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Abstract. This paper is concerned with the study of the nonlinear elliptic equations in a
bounded subset Ω ⊂ RN

Au = f,

where A is an operator of Leray-Lions type acted from the space W
1,p(·)
0 (Ω) into its dual.

when the second term f belongs to Lm(·), with m(·) > 1 being small. we prove existence and
regularity of weak solutions for this class of problems p(x)-growth conditions. The functional
framework involves Sobolev spaces with variable exponents as well as Lebesgue spaces with
variable exponents.

1. Introduction

The purpose of this article is to study the existence and regularity of weak solutions for a class
of nonlinear elliptic equations with variable exponents. A prototype example is

(P )

{
−div

(
|Du|p(·)−2

Du
)

= f, in Ω
u = 0, on ∂Ω

where Ω is a bounded open subset of RN (N ≥ 2) with Lipchitz boundary ∂Ω, the right-hand side
f ∈ Lm(·)(Ω), m(·) as in (1.6).
The equation (P ) can be viewed as a generalization of the classical p-Laplace equation where the
constant p ∈ (1, +∞).
Instead of (P ) we will consider more general nonlinear elliptic equations with variable exponents
of the form { −div (â(x,Du)) = f, in Ω

u = 0, on ∂Ω (1.1)

Recall that a LerayLions type operator is a Caratheodory function â : Ω× RN → RN , satisfying,
a.e x ∈ Ω and for all ξ, ξ′ ∈ RN , the following:

â(x, ξ)ξ ≥ α|ξ|p(.), â(x, ξ) = (a1, . . . , aN ) (1.2)

|â(x, ξ)| ≤ β
(
h + |ξ|p(·)−1

)
(1.3)

(â(x, ξ)− â(x, ξ′))(ξ − ξ′) > 0, ξ 6= ξ′, (1.4)

where α, β are strictly positive real numbers, h is a given positive function in Lp′(·)(Ω) where
1

p(·) + 1
p′(·) = 1, while m(·) : Ω → (1, +∞) and the variable exponent p(·) : Ω → (1, +∞) are

continuous functions such that:

1 +
1

m+
− 1

N
< p(x) < N, for all x ∈ Ω, m+ = max

x∈Ω
m(x). (1.5)

where

1 < m(x) <
Np(x)

Np(x)−N + p(x)
, ∇m ∈ L∞(Ω), for all x ∈ Ω. (1.6)

Key words and phrases. Nonlinear elliptic problem; Leray-Lions operator; Variable exponents; Weak solution;
Irregular Data.
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As another prototype example we consider the model problem{
−div

(
|Du|p(·)−2

Du
)

= δ in B

u = 0 on ∂B
(1.7)

where δ is the Dirac measure at the origin, p(·) as in (1.5) , and

B = {x ∈ RN | |x| < 1}.
Variable exponent Lebesgue-Sobolev spaces have been intensively studied during the last years.
These spaces of functions provide a useful tool for the study of both elliptic and parabolic equations
with variable exponents, In addition, It involves today in various branches of applied science. In
some cases, they provide realistic models for the study of natural phenomena in electro-rheological
fluids and an important applications are related to image processing. We refer the reader to [5] and
the references therein. Clearly, the nonlinearity of (1.7) is more complicated than nonlinearity of
the p-Laplacian. As the exponent which appear in (1.7) depends on the variable x, the functional
setting involves Lebesgue and Sobolev spaces with variable exponent Lp(·)(Ω) and W

1,p(·)
0 (Ω), we

refer to [4],[6] and [8] for further properties of variable exponent LebesgueSobolev spaces. In the
constant case 2 − 1

N < p(·) = p with Au = −div (â(x, u,Du)), the existence of a distributional

solution u of (1.1) in the space W 1,q
0 (Ω) for all q ∈

[
1; N(p−1)

(N−1)

)
has been proved in [3]. Therefore,

the study of problem (1.1) is a new and interesting topic. Inspired by [2], [10] and [11], we prove
the existence of weak solution for the problem (1.1) with right-hand side in Lm(·)(Ω) where m(·)
and the variable exponent p(·) are restricted as in (1.5)-(1.6), similar results can be found in [1],
[10], [12] and [13]. The main steps of the proof consist of obtaining uniform estimate for suitable
approximate problems and then passing to the limit.
Throughout this paper, we denote by C or Ci, i = 1, 2, · · · , some generic positive constants
independent of n.

