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Abstract This article proposes an adaptive neural output feedback control
scheme in combination with state and disturbance observers for uncertain
fractional-order nonlinear systems containing unknown external disturbance,
input saturation and immeasurable state. The radial basis function neural net-
work (RBFNN) approximation is used to estimate unknown nonlinear func-
tion, and a state observer as well as a fractional-order disturbance observer is
developed simultaneously by using the approximation output of the RBFN-
N to estimate immeasurable states and unknown compounded disturbances,
respectively. Then, a fractional-order auxiliary system is constructed to com-
pensate the effects caused by the saturated input. In addition, by introducing
a dynamic surface control strategy, the tedious analytic computation of time
derivatives of virtual control laws in the conventional backstepping method is
avoided. The proposed method guarantees that the boundness of all signals
in the closed loop system and the tracking errors converge to a small neigh-
bourhood around the origin. Finally, two examples are provided to verify the
effectiveness of the proposed control method.

Keywords State observer · disturbance observer · neural network ·
fractional-order nonlinear system · dynamic surface control

1 Introduction

Although fractional calculus was mentioned more than three hundred years,
its research has been focused on the field of mathematical sciences because of
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the lack of actual physical meaning. Until recent decades, the applications of
fractional calculus have developed rapidly and received enormous attention
due to the fact that fractional calculus can model a real object more precise-
ly than the traditional integer-order method in the fields of system control,
heat conduction electronic, signal processing and secure communication and
so forth [1–4]. For this reason, the fractional-order nonlinear systems (FON-
Ss) have received considerable attention from scholars, whose control design
have become one of the research hotspots in the past few years. So far, a
number of control methods have been derived for the FONSs by integrating
some classic control approaches including sliding mode control, fuzzy or neural
network control and adaptive control [5–8]. Nevertheless, the controller design
for FONSs is still insufficient because some constraints are usually ignored,
such as model uncertainty, saturated nonlinearity, and immeasurable state. In
addition, it is worthwhile pointing out that control approaches of integer-order
systems may not be directly extended to fractional-order systems because of
the special characteristics of fractional calculus. Therefore, more robust track-
ing control schemes should be further exploited for FONSs aiming to solve the
aforementioned limitations.

It is well known that the strict feedback system is a common type of non-
linear systems, and many physical models can be described as this structure,
such as inverted pendulum, oscillator, single machine infinite bus power supply
box and quarter-car active suspension model [9–12]. One of the most powerful
methods for the stability analysis of this type of systems is the backstepping
technique. In recent years, some scholars have investigated the backstepping
control of FONSs, and some valuable results have also been reported. In [13], an
efficient controller was designed for fractional-order chaotic systems by blend-
ing Mittag-Leffler function and Lyapunov stability results with backstepping
technique, which not only ensures global stability of systems but also avoids
the singularity problem. By combining with a fractional-order sliding mode
surface and a disturbance observer, a command filter based backstepping con-
trol scheme was exploited for FONSs with disturbance in [14]. In the above
literature, the priori knowledge of system models and matching condition are
necessary. However, the accurate model of system nonlinearities is hard to be
directly obtained in practice because system uncertainties such as uncertain
parameters or functions, modeling errors and external disturbances are un-
avoidable. An effective method for uncertain FONSs with strict feedback is
adaptive fuzzy or neural network control strategy based on backstepping tech-
nique because system uncertainties can be tackled by fuzzy logical systems
(FLSs) or neural networks. For example, in the light of the backstepping ap-
proach, an adaptive neural control scheme for uncertain FONSs was presented
in [15], where both full state constraints and input saturation are considered,
and a barrier Lyapunov function is introduced to prevent the violation of full
state constraints. In [16,17], an adaptive backsteeping tracking control scheme
was developed successively for FONSs with unknown nonlinearities and ex-
ternal disturbances, where the system model is fully unknown. It should be
pointed out that, in the above literature, to avoid the issue of explosion of com-
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plexity, the FLSs or neural networks are employed to estimate the fractional
derivatives of virtual controllers; however, this approach will bring accumulat-
ed fuzzy approximation errors, which will degrade the control performance of
the system. A feasible method to solve this problem is using the dynamic sur-
face control (DSC), whose main idea consists in that the derivative of virtual
control inputs are substituted by some algebraic terms. In [18], both adaptive
DSC and composite learning DSC were developed for uncertain FONSs, in
which fractional derivative of intermediate control function can be calculated
easily in each backstepping step by a fractional dynamic surface. Aiming at the
filed of SISO strict feedback uncertain FONSs with external disturbances, by
combining the FLSs and the DSC technique, a novel adaptive output feedback
control method was designed in [19], where an auxiliary function is introduced
to erase the possible chattering phenomenon. Although adaptive fuzzy or neu-
ral backstepping control combined with the DSC technique can solve the the
issue of explosion of complexity, aforementioned control schemes are put for-
ward based on the assumption that the states of controlled systems can be
obtained directly.

However, in real-world systems, it is difficult or even impossible to access
directly the whole state variables due to fact that the application of sensors
will require larger machine sizes and additional drive costs, thereby the only
information one can get is the system output in most instances. To cope with
this limitation, an effective method is to develop a state observer in advance
to estimate unknown states. Over the last few years, some observer-based
adaptive control schemes were proposed for FONSs. Ref. [20] focused on the
observer-based tracking control of incommensurate fractional-order systems,
and a novel sliding surface combined with output feedback control strategy,
which is qualified for not only state estimation but also tracking, was pro-
posed. For incommensurate fractional-order systems with immeasurable states
and uncertain parameters, an observer-based adaptive backstepping controller
was developed in [21], where the input saturation is taken into account, and a
fractional-order auxiliary system is designed to compensate for the saturation.
In [22], for a fractional-order chaotic permanent magnet synchronous motor
with the immeasurable states and unknown nonlinear functions, to reduce
hardware complexity and costs, an adaptive neural network reduced order s-
tate observer in combination with the backstepping technique was proposed.
By appropriately selecting gain matrix, the state observer could estimate the
immeasurable states well and estimation errors converged to a small neigh-
borhood of the origin in [23], where a super twisting algorithm is employed to
avoid repeatedly differentiating the intermediate control function in the frame-
work of backstepping. Although the aforementioned work effectively solved the
problem of unknown states by a state observer, the system models constraints
are relatively strict, and the system models are relatively simple without con-
sidering external disturbances which usually degrade the performance of sys-
tem, or even result in instability. To strengthen the robustness of the system,
the method of compensating the maximum disturbance boundary was adopt-
ed for FONSs in [16,19,24,25]; however, very large controller gains should be
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used to guarantee the convergence of the tracking error. Thus, it is importan-
t to investigate the method of disturbance estimate, which can improve the
control accuracy and reduce the energy consumption. However, to the best of
the author’s knowledge, the state observer and disturbance observer are rarely
considered simultaneously due to fact that it is very hard to tackle the two
observation errors. Consequentially, how to solve this problem is a meaning
but challenging work.

