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1 INTRODUCTION

Difference equations are equations on the one hand about solving discrete, as a practical mathematical model of many events
that occur in their own interests. Applications of difference equations are very widespread and rich in applied mathematics,
biology, genetics, economics, control theory, theoretical physics, industry, engineering and many more. On the other hand, one
can produce a discrete boundary value problem with a difference equation and a boundary condition together. In the theory
of difference equations the theory of discrete boundary value problems with point interaction have a very large place1-5. In
these problems, there is a discrete equation and one or more points in which equation has discontinuities. To deal with these
discontinuities, some conditions are necessary. These conditions are called point interactions, impulsive conditions, transmission
conditions, jump conditions or interface conditions6-11. These conditions create instantaneous state changes in the problem
with point interaction, certain intervals occur in the equation and the general solution of the relations between the solutions in
sub-intervals. Problems with point interaction appear in boundary value problems by adding a different feature to the problem
and has received considerable attention due to its potential applications in the study of population models, finance, economics,
epidemic models, heat transfer etc. see, for example12-14.
Recently, discrete boundary value problems with point interaction have been extensively studied by many researchers in the

way of scattering and spectral analysis15-22. But the results all in these studies are given on upper half complex plane or on a
subset of it. Because they consist spectral parameter as a trigonometric function’s form of z. But in this work, we will get results
on unit disk for � = z+ z−1 (� is a spectral parameter). As a result of this, we will consider a discrete Sturm-Liouville boundary
value problem with point interaction (PBVP) given by

an−1yn−1 + bnyn + anyn+1 = �yn, n ∈ ℕ ⧵
{

m0 − 1, m0, m0 + 1
}

(1)

y0 = 0 (2)

0Abbreviations: PBVP, point boundary value problem
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ym0+1 = 
1ym0−1,
△ym0+1 = 
2▽ym0−1, 
1
2 ≠ 0, 
1, 
2 ∈ ℝ, (3)

where � = z + z−1 is a spectral parameter,
{

an
}

n∈ℕ∪{0} and
{

bn
}

n∈ℕ are real sequences satisfying the condition
∞
∑

n=1
n
(

|

|

1 − an|| + |

|

bn||
)

<∞, (4)

▽ is the backward and△ is the forward difference operators, i.e.,

▽yn(z) = yn+1(z) − yn(z)

△yn(z) = yn(z) − yn−1(z).

The remaining part of this paper is organized as follows: Section 2 consists some basic notations and definitions. In Section
3, we constitute the scattering and Jost function of PBVP (1)-(3) by using scattering solutions. In Section 4, we give resolvent
operator by the help of the unbounded solution andwe find continuous and discrete spectrum of PBVP (1)-(3).We also investigate
the properties of eigenvalues by using an asymptotic equation. Finally, we give an example to illustrate our main results in
Section 5.

2 PRELIMINARIES

First, we will define three regions:
D0 ∶= {z ∶ |z| = 1} ,

D1 ∶= {z ∶ |z| < 1} ⧵ {0}
and

D2 ∶= {z ∶ |z| ≤ 1} ⧵ {0} .
Throughout the paper, we use the fundamental solutions Pn(z) and Qn(z), n ∈ ℕ0 of (1) for z ∈ D2 and � = z + z−1 which
satisfy the following initial conditions

P0(z) = 0, P1(z) = 1

Q0(z) =
1
a0
, Q1(z) = 0,

respectively. For each n ≥ 0, Pn(z) is a polynomial of degree (n−1). andQn(z) is a polynomial of degree (n−2). TheWronskian
of two solutions y =

{

yn(z)
}

and u =
{

un(z)
}

of the equation (1) defined by

W [y, u] ∶= an
{

yn(z)un+1(z) − yn+1(z)un(z)
}

for n ∈ ℕ0. It is easy to see that the Wronskian is independently of n. Furthermore, Pn(z) and Qn(z) are linear independent
solutions of (1), because W [P ,Q] = −1 for all z ∈ ℂ and these solutions are entire functions with respect to z. On the other
hand, equation (1) has a bounded solution e(z) ∶=

