 individuals and for both weak and strong selection coefficients. Despite this being499

low in comparison to experiments in bacteria or yeast, which easily range from 105 to 108, that is500

not the standard population size we consider in our work. Bait-ER has been shown to perform501

well for such large populations (see bottom rows of each graph in fig. 3), as well as small census502

sizes. In reality, Ne is predicted to be a lot smaller than the census sizes reported in typical E&R503

studies. In contrast to WFABC, CLEAR and LLS set a better standard to which one should504

compare new software to. Whilst CLEAR accounts for uneven coverage, LLS only considers505

consistency between experimental replicates. In terms of overall performance, Bait-ER and506

CLEAR are similar in accuracy but Bait-ER runs substantially faster. This indicates that WF and507

Moran models do behave similarly since MimicrEE2 simulates WF trajectories.508

To investigate Bait-ER’s ability to detect selected sites in a real time series dataset, we analysed509

the D. simulans E&R experiment by Barghi et al. (2019). Bait-ER performs well on this dataset510

as it is rather conservative and produces only a few very significant peaks across the genome,511

which suggests it has a low false positive rate. It was designed to account for strong genetic drift,512

hence the use of a discrete-population state space. Most of the genome produced BFs greater513

than 2, indicating that there is not enough resolution to narrow down candidate regions to514

specific genes despite those very significant peaks. Barghi et al. (2019) argue that there is strong515

genetic redundancy caused by a highly polygenic response to selection in their experiment.516

Despite Bait-ER modelling sweep-like scenarios rather than the evolution of a quantitative trait517

using an infinitesimal model, the somewhat elevated BF signal across the genome might indicate518

that the genetic basis of adaptation to this new temperature regime is indeed polygenic. Our519

results also suggest that the impact of linked selection might be non-negligible and worth520

investigating further.521

Linkage between selected and neutral variants has long been shown to cause skewed neutral site522

frequency spectra (Fay and Wu, 2000). Our analysis of the Barghi et al. (2019) experiment523

indicates that linked selection might be the cause of a similar skew in this dataset. Of the six524

genomic elements in the D. simulans genome, five show significant SNPs all throughout the525

chromosome. In fact, Buffalo and Coop (2020) have analysed temporal covariances in Barghi526

et al.’s dataset to quantify the impact of linked selection in a model of polygenic adaptation.527

They found that the covariances between adjacent time points are positive but do decay towards528
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zero as one examines more distant time intervals. This would be predicted under a scenario where529

directional selection is determining the fate of linked neutral loci. Over 20% of genome-wide530

allele frequency changes were estimated to be caused by selection, particularly linked selection.531

Bait-ER producing significant hits throughout the genome is consistent with this finding. Linkage532

disequilibrium (LD) between neutral and selected sites is likely to have a substantial impact on533

genome scans such as Bait-ER that assume independence between sites.534

Barghi et al. (2019) claim that their experiment showed a very distinctive pattern of535

heterogeneity amongst replicate populations. In other words, they found that different replicates536

had different combinations of alleles changing in frequency together throughout the whole537

experiment. In an independent study, Buffalo and Coop (2020) found that there is a substantial538

proportion of the initial allele frequency change in response to selection that is shared between539

replicates in the Barghi et al. dataset, but this pattern is overturned rapidly. This heterogeneity540

could be the result of at least two processes. Firstly, it can be caused by the population swiftly541

reaching the new phenotypic optimum, thereby hitchhiker alleles spread through the population542

along with adaptive sites, which are quickly fixed. These linked loci eventually experience a543

relaxation of selection and are free to change in frequency from then on as recombination breaks544

down these haplotypes. Another possibility is that such heterogeneous behaviour is not a545

consequence of recombination but caused by a slowdown of allele frequency changes as the546

population reaches the phenotypic optimum. This can leave a signature of rather distinct allele547

frequency spectra between replicates. A heterogeneous response can alternatively be the result of548

sufficient standing genetic variation followed by haplotype segregation amongst replicates. If549