Motivated by the above discusses, the main purpose of this paper is to
develop a observer-based adaptive backstepping DSC technology for FONSs in
the presence of unmeasured state, input saturation and external disturbance.
Compared with the existing results, the main contributions of this paper can be
summarized as follows. (1) Different from [20–23, 26–29], which only consider
a state observer or a disturbance observer, two observers are designed at the
same time in this paper. (2) An observer-based fractional-order DSC strategy
is designed for FONSs with input saturation and external disturbance.

The rest of this paper is structured as follows. Some preliminaries and
the problem formulation are given in Section 2. In Section 3, a state observer
and a disturbance observer are constructed simultaneously firstly, and then
a controller is designed based on the adaptive neural backstepping control
method. In Section 4, two simulation examples are given to illustrate the
effectiveness of the proposed method. Finally, some conclusions are given in
Section 5.

2 Preliminaries and Problem description

2.1 Preliminaries

In this part, some basic definitions of fractional calculus and useful lem-
mas are introduced. The Caputo definition, which can be used in engineering
applications widely because its initial value condition has important physical
meaning, is employed.

Definition 1 [30] The Caputo fractional integral of a smooth function f(t)
with respect to t and the lower terminal 0 is expressed as

C
0 D−ν

t f(t) =
1

Γ (ν)

∫ t

0

f(τ)

(t− τ)1−ν
dτ, (1)

where Γ (·) represents the Gamma function.

Definition 2 [30] The Caputo fractional derivative of a continuous function
f(t) can be defined as

C
0 Dν

t f(t) =
1

Γ (ω − ν)

∫ t

0

f (ω)(τ)

(t− τ)ν+1−ω
dτ, (2)
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where ω − 1 < ν < ω and ω ∈ N+.
The Laplace transform of (2) is given by

L (C0 Dν
t f(t); s) = sνF (s)−

n−1∑
k0=0

sν−k0−1f (k0)(0), (3)

where F (s) = L (f(t)) =
∫∞
0
e−stf(t)dt. For convenience, in the following

part of this paper, only the case that ν ∈ (0, 1) is considered, and Dν is used
to replace C

0 Dν
t .

Definition 3 [30] The Mittag-Leffler function with two parameters is repre-
sented as

Eν1,ν2(x) =

∞∑
j=1

xj

Γ (ν1j + ν2)
, (4)

where ν1, ν2 > 0, and x is a complex number. Furthermore, take the Laplace
transform on (4), one has

L {tν2−1Eν1,ν2(−ζtν1)} =
sν1−ν2

sν1 + ζ
, (5)

in which ζ ∈ R.

Lemma 1 [31] Let x(t) ∈ R be a continuous and differentiable function.
Then, for any time instant t > t0, the following inequality holds

Dνx2(t) ≤ 2x(t)Dνx(t). (6)

Moreover, suppose that x(t) ∈ Rn, it holds

Dν(xT (t)Px(t)) ≤ 2xT (t)PDνx(t), (7)

where P = PT ∈ Rn×n is a positive definite matrix.

Lemma 2 [16] For a complex number ν2 and two real numbers ν1, ν̄ satis-
fying 0 < ν1 < 2 and ν1π

2 < ν̄ < min{π, πν1}, the following equation holds

Eν1,ν2(ζ) = −
m∑
j=1

1

Γ (ν2 − ν1j)ζj
+ o(|ζ|−1−m), |ζ| → ∞, ν̄ ≤ |arg(ζ)| ≤ π,

(8)
for all integer m ≥ 1.

Lemma 3 [16] Let ν1 ∈ (0, 2) and ν2 be an arbitrary real number. If a real
number ν̄ satisfies ν1π

2 < ν̄ < min{π, πν1}, the following equation exists

|Eν1,ν2(ζ)| ≤
ϵ

1 + |ζ|
, (9)

where ϵ > 0, ν̄ ≤ | arg(ζ)| ≤ π, and |ζ| ≥ 0.
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Lemma 4 [32] Consider the following fractional-order system, if the ν-th
derivative of Lyapunov function V (t) satisfies

DνV (t) ≤ −b1V (t) + b2, (10)

where ν ∈ (0, 1), b1 > 0 and b2 > 0, then one has

V (t) ≤ V (0)Eν(−b1tν) +
b2ϱ

b1
, (11)

where ϱ = max{1, ϵ} and ϵ is defined in Lemma 3.

2.2 System Descriptions and Assumptions

Consider uncertain strict feedback FONSs with input saturation and time
varying disturbances in the following form

Dνξi = ξi+1 + fi(ξ̄i) + di(t), 1 ≤ i ≤ n− 1,

Dνξn = u(v) + fn(ξ̄n) + dn(t),

y = ξ1,

(12)

where ξ̄i = [ξ1, ξ2, · · · , ξi]T ∈ Ri is the system state vector, and y ∈ R is the
output of system; fi(ξ̄i) is an unknown continuous nonlinear function, and
di(t) is an unknown external time varying disturbance; v stands for system
control input; and u(v) is the input saturation function, which is described by

u(v) = sat(v) =


uM , v ≥ uM ,

v, um < v < uM ,

um, v ≤ um,

(13)

where uM > 0 and um < 0 are known saturation amplitudes. According to
(13), one obtains u(v) = v+∆u, where ∆u is the different between v and u(v).