{

en(z)
}

satisfying the condition

lim
n→∞

en(z)z−n = 1, z ∈ D0 (5)

for � = z + z−1 and n = m0 + 1, m0 + 2,…. The solution en(z) is represented by

en(z) = �n(z)zn
(

1 +
∞
∑

m=1
Anmz

m

)

in23, where �n and Anm are expressed in terms of the sequences
{

an
}

and
{

bn
}

as

�n ∶=
∞
∏

k=n
[ak]−1,

An1 ∶= −
∞
∑

k=n+1
bk,
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An2 ∶=
∞
∑

k=n+1

{

1 − a2k + bk
∞
∑

p=k+1
bp

}

,

An,m+2 ∶= An+1,m +
∞
∑

k=n+1

{

(1 − a2k)Ak+1,m − bkAk,m+1
}

for n ∈ ℕ ∪ {0} and m ∈ ℕ. The function e(z) is analytic with respect to z in ℂ+ ∶= {z ∈ ℂ ∶ Imz > 0} and continuous in
ℂ+ ∶= {z ∈ ℂ ∶ Imz ≥ 0}. Also, e(z) has analytic continuation from D0 to D1

26.
From definition of Wronskian and equation (5), we easily find that

W [en(z), en(−z)] = z−1 − z, z ∈ D0. (6)

Now, we define the following solution of (1)-(3)

En(z) ∶=

⎧

⎪

⎨

⎪

⎩

�(z)Pn(z) + �(z)Qn(z), n = 0, 1,… , m0 − 1

en(z), n = m0 + 1, m0 + 2,…
(7)

for z ∈ D2. If we use point interactions (3) for this solution, we can write

Em0−1(z) =
1

1
Em0+1

▽Em0−1(z) =
1

2

△ Em0+1(z)

and
1

1
em0+1(z) = �(z)Pm0−1(z) + �(z)Qm0−1(z)

1

2

△ em0+1(z) = �(z)▽Pm0−1(z) + �(z)▽Qm0−1(z). (8)

From the definition of Wronskian and equations (8), we obtain the coefficients �(z) and �(z) for z ∈ D2 as

�(z) =
am0−2


1
2

{


1 △ em0+1(z)Qm0−1(z) − 
2em0+1(z)▽Qm0−1(z)
}

and
�(z) = −

am0−2


1
2

{


1 △ em0+1(z)Pm0−1(z) − 
2em0+1(z)▽Pm0−1(z)
}

. (9)

The function E(z) =
{

En(z)
}

is the Jost solution of PBVP (1)-(3). Next, we think other solution F (z) =
{

Fn(z)
}

of (1)-(3) by

Fn(z) ∶=

⎧

⎪

⎨

⎪

⎩

Pn(z), n = 0, 1,… , m0 − 1

c(z)en(z) + d(z)en(−z), n = m0 + 1, m0 + 2,…
(10)

for z ∈ D0. By using the condition (3) and equation (6), we get

c(z) = −
am0+1

z − z−1
{


1 △ em0+1(−z)Pm0−1(z) − 
2em0+1(−z)▽Pm0−1(z)
}

and
d(z) =

am0+1

z − z−1
{


1 △ em0+1(z)Pm0−1(z) − 
2em0+1(z)▽Pm0−1(z)
}

for z ∈ D0.

Corollary 1. Since Pn(z) is a polynomial of degree (n − 1)., the coefficients c(z) and d(z) satisfy the following equations for
z ∈ D0

i. If n is an odd number, tℎen P (−z) = P (z) and d(z) = c(−z)
ii. If n is an even number, tℎen P (−z) = −P (z) and d(z) = −c(−z).

Lemma 1. For z ∈ D0, the coefficients �(z) and d(z) have the following relation

d(z) = −
am0+1

z − z−1

1
2
am0−2

�(z).
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Theorem 1. For all z ∈ D0, �(z) ≠ 0.

Proof. Assume that �(z0) = 0 for a z0 ∈ D0. By using Corollary 1 and Lemma 2, we can write

�(z0) = d(z0) = 0.

It follows from that Fn(z0) = 0 for all n ∈ ℕ ∪ {0}, but this is a contradiction, i.e., �(z) ≠ 0 for all z ∈ D0.

Lemma 2. The Wronskian of the solutions E(z) and F (z) is given by

W [E(z), F (z)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(z), n = 0, 1,… , m0 − 1

am0+1

am0−2

1
2�(z), n = m0 + 1, m0 + 2,…

for z ∈ D0.