2. Lebesgue-Sobolev Spaces with variable exponents

In this section we recall some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω) and W

1,p(·)
0 (Ω), where Ω is an open subset of IRN . We refer

to [4],[6] and [8] for further properties of variable exponent Lebesgue-Sobolev spaces.

Let p : Ω → [1,∞) be a continuous function. We denote by Lp(.)(Ω) the space of measurable
function f(x) on Ω such that

ρp(.)(f) =
∫

Ω

|f(x)|p(x)dx < +∞.

The space Lp(.)(Ω) equipped with the norm

‖f‖p(.) := ‖f‖Lp(.)(Ω) = inf
{
λ > 0 | ρp(.)(f/λ) ≤ 1

}

becomes a Banach space. Moreover, if p− = inf
x∈Ω

p(x) > 1, then Lp(.)(Ω) is reflexive and the dual

of Lp(.)(Ω) can be identified with Lp′(.)(Ω), where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(.)(Ω) and

v ∈ Lp′(.)(Ω) the Hölder type inequality:
∣∣∣∣
∫

Ω

uv dx

∣∣∣∣ ≤
(

1
p−

+
1

p′−

)
‖u‖p(.)‖v‖p′(.) ≤ 2‖u‖p(.)‖v‖p′(.).

holds true.
We define also the Banach space W

1,p(x)
0 (Ω) by

W
1,p(.)
0 (Ω) =

{
f ∈ Lp(.)(Ω), |Df | ∈ Lp(.)(Ω) and f = 0 on ∂Ω

}

endowed with the norm ‖f‖
W

1,p(.)
0 (Ω)

= ‖Df‖p(.). The space W
1,p(.)
0 (Ω) is separable and reflexive

provided that with 1 < p− ≤ p+ < ∞. The smooth functions are in general not dense in
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W
1,p(.)
0 (Ω), but if the exponent variable p(x) > 1 is logarithmic Hölder continuous, that is

|p(x)− p(y)| ≤ − M

ln(|x− y|) ∀x, y ∈ Ω such that |x− y| ≤ 1/2, (2.1)

then the smooth functions are dense in W
1,p(.)
0 (Ω).

For u ∈ W
1,p(.)
0 (Ω) with p ∈ C(Ω, [1, +∞)), the Poincaré inequality holds

‖u‖p(.) ≤ C‖Du‖p(.), (2.2)

for some constant C which depends on Ω and the function p.
An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular ρp(·) of the space Lp(·)(Ω). We have the following result

Lemma 2.1 ([8]). If (un), u ∈ Lp(.)(Ω), then the following relations hold
• ‖u‖p(.) < 1(> 1;= 1) ⇔ ρp(.)(u) < 1(> 1;= 1),

• min
(
ρp(.)(u)

1
p+ ; ρp(.)(u)

1
p−

)
< ‖u‖p(.) < max

(
ρp(.)(u)

1
p+ ; ρp(.)(u)

1
p−

)
.

• ‖u‖p(.) ≤ ρp(.)(u) + 1.
• ‖un − u‖p(.) → 0 ⇔ ρp(.)(un − u) → 0,

since p+ < ∞.

An important embedding as follows

Lemma 2.2 ([7]). Let Ω ∈ RN be an open bounded set, with Lipschitz boundary, and let p : Ω →
(1, N) satisfy the log-Hölder continuity condition (2.1). Then we have the following continuous
embedding:

W 1,p(·)(Ω) ↪→ Lp?(·)(Ω),

where p?(·) = Np(·)
N−p(·) .

3. Main results

Definition 3.1. A function u is a weak solution of problem (1.1) if

u ∈ W 1,1
0 (Ω), â(x,Du) ∈ (L1(Ω))N ,

and ∫

Ω

â(x,Du)Dϕdx =
∫

Ω

fϕ dx, ∀ϕ ∈ C∞0 (Ω).