Let yd be a reference signal, and assume that only the output signal y is
measurable. The purpose of this paper is to design an adaptive neural con-
troller based on a state observer and a disturbance observer so that all the
signals are bounded, and the output y can follow the desired reference signal
yd as closely as possible. To facilitate controller design, one needs the following
assumptions.

Assumption 1 The referenced signal xd(t) and its ϑ-th derivative Dϑ
t xd(t)

are bounded and known.

Assumption 2 For the external disturbance di(t) in the system (12), there
exist unknown positive constants d̄i1, d̄i2 such that |di(t)| ≤ d̄i1 and |Dνdi(t)| ≤
d̄i2.
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Assumption 3 There exists a known positive constant Li such that the fol-
lowing equality holds

|fi(ξ̄i)− fi(
ˆ̄ξi)| ≤ Li||ξ̄i − ˆ̄ξi||, (14)

where ˆ̄ξi = [ξ̂1, ξ̂2, · · · , ξ̂i]T is the estimation of ξ̄i = [ξ1, ξ2, · · · , ξi]T , and || ∗ ||
denotes the Euclidean norm.

2.3 RBFNN

In this paper, the RBFNN is employed to estimate the unknown nonlinear
smooth function f(X) : Rℓ → R, which can be expressed by

f(X) = θTϑ(X),

where θ = [θ1, θ2, · · · , θp]T ∈ Rp is the weight vector and p > 1 is the number
of the neural network. X ∈ Rp is the input vector and ℓ is the input dimension.
ϑ(X) = [ϑ1(X), ϑ2(X), · · · , ϑp(X)]T means the basis function vector, which
is chosen as

ϑȷ(X) = exp
[
− (X − cȷ)

T (X − cȷ)

ς2ȷ

]
, ȷ = 1, 2, · · · , p,

where cȷ = [cȷ1, cȷ2, · · · , cȷq]T is the center of the receptive and ςȷ is the width
of the basis function ϑȷ(X). From the definition of ϑ(X) in [33,34], one obtains
that ϑ(X) is bounded with upper bound a (0 ≤ a ≤ 1), i.e.,

||ϑ(X)|| ≤ a. (15)

Based on the above discussion, the neural network can estimate f(X) to
an arbitrary accuracy in the compact set ΩX ∈ Rq by selecting sufficiently
large node number p as

f(X) = θ∗Tϑ(X) + ε(X), (16)

where θ∗ is the ideal weight vector and defined as

θ∗ = arg min
θ̂∈Rp

{
sup

X∈ΩX

|f(X)− θTϑ(X)|
}

and ε(X) denotes the approximation error and satisfies ε(X) ≤ ε̄(ε̄ ≥ 0).

Remark 1 Because the immeasurable state ξi, the unknown smooth function
fi(·), the external disturbance di(t) and the control input saturation u(v)
exist at the same time, the controller design for the FONS (12) becomes very
complicated. The time dependent disturbance di(t) relies heavily on exogenous
effect, so one can conclude that the disturbance and the time derivative of
the disturbance are bounded, that is, Assumption 2 is reasonable. On the
other hand, the difference ∆u between the actual control input v(t) and the
saturation input u(v) is bounded because only the finite control moment or
control force can be provided for practical systems in industry.
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According to the above discussion, the system (12) can be described as
Dνξi = ξi+1 + fi(

ˆ̄ξi) +∆fi + di(t), 1 ≤ i ≤ n− 1,

Dνξn = u(v) + fn(
ˆ̄ξn) +∆fn + dn(t),

y = ξ1,

(17)

where ∆fi = fi(ξ̄i)− fi(
ˆ̄ξi).

Since fi(
ˆ̄ξi) is unknown, it can be approximated as

rifi(
ˆ̄ξi) = θ∗T

i ϑi(
ˆ̄ξi) + εi(

ˆ̄ξi), (18)

where θ∗
i is the optimal weight vector, and εi(

ˆ̄ξi) is the approximation error.
By substituting (18) into (17), the uncertain nonlinear system (17) can be
rewritten as 

Dνξi = ξi+1 +
1

ri
θ∗T
i ϑi(

ˆ̄ξi) + δi,

Dνξn = u(v) +
1

rn
θ∗T
n ϑn(

ˆ̄ξn) + δn,

y = ξ1,

(19)

where δi = ∆fi +
1
ri
εi(

ˆ̄ξi) + di(t).

Remark 2 The signal δi is called the unknown compound disturbance, which
is composed of external time varying disturbance di(t), neural optimal approx-

imation error εi(
ˆ̄ξi) and ∆fi. According to Assumptions 2, 3 and the approx-

imation of ability of the neural network, the time derivative of the compound
disturbance is bounded, i.e., |Dνδi| ≤ δ̄i, where δ̄i is an unknown positive
constant.

3 Main Results

In this section, a state observer and a disturbance observer are developed to
estimate the unmeasurable states and the unknown compound disturbances,
respectively. Then, a backstepping design procedure will be established for
uncertain strict feedback FONSs under the adaptive neural control framework.

3.1 Composite observer design

To observe the unmeasurable system state ξi, a state observer is designed
as 

Dν ξ̂i = ξ̂i+1 +
1

ri
θ̂T
i ϑi(

ˆ̄ξi) +mi(y − ξ̂1) + δ̂i,

Dν ξ̂n = u(v) +
1

rn
θ̂T
nϑn(

ˆ̄ξn) +mn(y − ξ̂1) + δ̂n,

ŷ = ξ̂1,

(20)
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where θ̂i is parameter weight vector which is employed to approximate ideal
weight vector θ∗

i , and δ̂i is the estimation of the compounded disturbance δi.

Define the estimation errors ξ̃i = ξi− ξ̂i, θ̃i = θ∗
i −θ̂i, δ̃i = δi− δ̂i and ỹ = y−ŷ.