Proof. Using the definition of Wronskian, we write the Wronskian of E(z) and F (z) for n ∈
{

0, 1,… , m0 − 1
}

as

W [E(z), F (z)] = a0
{

E0(z)F1(z) − E1(z)F0(z)
}

= a0
{

�(z)P0(z) + �(z)Q0(z)
}

P1(z)
−a0

{

�(z)P1(z) + �(z)Q1(z)
}

P0(z).
Since P0(z) = 0, P1(z) = 1, Q0(z) = 1

a0
and Q1(z) = 0, we obtain the Wronskian of these two solutions as �(z) for n ∈

{

0, 1,… , m0 − 1
}

by using the last equation. On the other hand it is easy writing

W [E(z), F (z)] = am0+1d(z)
{

em0+1(z)em0+2(−z) − em0+2(z)em0+1(−z)
}

for n ∈
{

m0 + 1, m0 + 2,…
}

. It follows from (6) and Lemma 2 that

W [E(z), F (z)] =
am0+1

am0−2

1
2�(z)

for n ∈
{

m0 + 1, m0 + 2,…
}

. It completes the proof.

3 JOST SOLUTION AND SCATTERING FUNCTION

Now, we will define the Jost functionE0(z) of PBVP (1)-(3) by using boundary equation (2) and Jost solutionE(z) of (1)-(3) as

E0(z) = �(z)P0(z) + �(z)Q0(z)

=
�(z)
a0

. (11)

Similarly to the Sturm-Liouville equation, the function E0(z) is analytic in D1 and continuous in D2.

Definition 1. The function

S(z) ∶=
E0(z)
E0(z)

, z ∈ D0

is called the scattering function of PBVP (1)-(3).

It is trivial from equation (11) and Definition 5 that the scattering function can be also expressed by means of coefficient �(z)

S(z) =
E0(z)
E0(z)

=
�(z)
�(z)

=
�(z−1)
�(z)

(12)

for all z ∈ D0.

Theorem 2. The function S(z) satisfies

S−1(z) = S(z) = S(z−1) and |S(z)| = 1

for all z ∈ D0.
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Proof. It is clear from (12) that
S(z−1) =

�(z)
�(z−1)

and S−1(z) =
�(z)
�(z−1)

= S(z)

for all z ∈ D0. Also, since |S(z)|
2 = S(z)S(z) , then from (12), we obtain

|S(z)| =
�(z)
�(z−1)

�(z−1)
�(z)

= 1

for all z ∈ D0. It completes the proof of Theorem 6.

4 RESOLVENT OPERATOR, CONTINUOUS SPECTRUM AND DISCRETE SPECTRUM OF
PBVP

For all z ∈ D2, we will define the following unbounded solution of (1)

Gn(z) ∶=

⎧

⎪

⎨

⎪

⎩

Pn(z), n = 0, 1,… , m0 − 1

q(z)en(z) + k(z)ên(z), n = m0 + 1, m0 + 2,…
(13)

where ên(z) represents the unbounded solution of (1) for n ∈
{

m0 + 1, m0 + 2,…
}

and satisfies the condition

lim
n→∞

ên(z)zn = 1, z ∈ D2.

It easy to seen thatW [en(z), ên(z)] = z−1 − z for n ∈
{

m0 + 1, m0 + 2,…
}

and z ∈ D2. Analogously the solution Fn(z), using
the condition (3), we get

q(z) = −
am0+1

z − z−1
{


1 △ êm0+1(z)Pm0−1(z) − 
2êm0+1(z)▽Pm0−1(z)
}

and
k(z) =

am0+1

z − z−1
{


1 △ em0+1(z)Pm0−1(z) − 
2em0+1(z)▽Pm0−1(z)
}

for all z ∈ D2. Note that, k(z) = d(z) for all z ∈ D0. Also using (7) and (13), we get

W [E(z), G(z)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(z), n = 0, 1,… , m0 − 1

am0+1

am0−2

1
2�(z), n = m0 + 1, m0 + 2,…

(14)

for z ∈ D2.

Corollary 2. It is trivial from Lemma 4 and (14) that for all z ∈ D0

W [E(z), F (z)] = W [E(z), G(z)].

Theorem 3. The resolvent operator of PBVP (1)-(3) is defined by

R�gn ∶=
∞
∑

k=1
Rnk(z)gk, k ≠ m0

where

Rnk(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
GkEn

W [E,G]
, k ≤ n

−
GnEk

W [E,G]
, k > n

is the Green function of (1)-(3) for z ∈ D2, �(z) ≠ 0 and k, n ≠ m0.