there was enough time for the beneficial mutations to spread to different genetic backgrounds550

before the onset of laboratory selection, the haplotypes that were present at the foundation of551

the population replicates could have been segregating from the start.552

The consequences of replicate heterogeneity on genome scans are twofold. On the one hand,553

different segregating haplotypes could be selected for in different replicates. This will cause554

genome scans not to find any convergent genotype frequencies, suggesting the response to555

selection is varied across replicates. The process is difficult to characterise unless there is556

sufficient data on the founder haplotypes. However, numerous studies have time series data that557

does not include full sequences of those starting haplotypes, e.g. Barghi et al. (2019) and Burke558

et al. (2014). On the other hand, if there was enough diversity at the start of the experiment, it is559

possible that multiple interacting beneficial mutations are already present in the standing genetic560
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variation. Interference between linked selected sites can reduce the effectiveness of selection.561

This will be more prevalent if there are strongly selected sites in the vicinity. Our results indicate562

that that might be the case in the sweep simulated by Vlachos et al. (2019), where the authors563

simulate a little over 10% of the D. melanogaster total genome length. Each simulated segment564

had 30 selected targets. For moderate to strong selection, that might be enough for linkage to565

hinder rapid adaptation and produce signatures that are not readily captured in genome scans.566

Bait-ER estimates and tests for selection. However, σ estimates are not to be taken literally as567

linked selection might be inflating individual selection coefficients. Such is the case that nearby568

sites are not independent from one another that whole haplotypes might be rising to fixation at569

once. Despite evidence that maximum likelihood estimates of selection coefficients are not570

affected by demography in populations as small as 500 individuals (Jewett et al., 2016), Ne in571

evolution experiments is typically even lower. Drift thus exacerbates the effect of linked selection.572

In addition, and in spite of researchers’ best efforts, it is common that Ne in laboratory573

experiments is lower than the census population size. For example, Barghi et al. (2019) have574

reared flies in populations of roughly 1000 individuals, but they have estimated Ne to be around575

300. Therefore, in a short timescale such as that of an evolution study, recombination is unlikely576

to have had the chance to have broken up haplotypes present in the standing genetic variation.577

Collectively, our results suggest that drift should not be neglected as it might inflate selection578

coefficient estimates since it exacerbates the extent of linked selection. Its impact can be579

substantial especially for populations with low polymorphism levels.580

Regardless of demographic factors, adaptation of complex traits in and of itself is a challenging581

process to characterise. This is because trait variation is influenced by numerous genes and gene582

networks. There is now some evidence in the literature suggesting that polygenic adaptation is583

key in a handful of laboratory evolution studies. The genomic signature left by such a complex584

process is still hard to describe in its entirety even in a replicated experimental design. It depends585

on numerous factors, including the total number of causative loci, as well as on the levels of586

standing genetic variation within the initial population. These are not independent of each other,587

as the more polygenic a trait is the more likely linkage between selected sites is to generate588

selected haplotypes. Nevertheless, directional selection will cause some proportion of selected589

sites to behave as sweep-like trajectories. It is those that Bait-ER is aiming to characterise. In590

short-term E&R experiments, the new phenotypic optimum could be reached towards towards the591

end leaving sweep signatures behind.592
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One aspect of time series polymorphism datasets that is worth our attention is that of missing593

data. It is sometimes the case that there is no frequency data at consecutive time points for a594

given trajectory. In the future, we will extend Bait-ER to allow for missing time points. Such a595

feature will enable one not to discard alleles for which not all time points have been sequenced.596

By using a probabilistic approach to estimate missing allele frequencies, Bait-ER has inherently597

the potential to cope with missing data when estimating selection parameters.598

Results from genome-scans in E&R studies of small populations generally tend to underperform.599

Since drift is pervasive and LD is extensive, genome scans might suffer from low power and high600

false positive rates. For that reason, we plan to extend Bait-ER to explicitly account for linkage,601

which decays with distance from any given locus under selection. Accounting for linkage should602

help disentangle the effects of local directional selection on specific variants versus polygenic603

selection on complex traits. Modelling the evolution of linked sites by including information on the604

recombination landscape will further clarify the contribution of each type of selection.605
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Barghi, N., Tobler, R., Nolte, V., Jakšić, A. M., Mallard, F., Otte, K. A., Dolezal, M., Taus, T.,618