From (19) and (20), one has{
Dν ξ̃ = Aξ̃ + Θ̃ + δ̃

ỹ = CT ξ̃1,
(21)

where ξ̃ = [ξ̃1, ξ̃2, · · · , ξ̃n]T , Θ̃ =
[

1
r1
θ̃T
1 ϑ1(

ˆ̄ξ1),
1
r2
θ̃T
2 ϑ2(

ˆ̄ξ2), · · · , 1
rn
θ̃T
nϑn(

ˆ̄ξn)
]T

,

δ̃ = [δ̃1, δ̃2, · · · , δ̃n]T ,C = [1, 0, · · · , 0]T ,A =

(
A1 A2

A3 A4

)
, andA1 = [−m1, · · · ,

−mn−1]
T ,A2 = In−1×n−1,A3 = −mn,A4 = [0, 0, · · · , 0]n−1 andmi is the ob-

servation gain parameter to be decided. At the same time, the designed param-
etermi is chosen so that the polynomial p(s) = sn+m1s

n−1+· · ·+mn−1s+mn

is Hurwitz. Therefore, for a positive definite matrix P = PT ∈ Rn×n, there
exists a positive definite matrix Q = QT ∈ Rn×n such that

ATP+PA ≤ −Q. (22)

In order to strengthen the anti-disturbance ability of the tracking control
scheme, the fractional-order disturbance observer is developed to estimate the
compound disturbance. To design a disturbance observer, the following auxil-
iary variable is introduced

ei = δi − riξi, (23)

whose differentiation is obtained from (19) as{
Dνei = Dνδi − riξi+1 − θ∗T

i ϑi(
ˆ̄ξi)− ri(ei + riξi),

Dνen = Dνδn − rnu(v)− θ∗T
n ϑn(

ˆ̄ξn)− rn(en + rnξn),
(24)

in which ri > 0 is design parameter of the developed disturbance observer.
To achieve the purpose of estimating the compound disturbance δi, the

estimation of the auxiliary variable ei should be obtained first. Thus, the
following equations are given based on (24) as

Dν êi = −ri
(
ξ̂i+1 +

1

ri
θ̂T
i ϑi(

ˆ̄ξi) + êi + riξ̂i

)
,

Dν ên = −rn
(
u(v) +

1

rn
θ̂T
nϑn(

ˆ̄ξn) + ên + rnξ̂n

)
.

(25)

In the light of (23), one can get the estimation of δi as

δ̂i = êi + riξ̂i. (26)

The estimation error of auxiliary variable is defined as ẽi = ei − êi. It
follows from (23) and (26) that

ẽi = δ̃i − riξ̃i. (27)
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Based on (24) and (25), the auxiliary error system is described as
Dν ẽi = Dνδi − ri

(
ξ̃i+1 +

1

ri
θ̃T
i ϑi(

ˆ̄ξi) + ẽi + riξ̃i

)
,

Dν ẽn = Dνδn − rn

(
1

rn
θ̃T
nϑn(

ˆ̄ξn) + ẽn + rnξ̃n

)
.

(28)

Consider the compound error system, which is composed of the state ap-
proximation error (21) and the auxiliary estimation error (28), the Lyapunov
function candidate is chosen as

V0(t) = ξ̃TPξ̃ +
1

2

n∑
i=1

ẽ2i . (29)

According to Lemma 1, the ν-th derivative of V0(t) can be expressed as

DνV0(t) ≤ (Dν ξ̃)TPξ̃ + ξ̃TP(Dν ξ̃) +
n∑

i=1

ẽiDν ẽi

= ξ̃T (ATP+PA)ξ̃ + 2ξ̃TP(Θ̃ + δ̃)−
n∑

i=1

riẽ
2
i +

n∑
i=1

ẽiD
νδi

−
n−1∑
i=1

riẽiξ̃i+1 −
n∑

i=1

riẽi

(
1

ri
θ̃T
i ϑi(

ˆ̄ξi) + riξ̃i

)
.

(30)

By employing the Young’s inequality and (15), the following inequalities
hold 

2ξ̃TPΘ̃ ≤ λ0a
2
0ξ̃

T (PR−1)TPR−1ξ̃ +
1

λ0

n∑
i=1

θ̃i
T
θ̃i,

−
n∑

i=1

ẽiθ̃
T
i ϑi(

ˆ̄ξi) ≤
λ0a

2
0

2
ẽT ẽ+

1

2λ0

n∑
i=1

θ̃i
T
θ̃i,

(31)

where a0 = max(ai), ẽ = [ẽ1, ẽ2, · · · , ẽn]T , R = diag(r1, r2, · · · , rn) and λ0 is
design positive parameter.

It can be deduced from the Remark 2 that

n∑
i=1

ẽiD
νδi ≤

1

2
ẽT ẽ+

1

2
δ̄T δ̄, (32)

where δ̄ = [δ̄1, δ̄2, · · · , δ̄n]T .
Denote Λ = [ξ̃T , ẽT ]. With (31) and (32), the derivative of V0 is calculated

as

DνV0(t) ≤ −Λ

(
Q−λ0a

2
0(PR−1)TPR−1−2PR −P+ 1

2R
TR+R

2

−P+ 1
2R

TR+R
2 R−λ0+λ2

0a2
0

2λ0
In×n

)
ΛT

+
3

2λ0

n∑
i=0

θ̃i
T
θ̃i +

1

2
δ̄T δ̄.

(33)
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Remark 3 For the proposed nonlinear state observer, the appropriate approx-
imation performance can be obtained by adjusting the design parameter mi.
Moreover, to make the state estimation follow the original system state rapid-
ly, the bandwidth of the state observer should be designed to be greater than
the bandwidth of the controller. In addition, in order to make θ̃i bounded, it
is necessary to design an efficient controller.