Our main results are the following:

Theorem 3.1. Let f ∈ Lm(·)(Ω), m(·) = m+ and assume that p(·) and m+ are restricted as in
(1.5)-(1.6). Let â be a Carathéodory function satisfying (1.2)-(1.4). Then the problem (1.1) has
at least one weak solution u ∈ W

1,q(·)
0 (Ω) where q(·) is a continuous function on Ω satisfying

1 ≤ q(x) <
Nm+(p(x)− 1)

N −m+
for all x ∈ Ω. (3.1)

Theorem 3.2 ([11]). Let f ∈ Lm(·)(Ω) and assume that p(·) and m(·) are restricted as in (1.5)-
(1.6). Let â be a Carathéodory function satisfying (1.2)-(1.4). Then the problem (1.1) has at least
one weak solution u ∈ W

1,p(·)
0 (Ω)

Proof of Theorem 3.1. The proof needs three steps.
Step 1: Approximate problem
By the density property, we can choose a sequence (fn)n ⊂ C∞0 (Ω)

fn −→ f strongly in Lm+
(Ω), as n −→∞.

such that
‖fn‖Lm+ (Ω) ≤ ‖f‖Lm+ (Ω), ∀n ≥ 1. (3.2)
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For u ∈ W
1,p(·)
0 (Ω), we put

Au = −div (â(x,Du)).

The operator A maps W
1,p(·)
0 (Ω) into

(
W

1,p(·)
0 (Ω)

)′
, thanks (1.4) A is monotone. The growth

condition (1.3) implies that A is hemicontinuous.
i.e., for all u, v, w ∈ W

1,p(·)
0 (Ω), the mapping R 3 λ 7→ 〈A(u + λv), w〉 is continuous.

By (1.2) and Lemma 2.2 [6], we can write

〈Au, u〉
‖u‖

W
1,p(·)
0 (Ω)

≥ α
ρp(·)(Du)
‖u‖

W
1,p(·)
0 (Ω)

≥ α

min
{
‖u‖p+

W
1,p(·)
0 (Ω)

, ‖u‖p−

W
1,p(·)
0 (Ω)

}

‖u‖
W

1,p(·)
0 (Ω)

,

this prove that A is coercive. By (1.3), we get the operator A is bounded.
Thus, we get the desired result.
Consequently, there exists at least one weak solution (un)n∈N ⊂ W

1,p(·)
0 (Ω) (cf. J.L. Lions [9] ,

Theorem 2.7, page 180) satisfying
∫

Ω

â(x,Dun)Dϕdx =
∫

Ω

fnϕ dx, ∀ϕ ∈ W
1,p(·)
0 (Ω). (3.3)

Step 2: Uniform estimates
We prove the following estimates:

Lemma 3.1. Let p(·) as in (1.5), and m(·) = m+ as in (1.6). Then, for any constant 0 < δ < 1,
there exists a constant Cδ independent of n such that

∫

Ω

|Dun|p(x)

(1 + |un|)δ
dx ≤ Cδ

(
1 +

( ∫

Ω

(1 + |un|)(1−δ) m+

m+−1 dx
)1− 1

m+
)

(3.4)

Proof of Lemma 3.1. For any given 0 < δ < 1, we define the function ψδ : R→ R by

ψδ(t) =
∫ t

0

dt

(1 + |t|)δ
.

Note that ψδ is a continuous function satisfies ψδ(0) = 0, and |ψ′δ(·)| ≤ 1, we take ψδ(un) as a test
function in (3.3), we obtain

∫

Ω

â(x,Dun)Dψδ(un) dx =
∫

Ω

fnψδ(un) dx.

Since for any 0 < δ < 1, |ψδ(t)| = 1
1−δ

(
1

(1+|t|)δ−1 − 1
)
, by (1.2), Hölder’s inequality and

(a1 + a2)
r ≤ max{1, 2r−1} (ar

1 + ar
2) , ai ≥ 0, r > 0,

Which yields (3.4). ¤

Lemma 3.2. Let p(·) as in (1.5), and m(·) = m+ as in (1.6), and f ∈ Lm+
(Ω). Then there exists

a constant C1 such that
‖un‖W

1,q(.)
0 (Ω)

≤ C1,

for all continuous functions q(·) as in (3.1).

Remark 3.1. Note that the result given in Lemma 3.2 also holds for any measurable function
q : Ω → R such that

ess inf
x∈Ω

(
Nm+(p(x)− 1)

N −m+
− q(x)

)
> 0.
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Indeed, in both cases there exists a continuous function s : Ω → R such that for almost every
x ∈ Ω:

q(x) ≤ s(x) ≤ Nm+(p(x)− 1)
N −m+

.

From Lemma 3.2, we deduce, in both cases, that (un)n is bounded in W
1,s(·)
0 (Ω). Finally, by the

continuous embedding W
1,s(·)
0 (Ω) ↪→ W

1,q(·)
0 (Ω), we have the desert result.

Proof of Lemma 3.2. Firstly, note that since m+ > 1 and p(·) is defined as in (1.5), we get

1 <
Nm+(p(x)− 1)

N −m+
, for all x ∈ Ω.