Kofler, R., and Schlötterer, C. (2019). Genetic redundancy fuels polygenic adaptation in619

Drosophila. PLoS Biol, 17(2):e3000128.620

Bastide, H., Betancourt, A., Nolte, V., Tobler, R., Stöbe, P., Futschik, A., and Schlötterer, C.621
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Tables718

WFABC CLEAR LLS Bait-ER

Inference

approach

Approximate

Bayesian

computation

Maximum

likelihood

Linear least

squares*
Bayesian

Hypothesis

testing

• Bayes factors

• Depends

heavily on

summary

statistics

• Likelihood-

ratio

tests

• Empirical

p-values

based on

genome-wide

drift

simulations

• Empirical

simulated

p-values

based on

simulations

of allele

trajectories

• Bayes factors

• Based on the

posterior

distribution

Assumptions • WF model • WF model

• WF and

Moran model

• The allele

frequencies

vary linearly

with the

selection

coefficients

• Weak

selection

• Time-

continuous

Moran model

Accounts for No Yes Yes Yes

replicates

Accounts for No Yes No Yes

sequencing

noise

Reference
(Foll et al.

2015)

(Iranmehr et al.

2017)

(Taus et al.

2017)
This study

Table 1: Currently available software for estimating selection coefficients in E&R experiments.a

aThe table describes several features of each method namely: i) the approach used for inferring selection coeffi-

cients, ii) whether it performs hypothesis testing or not, iii) what sort of assumptions are made about the underlying

population genetics model, iv) its overall computational and inference performance, v) whether it accounts for multiple

replicate populations, and vi) whether it accounts for sampling variance due to sequencing noise. WF: Wright-Fisher.

*LLS under the assumption of linearity is equivalent to a maximum likelihood approach.
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Figure 1: Example of an E&R experimental setup. E&R experiments expose several replicated populations

(e.g., of flies, yeast, viruses) to a selective pressure (e.g., temperature, food regimes) for a specific number of

generations tT . The replicated populations are surveyed at several time points by whole-genome sequencing,

which allows one to quantify changes in allele frequencies over time.
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Figure 2: Impact of the prior on the posterior estimates of the selection coefficients. The posterior

distribution of σ was calculated using gamma priors G(α, β), where α and β are the shape and rate param-

eters. We set α = β and allowed β to vary from 0.001 to 105 (i.e. ranging from a very uninformative to a

very informative prior, respectively). The different priors were tested under three E&R experiment scenarios:

the first was a sparse experimental design (coverage (C) = 20x, number of time points (T) = 2 and number

of replicates (R) = 2), while the second mimicked a standard set up (C = 60x, T = 5 and R = 5). Finally,

the third scenario had the most thorough experimental conditions (C = 100x, T = 11 and R = 10). Red

lines indicate the true value of σ. Blue lines point to the mean of the prior imposed on σ. Black lines and

points correspond to the posterior mean of σ and credibility intervals at 0.95.
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Figure 3: Impact of E&R experimental design on the estimated selection coefficients. Each square of

the heatmap represents the error of the estimated selection coefficients, i.e., the absolute difference between

the estimated and the true σ: |σ̂−σ|, for a range of population dynamics and E&R experimental conditions.

(A) Number, span and distribution of sampled time points. The six time schemes differ according to the

following criteria: most time schemes have five sampling events, except for TS1 and TS6, which have two

and eleven time points, respectively; all time schemes have a total span of Ne/5 generations, except for

TS5, which has double the span (2Ne/5); uniform sampling was used in most scenarios but for TS3, which

is more heavily sampled during the first half of the experiment, and TS4, during the second half. The two

maximum experiment lengths considered (0.2Ne and 0.4Ne) were chosen based on typical E&R experimental

designs. (B) number of replicates. (C) coverage. To test the experimental conditions, we defined a base

experiment with five replicates, five uniformly distributed time points (total span of 0.20Ne generations)

and a coverage of 60x. The complete set of results is shown in supplementary fig. ??-??.
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Figure 4: Impact of the user-specified population size on the estimation of selection coefficients. The

plots show the distribution of the estimated selection coefficients where the population size is misspecified.