3.2 Control design and stability analysis

In this part, an adaptive neural output feedback controller will be con-
structed by using the above composite observer and the backstepping tech-
nique. In order to overcome the input saturation constraint of the actuator, a
dynamical auxiliary system of (34) is constructed to compensate for the effect
of the saturation with the same order:{

Dνψi = ψi+1 − κiψi, 1 ≤ i ≤ n− 1

Dνψn = ∆u− κnψn,
(34)

where κi is a positive design parameter that meets the specific condition to be
determined later, and ψi is state variable of the auxiliary system (34). Based
on the controllable situation of the system (17) and Remark 1, ∆u can be
considered as a bounded function, that is |∆u| ≤ ū.

After incorporating the saturation error compensation signal, error vari-
ables are given as {

z1 = ξ1 − ψ1 − yd,

zi = ξ̂i − αc
i − ψi.

(35)

In order to avoid the tedious analytic computation of the virtual control
law, which results in the explosion of complexity in the sequel steps, a DSC is
adopted to estimate the derivative of the virtual control law αi−1 as{

ϖiDναc
i + αc

i = αi−1,

αc
i (0) = αi−1(0),

(36)

where ϖi is positive constant, zi is called an error surface, and αc
i is a state

variable which is obtained by letting intermediate control function αi−1 pass
through the fractional-order filter with a constant ωi. Define the output error
of fractional-order filter χi = αc

i −αi−1(i = 2, · · · , n). In the light of (35), one
has

ξ̂i = zi + αc
i + ψi = zi + χi + αi−1 + ψi. (37)

The ν-th Caputo derivative of χi can be obtained as

Dνχi = Dναc
i −Dναi−1 = − χi

ϖi
+Hi, (38)

whereHi is a continuous function of variables z1, · · · , zi, χ2, · · · , χi, θ̂1, · · · , θ̂i,
δ̂1, · · · , δ̂i, yd, Dνyd and Dν(Dνyd).
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Remark 4 From (34), it should be emphasized that the error ∆u = u(v)− v is
the input of the auxiliary system, and the upper bound of |y−yd| relies on the
upper bound of ∆u and design parameters. In the case of no input saturation,
that is, ∆u = 0, the value of the variable ψi is very tiny, and it does not
affect the design of the controller. In the presence of the input saturation, the
auxiliary system (34) can be activated so that the variable ψi is used to modify
the tracking error z1 to compensate for the input saturation. Therefore, the
mentioned auxiliary system can effectively solve the input saturation problem.

Remark 5 By Assumption 1 and the property of continuous function, one has

Ξ0 =
{
(yd,Dνyd,Dν(Dνyd)) : (yd)

2 + (Dνyd)
2 + (Dν(Dνyd))

2 ≤ η0

}
is com-

pact, where η0 is a positive constant. In addition, there exists a positive con-

stant ηi such that the set Ξi =
{∑i

ı=1(z
2
i +

1
γi
θ̃T
i θ̃i +ψ2

i + e2i )+
∑i−1

ı=1 χ
2
i+1 +

ξ̃Ti Piξ̃i ≤ 2ηi

}
is also compact. From the obtained results [19, 35], one has

|Hi| ≤ ~̄i (i = 2, · · · , n) under the compact set Ξ0 ×Ξi, where ~̄i is the upper
bound of Hi.

The detailed design process is given as follows.

Step 1. From (19), (34) and (35), the ν-th fractional-order derivative of z1
is

Dνz1 = Dνξ1 −Dνψ1 −Dνyd

= ξ2 +
1

r1
θ∗T
1 ϑ1(ξ̂1) + δ1 − (ψ2 − κ1ψ1)−Dνyd

= ξ̃2 + z2 + χ2 + α1 + ψ2 +
1

r1
θ∗T
1 ϑ1(ξ̂1) + δ1 + κ1ψ1 − ψ2 −Dνyd

= ξ̃2 + z2 + χ2 + α1 +
1

r1
θ∗T
1 ϑ1(ξ̂1) + δ1 + κ1ψ1 −Dνyd,

(39)
where α1 is the designed virtual control law. Then, the first virtual control
law α1 is constructed as

α1 = −
(
k1 +

3

2

)
z1 −

1

r1
θ̂T
1 ϑ1(ξ̂1)− δ̂1 − κ1ψ1 +Dνyd, (40)

where k1 > 0 is the design parameter. Furthermore, the fractional adaptive
law for Dν θ̂1 is chosen as

Dν θ̂1 = γ1

(
1

r1
z1ϑ1(ξ̂1)− µ1θ̂1

)
, (41)

where γ1, µ1 > 0 are design constants. Substituting (40) into (39) yields

Dνz1 = −
(
k1 +

3

2

)
z1 + z2 + χ2 + ξ̃2 +

1

r1
θ̃T
1 ϑ1(ξ̂1) + δ̃1. (42)
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According to (34) and the Young’s inequality, the following inequalities are
presented

ψ1Dνψ1 = −κ1ψ2
1 + ψ1ψ2 ≤ −

(
κ1 −

1

2

)
ψ2
1 +

1

2
ψ2
2 ,

z1(ξ̃2 + δ̃1) = z1(ξ̃2 + ẽ1 + r1ξ̃1) ≤
3

2
z21 +

1

2
ẽ21 +

r21
2
ξ̃21 +

1

2
ξ̃22 .