Now, consider the following cases:

Case (a): Let q+ be a constant satisfying

q+ <
Nm+(p− − 1)

N −m+
. (3.5)

Note that the assumption (1.6) implies that

Nm+(p− − 1)
N −m+

< p−. (3.6)

Using Hölder’s inequality with (3.4), we obtain
∫

Ω

|Dun|q
+

dx =
∫

Ω

|Dun|q+

(1 + |un|)δ q+

p−
(1 + |un|)δ q+

p− dx

≤ C2

(
1 +

( ∫

Ω

(1 + |un|)(1−δ) m+

m+−1 dx
))(1− 1

m+ ) q+

p−
.

(
1 +

( ∫

Ω

(1 + |un|)δ q+

p−−q+ dx
))1− q+

p−
,

(3.7)
By (3.5) and (3.6) , we get

1−
(

Nq+

N − q+

) (m+ − 1
m+

)
<

m+(p− − q+)
(m+ − 1)q+ + m+(p− − q+)

< 1. (3.8)

Now, choose δ ∈ (0, 1) such that

δq+

p− − q+
<

m+(1− δ)
m+ − 1

< q+? =
Nq+

N − q+
. (3.9)

Notice that (3.8) and (3.9) are respectively equivalent to

1−
(

Nq+

N − q+

) (m+ − 1
m+

)
< δ <

m+(p− − q+)
(m+ − 1)q+ + m+(p− − q+)

< 1. (3.10)

Therefore, by (3.7), (3.9) and using Sobolev inequality with q+?, we obtain

∫

Ω

|Dun|q
+

dx ≤ C3

(
1 +

∫

Ω

|un|
m(1−δ)
m+−1 dx

)1− q+

m+p−

≤ C4

(
1 +

∫

Ω

|un|q
+?

dx

)1− q+

m+p−

≤ C5

(
1 +

∫

Ω

|Dun|q
+

dx

)( N

N−q+ )(1− q+

m+p− )

≤ C6 + C6

(∫

Ω

|Dun|q
+

dx

)( N
N−q+ )(1− q+

m+p− )

,

(3.11)
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By the fact that

m+ <
Np−

Np− −N + p−
<

N

p−
, (3.12)

together with the assumption (3.5), this implies that

q+ < m+p− and 0 <
( N

N − q+

)(
1− q+

m+p−

)
< 1.

Hence, the estimate (3.11) imply that (Dun) is bounded in Lq+
(Ω).

Since |Dun|q(·) ≤ |Dun|q+
+ 1, we obtain that (un) is bounded in W

1,q(·)
0 (Ω). This completes the

proof in Case (a).

Case (b): Let q be a continuous function satisfying (3.1) and

q+ ≥ Nm+(p− − 1)
N −m+

.

By the continuity of p(·) and q(·) on Ω, there exists a constant η > 0 such that

max
y∈B(x,η)∩Ω

q(y) < min
y∈B(x,η)∩Ω

Nm+(p(y)− 1)
N −m+

for all x ∈ Ω. (3.13)

Note that Ω is compact and therefore we can cover it with a finite number of balls (Bi)i=1,...,k.
Moreover, there exists a constant ρ > 0 such that

|Ωi| = meas(Ωi) > ρ, Ωi := Bi ∩ Ω, for all i = 1, . . . , k. (3.14)

We denote by q+
i the local maximum of q on Ωi (respectively p−i the local minimum of p on Ωi),

such that

q+
i <

Nm+(p−i − 1)
N −m+

for all i = 1, . . . , k. (3.15)

Using the same arguments as before locally, we obtain the similar estimate as in (3.11)

∫

Ωi

|Dun|q
+
i dx ≤ C7

(
1 +

∫

Ωi

|un|q
+?
i dx

)1− q
+
i

m+p
−
i , for all i = 1, . . . , k. (3.16)

On the other hand, the Poincaré-Wirtinger inequality gives

‖un − ũn‖
Lq

+
i

?

(Ωi)
≤ C8‖Dun‖

Lq
+
i (Ωi)

, (3.17)

where ũn =
1
|Ωi|

∫

Ωi

un(x) dx, q+
i

?
=

Nq+
i

N − q+
i

.

Moreover, note that the sequence (un)n is bounded in L1(Ω). So, from (3.14), we have

‖ũn‖L1(Ω) ≤ C8,

Therefore, by (3.17), we deduce that

‖un‖
Lq

+
i

?