Proof. We must solve the following equation to find the resolvent operator of PBVP (1)-(3)

▽(an▽yn) + ℎnyn − �yn = gn, gn ∈ l2(ℕ). (15)
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We can write the general solution y = yn(z) of (15) by using the fundamental solutions of PBVP (1)-(3) as

yn(z) = mnEn(z) + tnGn(z), (16)

where mn, tn are coefficients and they are different from zero. Using the method of variation of parameters for k ≠ m0, we obtain
mn and tn by

mn = −
n
∑

k=1

Gkgk
W [E,G]

(17)

tn = −
∞
∑

k=n+1

Ekgk
W [E,G]

. (18)

It follows from (16), (17) and (18) that the Green function of (1)-(3) isRnk(z) defined in Theorem 8. Also, we obtain the resolvent
operator of (1)-(3) by the help of the Green function Rnk(z).

In the following, wewill introduce the set of eigenvalues of PBVP (1)-(3) by using the definition of eigenvalues27 and Theorem
8 as

�d ∶=
{

� ∈ ℂ ∶ � = z + z−1, z ∈ D1, �(z) = 0
}

.

Theorem 4. Assume (4). Then �(z) satisfies the following asymptotic equation for z ∈ D2

�(z) = z2m0 [A + o(1)] , |z| → ∞, A ≠ 0 (19)

where
A = −

am0−2�(m0+2)


2a1 … am0−2
. (20)

Proof. Since the Pn(z) is polynomial of degree (n − 1). with respect to �, we can obtain that for n = 1, 2,… , m0 − 1

lim
|z|→∞

{

Pn(z)z−(n−1)
}

= 1
a1 … an−1

+ o(1), z ∈ D2 (21)

and
lim

|z|→∞

{

en(z)z−n
}

= �n, z ∈ D2 (22)

by using (5), where �n ∶=
(
∏∞

k=n ak
)−1. It follows from (9), (21) and (22) that

�(z) = −
am0−2


1
2

{


1em0+2(z)z
−(m0+2)Pm0−1(z)z

−(m0−2)z2m0

+
1em0+1(z)z
−(m0+1)Pm0−1(z)z

−(m0−2)z2m0−1

−
2em0+1(z)z
−(m0+1)Pm0−1(z)z

−(m0−2)z2m0−1

+
2em0+1(z)z
−(m0+1)Pm0−2(z)z

−(m0−3)z2m0−2 }
and

�(z)z−2m0 = −
am0−2


1
2

[


1em0+2(z)z
−(m0+2)Pm0−1(z)z

−(m0−2)
]

+
am0−2

z
1
2

[


1em0+1(z)z
−(m0+1)Pm0−1(z)z

−(m0−2)

−
2em0+1(z)z
−(m0+1)Pm0−1(z)z

−(m0−2) ]

+
am0−2

z2
1
2

[


2em0+1(z)z
−(m0+1)Pm0−2(z)z

−(m0−3)
]

.

If we write last equation in limit form, we find

lim
|z|→∞

{

�(z)z−2m0
}

= −
am0−2


1
2

{


1�m0+2
1

a1 … am0−2

}

.

Last equation gives that
lim

|z|→∞

{

�(z)z−2m0
}

= A,

where
A = −

am0−2


2

�m0+2

a1 … am0−2
for all z ∈ D2 and it completes the proof of Theorem 9.
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Theorem 9 is important for us because it satisfies to say that the set of eigenvalues of PBVP (1)-(3) denoted by �d is bounded
under the condition (4). If we denote the continuous spectrum of PVBP (1)-(3) by �c , we can give the following theorem.

Theorem 5. Under the condition (4), the continuous spectrum of the operator L generated by PBVP (1)-(3) is [−2, 2], i.e.,
�c(L) = [−2, 2].

Proof. Let us introduce the operators, L1 and L2 generated in l2(ℕ) by the following difference expressions

(L1y)n = yn−1 + yn+1, n ∈ ℕ ⧵
{

m0 − 1, m0 + 1
}

and
(L2y)n = (an−1 − 1)yn−1 + bnyn + (an − 1)yn+1, n ∈ ℕ ⧵

{

m0 − 1, m0, m0 + 1
}

with the boundary condition (2), respectively. It is clear from that L = L1 +L2 and L1 is a self-adjoint operator with �c(L1) =
[−2, 2]. BecauseL1 has no eigenvalues and the spectrum of the self-adjoint operatorL1 consists only of its continuous spectrum
(see24). On the other hand, L2 is a compact operator in l2(ℕ) under the condition (4) (see24). By using Weyl Theorem25 of a
compact perturbation, we find that

�c(L1) = �c(L) = [−2, 2].