(43)

Considering the error signals z1, θ̃1 and ψ1, the Layapunov function is
chosen as

V1(t) =
1

2
z21 +

1

2γ1
θ̃T
1 θ̃1 +

1

2
ψ2
1 . (44)

The ν-th derivative of V1(t) can be described as

DνV1(t) ≤ z1Dνz1 +
1

γ1
θ̃T
1 Dν θ̃1 + ψ1Dνψ1

≤ −
(
k1 +

3

2

)
z21 + z1z2 + θ̃T

1

(
1

r1
z1ϑ1(ξ̂1)−

1

γ1
Dν θ̂1

)
+ z1(ξ̃2 + δ̃1) + z1χ2 −

(
κ1 −

1

2

)
ψ2
1 +

1

2
ψ2
2

≤ −k1z21 + z1z2 +
1

2
ẽ21 +

r21
2
ξ̃21 +

1

2
ξ̃22 − µ1

2
θ̃T
1 θ̃1 +

µ1

2
θ∗T
1 θ∗

1

+ z1χ2 −
(
κ1 −

1

2

)
ψ2
1 +

1

2
ψ2
2 ,

(45)

where z1z2 will be tackled in the next step.
Step i (i = 2, · · · , n−1): Similar with (39) in Step 1, differentiating zi with

respect to time yields

Dνzi = Dν ξ̂i −Dνψi −Dναc
i

= ξ̂i+1 +
1

ri
θ̂T
i ϑi(

ˆ̄ξi) +mi(y − ξ̂1) + δ̂i − (ψi+1 − κiψi)−Dναc
i

= zi+1 + χi+1 + αi +
1

ri
θ̂T
i ϑi(

ˆ̄ξi) +mi(y − ξ̂1) + δ̂i + κiψi −Dναc
i ,

(46)
where αi is the virtual control law. Design the i-th intermediate control func-
tion αi and the fractional adaptive law as

αi = −kizi − zi−1 −
1

ri
θ̂iϑi(

ˆ̄ξi)−mi(y − ξ̂1)− δ̂i − κiψi +Dναc
i ,

Dν θ̂i = γi(ziϑi(
ˆ̄ξi)− µiθ̂i),

(47)

where ki, γi and µi are positive constants. Substituting (47) into (46) results
in

Dνzi = −kizi + zi+1 − zi−1 + χi+1. (48)
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On the basis of (34) and the Young’s inequality, the following inequality
can be obtained

ψiDνψi = −κiψ2
i + ψiψi+1 ≤ −

(
κi −

1

2

)
ψ2
i +

1

2
ψ2
i+1. (49)

Construct the following Layapunov function candidate

Vi(t) =
1

2
z2i +

1

2γi
θ̃T
i θ̃i +

1

2
ψ2
i +

1

2
χ2
i . (50)

Invoking (47), (49) and (50), one has

DνVi(t) ≤ ziDνzi +
1

γi
θ̃T
i Dν θ̃i + ψiDνψi + χiDνχi

≤ −kiz2i + zizi+1 − zi−1zi + ziχi+1 + χiDνχi

− 1

γi
θ̃T
i Dν θ̂i −

(
κi −

1

2

)
ψ2
i +

1

2
ψ2
i+1

≤ −
(
ki −

1

2
λia

2
i

)
z2i + zizi+1 − zi−1zi + ziχi+1 + χi

[
− χi

ϖi
+Hi

]
−
(
µi

2
− 1

2λi

)
θ̃T
i θ̃i +

µi

2
θ∗T
i θ∗

i −
(
κi −

1

2

)
ψ2
i +

1

2
ψ2
i+1,

(51)
where λi > 0 and zizi+1 will be canceled in the next step.

Step n: In the final step, from (20), (34) and (35), one can obtain

Dνzn = Dν ξ̂n −Dνψn −Dναc
n

= u(v) +
1

rn
θ̂T
nϑn(

ˆ̄ξn) +mn(y − ξ̂1) + δ̂n − (∆u− κnψn)−Dναc
n

= v +
1

rn
θ̂T
nϑn(

ˆ̄ξn) +mn(y − ξ̂1) + δ̂n + κnψn −Dναc
n,

(52)
where v is the actual control input. The desired actual control signal v and
adaptive law can be respectively constructed as

v = −knzn − zn−1 −
1

rn
θ̂T
nϑn(

ˆ̄ξn)−mn(y − ξ̂1)− δ̂n − κnψn +Dναc
n,

Dν θ̂n = γn(znϑn(
ˆ̄ξn)− µnθ̂n),

(53)
where kn, γn and µn are positive parameters. Substituting (53) into (52) yields

Dνzn = −knzn − zn−1. (54)

Similar to the derivation process of (43) and (49), the following formula is
established as

ψnDνψn = −κnψ2
n + ψn∆u ≤ −

(
κn − 1

2

)
ψ2
n +

1

2
ū2. (55)
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The Layapunov function is chosen as

Vn(t) =
1

2
z2n +

1

2γn
θ̃T
n θ̃n +

1

2
ψ2
n +

1

2
χ2
n. (56)

By applying Lemma 1, (53), (54) and (55), the Caputo derivative of Vn(t)
can be rewritten as

DνVn(t) ≤ znDνzn +
1

γn
θ̃T
nDν θ̃n + ψnDνψn + χnDνχn

≤ −knz2n − znzn−1 −
1

γn
θ̃T
nDν θ̂n −

(
κn − 1

2

)
ψ2
n +

1

2
ū2 + χnDνχn

≤ −
(
kn − 1

2
λna

2
n

)
z2n − znzn−1 −

(
µn

2
− 1

2λn

)
θ̃T
n θ̃n +

µn

2
θ∗T
n θ∗

n

−
(
κn − 1

2

)
ψ2
n +

1

2
ū2 + χn

[
− χn

ϖn
+Hn

]
.

(57)
The above design procedure of the composite observer-based adaptive neu-

ral control can be shown in the following theorem, which contains the result
of adaptive control scheme for the FONS in the presence of input saturation
and external disturbance using the backstepping technique.

Theorem 1 Consider the FONS (12) under Assumptions 1-3 subject to the
input saturation and external disturbance. The state observer is designed as
(20), the disturbance observer is designed in accordance with (26), the adaptive
control law is chosen as (53), and the updated laws of the neural networks are
chosen as (41), (47) and (53). Then, there exist appropriate design parameters
mi, ri, ki, κi, ϖi and µi such that whole closed loop signals are bounded.
Furthermore, the tracking error signal z1 converges to a small neighborhood of
the origin.