Vertical lines and points indicate the interquartile range and median selection coefficient. Each plot represents

a specific scenario that was simulated by varying the population size, the true selection coefficient (indicated

within brackets (Ne , Neσ)) and starting allele frequency (indicated by the yellow-to-red colour gradient).

The numbers next to each bar correspond to the Spearman’s correlation coefficient, which correlates the

BFs of the 100 replicated trajectories between the cases where we have either under- and overspecified

the population size (Ne = 100 or 1000, respectively) and the case where we use the true population size

(Ne = 300). Regarding simulated experimental design, we defined a base experiment with five replicates,

five uniformly distributed time points (total span of 0.20Ne generations) and a coverage of 60x.
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Figure 5: Comparison of estimates of σ produced by Bait-ER versus CLEAR and LLS. These plots

include estimates for those Moran trajectories simulated with starting frequencies of 10% and 50% (top and

bottom row, respectively). Only neutrally evolving (Nes = 0) and strongly selected alleles were considered

here (Nes = 10). The left and right hand side panels correspond to two different experiment lengths: 150

and 75 generations, respectively. LLS returned NA’s for 3 out of 800 trajectories which were excluded from

these graphs.
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Figure 6: Real computational time for Bait-ER and the other three approaches tested. From left to

right, computational time in seconds including both inference and hypothesis testing for Bait-ER, CLEAR,

LLS and WFABC is shown here. Similarly to figs. 5 and ??, these boxplots include estimates for those

trajectories simulated with starting frequencies of 10% and 50%, as well as both study lengths investigated,

i.e. 150 and 75 generations. Four NA’s produced by LLS were again removed from these plots.
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Figure 7: Performance of Bait-ER and other software at testing for selection in data simulated by

Vlachos et al. (2019). ROC (Receiver Operating Characteristic) curves for Bait-ER, CLEAR, CMH, LLS,

WFABC, FIT1 and FIT2 under (a) the classic sweep scenario and (b) a scenario with truncating selection.

Note that LLS and WFABC were run on a subset of SNPs in (a), and that WFABC was not included in (b)

for it was prohibitively slow and only finished runs for 29 replicate experiments.
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Figure 8: Bayes Factors on chromosome 3R. This Manhattan plot shows log-transformed Bayes Factors

computed by Bait-ER for loci along the right arm of the 3rd chromosome in the Barghi et al. (2019) time

series dataset. The orange line indicates a conservative threshold of approximately 4.6, which corresponds

to log(0.99/0.01), meaning all points in orange have very strong evidence for these to be under selection.

The SNPs that are significant at this level are sorted by size according to how strong Bait-ER’s selection

coefficients are. In other words, points are sized according to how strong the large selection coefficient is

estimated to be.
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Figure 9: Variance versus mean sigma on the X chromosome. This graph compares log transformed

variances in σ estimates to average σs. The variance is calculated using the inferred rate and shape parame-

ters for the beta distribution, and the average σ is the mean value of the posterior distribution estimated by

Bait-ER. Orange coloured points are significant at a conservative BF threshold of log(0.99/0.01), approx.

4.6.
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Figure 10: Bait-ER’s Bayes Factors versus CMH test’s p-values on chromosome 2L. Orange coloured

points correspond to BFs which are greater than log(0.99/0.01) (approx. 4.6) and p-values less than or

equal to 0.01, i.e. those that are considered significant by both tests. Blue coloured points indicated that

the computed BF is greater than our threshold, but not significant according to the CMH test. Additionally,

dark grey points are significant according to the CMH test, but not to Bait-ER, and light grey points are

inferred not significant by both tests.
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