Furthermore, we can write
�d(L) ⊂ (−∞,−2) ∪ (2,∞). (23)

from the definition of eigenvalues of PBVP (1)-(3) and we also write the �d(L) as

�d(L) =
{

� ∈ ℂ ∶ � = z + z−1, z ∈ (−1, 0) ∪ (0, 1), �(z) = 0
}

. (24)

Theorem 6. The operator L has a finite number of real eigenvalues under the assumption (4).

Proof. Since
{

an
}

and
{

bn
}

are real sequences, the operator L is selfadjoint and from the operator theory, its eigenvalues are
real. To complete the proof of Theorem 11, we have to show that �(z) has finitely many zeros in D2. Using (23), we get that
the limit points of the set of all eigenvalues of (1)-(3) or of L could not be different from ±2,±∞. Since � = z + z−1, the limit
points of the set of all eigenvalues of L could be ±∞ only in the case of z = 0. But it contradicts the fact that the operator L is
bounded, so we cannot consider 0 as a zero of the function �(z). On the other hand, equation (24) implies that the limit points
of the set of all eigenvalues of L could be ±2 for z = ±1. But from the operator theory and Theorem 10, the eigenvalues of
selfadjoint operators cannot be elements of its continuous spectrum. Because of this reason, we also cannot consider z = ±1
as zeros of �(z), i.e., the set of all eigenvalues of the operator L has not any limit points. It gives from the Bolzano-Weierstrass
Theorem that the set of zeros of �(z) in D2 is finite.

5 EXAMPLE

In this section, we will define an unperturbated problem generated by following difference equation, boundary condition and
point interaction

yn−1(z) + yn+1(z) = (z + z−1)yn(z), n ∈ ℕ ⧵ {2, 3, 4}

y0(z) = 0 (25)
y4(z) = 
1y2(z)

△y4(z) = 
2▽y2(z),
where 
1, 
2 ∈ ℝ and 
1
2 ≠ 0. It is evident that the problem (25) is a special case of PBVP (1)-(3). We obtain the problem (25)
assuming an ≡ 0, bn ≡ 0 for all n ∈ ℕ, m0 = 3 in PVBP (1)-(3). We will discuss our main results on this example. This special
case provides some advantages for readers to understand main results clearly. In this example, the solution en(z) turns into zn
and the fundamental solution Pn(z) of (1)-(3) has the following values for n = 0, 1, 2

P0(z) = 0 P1(z) = 1 P2(z) = �.
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It follows from (7) and (9) that �(z) and Jost solution of this problem are obtained by

�(z) = −
a1

1
2

z3
{


2(z2 − z + 1) − 
1(z3 − z2 + z − 1)
}

(26)

and

En(z) =

⎧

⎪

⎨

⎪

⎩

�(z)Pn(z) + �(z)Qn(z), n ∈ {0, 1, 2}

zn, n ∈ {4, 5,…} ,
respectively. By using (26), we find the scattering function of (25)

S(z) = z−9
{


2z(z2 − z + 1) + 
1(z3 − z2 + z + 1)
}

{


2(z2 − z + 1) − 
1(z3 − z2 + z − 1)
} .

Also, the continuous spectrum of the problem (25) is found [−2, 2] by Theorem 10. To get the eigenvalues of the problem (25),
it is necessary for us to find the zeros of �(z) for z ∈ D1. Because it is written in the following form of this problem,

�d =
{

� = z + z−1 ∶ �(z) = 0, z ∈ D1
}

,

where �(z) is defined by (26). If �(z) = 0, then, we write

2

1

= z3 − z2 + z − 1
z2 − z + 1

(27)

for z ∈ D1. Let us assume 
2 = B
1, B ∈ ℝ. By using (27), we obtain

z3 − (B + 1)z2 + (B + 1)z − (B + 1) = 0. (28)

Note that, it is clear from (28) that B can be never −1. If B = −1, it gives a contradiction. Because, we get z = 0 in this case. If
z = 0, � is undefined. So, B ≠ −1.

Case 1: For B = 1 in (28), we get
z1 ≅ 1, 544

z2 ≅ 0, 228 + 1, 115i

z3 ≅ 0, 228 − 1, 115i.
Since z1, z2 and z3 do not belong to D1, the problem (25) has not eigenvalues in this case.

Case 2: If we solve (28) for B = 2, we find
z1 ≅ 2, 260

z2 ≅ 0, 370 + 1901i
z3 ≅ 0, 370 − 1901i.

In Case 2, the problem (25) again has not eigenvalues because similar to Case 1, z1, z2, z3 are not in D1 in this case, too.
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