(Ωi)
≤ ‖un − ũn‖

Lq
+
i

?

(Ωi)
+ ‖ũn‖

Lq
+
i (Ωi)

≤ C8‖Dun‖
Lq

+
i (Ωi)

+ C9, for all i = 1, · · · , k.

Thus, using (3.16), we obtain

∫

Ωi

|Dun|q
+
i dx ≤ C10 + C10

(∫

Ωi

|Dun|q
+
i dx

)
(

N

N−q
+
i

)(
1− q

+
i

m+p
−
i

)

,

By (3.15) and arguing locally as in (3.12), we deduce

0 <
( N

N − q+
i

)(
1− q+

i

m+p−i

)
< 1,
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so that ∫

Ωi

|Dun|q
+
i dx ≤ C11, for all i = 1, . . . , k.

Recall that

q(x) ≤ q+
i , for all x ∈ Ωi and for all i = 1, . . . , k.

So, we get ∫

Ωi

|Dun|q(x) dx ≤
∫

Ωi

|Dun|q
+
i dx + |Ωi| ≤ C12.

Since Ω ⊂
N⋃

i=1

Ωi, for all i = 1, . . . , k. we deduce that

∫

Ω

|Dun|q(x) dx ≤
k∑

i=1

∫

Ωi

|Dun|q(x) dx ≤ C13.

This finishes the proof of the Case(b). ¤

Remark 3.2. Remark that in the constant case and f ∈ Lm+
(Ω), we choose in (3.7)

δ =
pN −m+p−m+Np + m+N

N −m+p
∈ (0, 1),

to obtain

q =
m+N(p− 1)

N −m+
=⇒ (1− δ)

m+

m+ − 1
=

δq

p− q
=

Nq

N − q
,

It is easy to check that, instead of the global estimate (3.11), we find

∫

Ω

|Dun|q dx ≤ C + C

(∫

Ω

|Dun|q dx

)
(

N
N−q

)(
1− q

m+p

)

,

where 0 <
(

N
N−q

)(
1 − q

m+p

)
< 1. Then (1.1) has at least one weak solution u, possesses the

regularity u ∈ W 1,q
0 (Ω) far all q = Nm+(p−1)

N−m+ . For the nonconstant case, it remains an open
problem to show that

u ∈ W
1,q(·)
0 (Ω), with q(·) =

Nm+(p(·)− 1)
N −m+

.

Step 3: Passage to the limit
From Lemma 3.2 together with the continuous embedding W

1,q(·)
0 (Ω) ↪→ W 1,q−

0 (Ω), we have a
subsequence (still denoted (un)n) such that

un ⇀ u weakly in W 1,q−
0 (Ω), (3.18)

un → u strongly in Lq−(Ω) (3.19)
un → u a.e in Ω. (3.20)

To complete the proof, we need the following lemmas:

Lemma 3.3. We have
Dun → Du a.e in Ω, (3.21)

Proof. In order to prove this lemma it is sufficient to show that:

Dun → Du in measure.

By (3.19),(3.18),(1.2),(1.3), (3.1) and using Lebesgue’s dominated convergence theorem, we get
the convergence of (Dun) to (Du) in measure, which proves the Lemma 3.3. ¤
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Lemma 3.4. We have

â(x, Dun) → â(x,Du) strongly in Lq(·)(Ω), (3.22)

for some continuous function q(·) : Ω → [1, Nm+

N−m+ ), where m is a defined in (1.6).

Proof. To prove (3.22), we apply Vitali’s theorem with taking in consideration Lemma 3.2, (3.20),
(3.21), (1.3) and (1.5). ¤

Finally, for ϕ ∈ C∞0 (Ω), we have
∫

Ω

â(x,Dun)Dϕ dx =
∫

Ω

fnϕdx. (3.23)

Using (3.22), we can pass to the limit for n → +∞ in the weak formulation (3.23), we obtain that
u is a weak solution for (1.1). ¤

Proof of Theorem 3.2. The proof of of Theorem 3.2 is similar to the proof of Theorem 3.4. in
[10]. ¤

Remark 3.3. Under the assumption f ∈ Lm+
(Ω) in Theorem 3.1, we can deduce that f is never

in the dual space
(
W

1,p(·)
0 (Ω)

)′
, so that the result of this paper deals with irregular data. If m+

tends to be 1, then q(·) = Nm+(p(·)−1)
N−m+ tends to be N(p(·)−1)

N−1 .
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