Proof. The entire Lyapunov function is considered as

V (t) = V0(t) +
n∑

i=1

Vi(t). (58)

Substituting (45), (51) and (57) into (58) results in

DνV (t) = DνV0(t) +Dν
n∑

i=1

Vi(t)

≤ DνV0(t)− k1z
2
1 −

n∑
i=2

(
ki −

1

2
λia

2
i

)
z2i − µ1

2
θ̃T
1 θ̃1 +

n∑
i=1

µi

2
θ∗T
i θ∗

i

−
n∑

i=2

(
µi

2
− 1

2λi

)
θ̃T
i θ̃i −

(
κ1 −

1

2

)
ψ2
1 −

n∑
i=2

(κi − 1)ψ2
i +

1

2
ū2

+
n−1∑
i=1

ziχi+1 +
n−1∑
i=1

χi+1

(
− χi+1

ϖi+1
+Hi+1

)
+

1

2
ẽ21 +

r21
2
ξ̃21 +

1

2
ξ̃22 .

(59)
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Then, one has

DνV (t) ≤ −Λ

(
Q−λ0a

2
0(PR−1)TPR−1−2PR−R1 −P+RT R

2 +R
2

−P+RT R
2 +R

2 R−λ0+λ2
0a2

0
2λ0

In×n−E1

)
ΛT +

1

2
ū2

−
(
k1 −

1

2

)
z21 −

n∑
i=2

(
ki −

1

2
− 1

2
λia

2
i

)
z2i −

(
µ1

2
− 3

2λ0

)
θ̃T
1 θ̃1

−
n∑

i=2

(
µi

2
− 1

2λi
− 3

2λ0

)
θ̃T
i θ̃i −

(
κ1 −

1

2

)
ψ2
1 −

n∑
i=2

(κi − 1)ψ2
i

−
n−1∑
i=1

[
1

ϖi+1
− 1

2
− ~̄i

2σi

]
χ2
i+1 +

n∑
i=1

µi

2
θ∗T
i θ∗

i +
1

2
δ̄T δ̄ +

n−1∑
i=1

2σi,

(60)

where R1 = diag(
r21
2 ,

1
2 , 0, · · · , 0), E1 = diag( 12 , 0, · · · , 0), σi > 0. Denote G =(

(Q− λ0a
2
0(PR−1)TPR−1 − 2PR−R1)P

−1 (−P+ RTR
2 + R

2 )P
−1

2(−P+ RTR
2 + R

2 ) 2
(
R− λ0+λ2

0a
2
0

2λ0
In×n −E1

)),
ρ = min

{
λmin(G), 2k1 − 1, 2ki − 1− λia

2
i , γ1

(
µ1 − 3

λ0

)
, γi

(
µi − 1

λi
− 3

λ0

)
,

2κ1 − 1, 2κi − 2, 2
ϖi

− 1− ~̄i

σi

}
and Υ =

∑n
i=1

µi

2 θ∗T
i θ∗

i+
1
2 δ̄

T δ̄+1
2 ū

2+
∑n−1

i=1 2σi.

To guarantee the stability of the closed loop system, the corresponding design
parameters G, ϖi, ki, µi and κi should be chosen to make the following in-
equalities hold 

G > 0,

k1 −
1

2
> 0,

ki −
1

2
− λia

2
i

2
> 0,

µ1

2
− 3

2λ0
> 0,

µi

2
− 1

2λi
− 3

2λ0
> 0,

1

ϖi
− 1

2
− ~̄i

2σi
> 0,

κ1 −
1

2
> 0,

κi − 1 > 0.

(61)

Then, it can be obtained

DνV (t) ≤ −ρV (t) + Υ. (62)

According to Lemma 4, (62) can be rewritten as

V (t) ≤ V (0)Eν(−ρtν) +
ϵΥ

ρ
, (63)
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Fig. 1 Output y(t) follows desired trajectory yd(t).

Then, one has

lim
t→∞

|V (t)| ≤ ϵΥ

ρ
. (64)

By Lemma 4 and the definition of V (t), it can be concluded that the bound-
edness of the FONS (12) is obtained, and the tracking error can converge to a

small neighborhood of the origin |z1(t)| ≤
√

2ϵΥ
ρ by choosing the appropriate

parameters. This concludes the proof.

Remark 6 In this paper, the DSC scheme using the state observer and the
disturbance observer is designed for a strict feedback the FONSs with un-
known functions, external disturbances, input saturation and unmeasurable
states. In order to achieve an accurate estimation of the unmeasurable states,
a fractional-order disturbance observer is constructed to estimate disturbances,
and the output of disturbance observer is used to construct the controller, as
shown in (40), (47) and (53). In addition, a signal ψi is introduced at each step
of the above mentioned backstepping design to compensate for the effect of
saturation constraint, and this signal is also used to design an adaptive neural
controller.

4 Simulation results

In this section, simulation results of two examples are presented to show
the feasibility and the applicability of our developed adaptive neural output
feedback control method, and it is assumed that there is no prior information
about the nonlinearity and state of the system except for the feedback output.
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Fig. 2 The tracking error z1(t).
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Fig. 3 Trajectories of ξ1(t) and ξ̂1(t).

4.1 Example 1

Consider a fractional-order nonlinear system in the presence of input sat-
uration and unknown external disturbance as

Dνξ1 = ξ2 + f1(ξ1) + d1(t),

Dνξ2 = u(v) + f2(ξ̄2) + d2(t),

y = ξ1,

(65)

where ν = 0.95, f1(ξ1) = −0.02ξ21 , f2(ξ̄2) =
ξ2−0.3ξ21

1+ξ21
, d1(t) = 0.5 cos t and

d2(t) = 0.5 sin t.

For the control plant (65), the proposed adaptive neural feedback control
approach with the controller (53) along with the adaptive update laws (41),
(47) and (53) is employed to ensure accurate estimation of the state and realize
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Fig. 4 Trajectories of ξ2(t) and ξ̂2(t).
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Fig. 5 Trajectories of u(v), v and constraint interval.

signal tracking purpose, i.e., y → yd (t→ ∞), with the input saturation

u(v) =


1.5, v ≥ 1.5,

v, − 1.8 < v < 1.5,

− 1.8, v ≤ −1.8.

(66)

To verify the developed control scheme, Theorem 1 is applied to design
the controller to render the output y to track desired signal yd = sin t. The
parameters in controller and adaptive laws are selected as k1 = 20, k2 = 30,
r1 = 3.2, r2 = 3.2, γ1 = 15, γ2 = 20, µ1 = 0.1, µ2 = 0.1, κ1 = κ2 = 5,
ϖ2 = 0.05, λ0 = λ1 = λ2 = 200, and the selection of parameters satisfy
the conditions (61). Initial conditions of states are chosen as ξ1(0) = 0.1,

ξ2(0) = 0.1, ξ̂1(0) = 0.01, ξ̂2(0) = 0.01 and ψ1(0) = ψ2(0) = 0.01. The

neural network θ̂T
1 φ(ξ̂1) contains 7 nodes with centers evenly distributed on

[−3, 3]. Similarly, θ̂T
2 φ(

ˆ̄ξ2) contains 72 nodes, with centers evenly spaced in
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Fig. 6 Trajectories of α1 and αc
2.
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Fig. 7 Parameters adaptive law ||θ̂1|| and ||θ̂2||.

[−3, 3] × [−3, 3]. Let m1 = 30, m2 = 40, then it can be inferred that A is
Hurwitz based on (22). By choosing Q = 5I, one has

P =

(
0.25 0.015
0.015 0.25

)
,

and

G =


13.21 −1.98 6.47 −0.015
−2.34 38.94 −0.015 6.62
6.47 −0.015 3.4 0

−0.015 6.62 0 4.4

 ,

which are positive definite matrixes.
The simulation results are given in Figs. 1-7. Fig. 1 shows the trajectory of

the control output y and the reference signal yd and Fig. 2 plots the tracking
error, and it fluctuates within the interval [−0.06, 0.06]; Figs. 3-4 display the
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trajectory of state ξi and its estimation ξ̂i, i = 1, 2; The control input v and the
saturation control input u(v) are described in Fig. 5; Fig. 6 shows the virtual
control α1 and the filter output αc

2. The norm of parameters estimation of the
neural network is shown in Fig. 7. From these results, it can be concluded that
the proposed method can effectively tackle the uncertain FONSs subject to
the unmeasurable state, input saturation and unknown disturbance, and the
control performance is satisfactory.

4.2 Example 2

The following fractional-order Arneodo chaotic system is considered [36]
Dνξ1(t) = ξ2,

Dνξ2(t) = ξ3,

Dνξ3(t) = u(v) + f3(ξ̄3) + d3(t),

(67)

where the system order is ν = 0.98, the corresponding unknown nonlinear
functions are presented as f1(ξ1) = 0, f2(ξ̄2) = 0, f3(ξ̄3) = 2ξ1 − ξ2 − ξ3 − ξ31 ,
and the unknown time varying disturbances are given by d1(t) = 0, d2(t) = 0,

d3(t) = sin t. Initial conditions are chosen as ξ̄3 = [−0.2, 0.1, 0.1]T , ˆ̄ξ3 =
[0.1, 0.1, 0.1]T , ψ1(0) = ψ2(0) = ψ3(0) = 0.01 and the other initial values
are selected as zeros. The input saturation u(v) is expressed by (13), where
uM = 23 and um = −15. The desired reference signal is chosen as yd = sin t.
Choose design parameters as κ1 = κ2 = κ3 = 5, r1 = r2 = 2.8, r3 = 2.3,
k1 = 15, k2 = 20, k3 = 25, γ3 = 10, µ3 = 0.05, ϖ2 = ϖ3 = 0.05. Similar with
Example 4.1, select the gain parameters as m1 = 10, m2 = 110, m3 = 300,
then one has

P =

0.645 0.06 −0.3
0.06 0.656 −0.0004
−0.3 −0.0004 0.668

 ,

and

G =


12.55 −1.14 5.64 4.68 −0.06 0.3
−1.04 8.89 −0.46 −0.06 4.66 0.0004
6.09 −0.55 12.98 0.3 0.004 3.13
4.68 −0.06 0.3 2.6 0 0
−0.06 4.66 0.0004 0 3.6 0
0.3 0.004 3.13 0 0 2.6

 ,

which are positive definite matrixes.
Figs. 8-10 display the simulation results of Example 2. The chaotic be-

haviour of the fractional-order Arneodo system is shown in Fig. 8 when u(v) =
0 and d3(t) = 0. The tracking control result of the uncertain fractional-order
system is displayed in Fig. 9, which displays a satisfactory tracking perfor-
mance and ensure that the tracking error converges to the interval [−0.08, 0.08]

after 4s, and the trajectories of state ξi and its estimation ξ̂i are given,
i = 1, 2, 3; Fig. 10 shows trajectories of virtual control and actual control v(t)
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Fig. 8 The chaotic behaviour of the fractional-order Arneodo system.
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Fig. 9 Simulation results . (a) Trajectories of the output y and the reference signal yd. (b)

Trajectories of ξ1 and estimation ξ̂1. (c) Trajectories of ξ2 and estimation ξ̂2. (d) Trajectories

of ξ3 and estimation ξ̂3.

as well as u(v), and the convergence performance of neural network weight
parameters is also shown.

5 Conclusion

In this paper, an adaptive neural backstepping tracking control scheme
is proposed for uncertainty FONSs subject to input saturation and unknown
external disturbance. Two observers are constructed to cope with the unavail-
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Fig. 10 (a) Trajectories of α1 and αc
2. (b) Trajectories of α2 and αc

3. (c) Control input u(v)

and v. (d) Trajectory of the neural network parameters ||θ̂3||.

able state and the unknown compound disturbance, and then a robust tracking
controller is designed based on fractional Lyapunov stability theory. Under the
proposed control scheme, the tracking errors and the state estimation errors
have been quickly converged to a small region of the origin. On the other hand,
output constraints and unknown control direction which will limit the appli-
cation of the mentioned method, are often encountered in industry. Therefore,
how to design an adaptive neural output feedback control for FONSs with the
above restrictions is one of future research directions.
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