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Abstract: In this paper, we investigate the initial value problem of a nonlocal sine-type u-Camassa-Holm (uCH)
equation, which is the p-version of the sine-type CH equation. We first discuss its local well-posedness in the
framework of Besov spaces. Then a sufficient condition on the initial data is provided to ensure the occurance of the
wave-breaking phenomenon. We finally prove the Holder continuity of the data-to-solution map, and find the explicit

formula of the global weak periodic peakon solution.
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1 Introduction

In 2008, Khesin-Lenells-Misiolek [24] presented a new nonlocal equation (i.e., the y-Camassa-Holm (pCH)
equation)

me +umg + 2u,m =0, m = pu(u) — Uy, (1.1)

where u(u) = [gu(t,z)dz and S = R/Z. This equation can be viewed as an intermediate equation between
the CH equation [4,17,29]

mg +umg + 2u,m + Kuy =0, m=u— Uz, KER. (1.2)

and Hunter-Saxton(HS) equation (a short-wave limit to Eq. (1.2)) [23]

Ly
Ugt + Ullgy + §um =0. (1.3)
The CH equation can describe the propagation of axially symmetric waves in hyperelastic rods [12, 13],
and possess a bi-Hamiltonian structure, infinitely many of conservation laws, weak peakon solutions (
ce"’“‘*“'(c > 0)) [4]. In particular it is completely integrable and can be explicitly solved via the in-
verse scattering transform (IST) [3,4,6,8-11,26]. Constantin-Strauss [11] and Lenells [25] studied the orbital
stability of the weak peakon solutions of CH equation.

Similar to the CH equation, the p-CH equation (1.1) admits the Lax-pair and bi-Hamiltonian struc-
ture [24]. Tt can also describe a geodesic flow on diffeomorphism group of S with certain metric. Its
integrability, well-posedness, blow-up and peakons have been investigated in [18,20,24]. Similar to the pu-
CH equation (1.1), the integrable modified u-CH equation [30], as a u-version of the mCH equation, was
presented in the form

me + ((2p(w)u — u?) m) =0, m=p(u)— g (1.4)
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Its local well-posedness in Besov spaces and the existence of peakon and multi-peakon solutions as well as
the formation of singularities have been discussed in detail. Moreover, the dynamical stability of periodic
peaked solitons of Eq. (1.4) was studied [28]. The non-uniform continuity of the solution map of Eq. (1.4)
was established [34].

More recently, we came up with the sine-type generalization of the mCH equation (alias sine-mCH
equation) [31]

me + [sin(u® —u2)mly, M =uU— Uz (1.5)

and sine-type generalization of the CH equation (alias sine-CH equation) [32]
my + sin(u? — u)ugm + [sin(u? — u2)um], =0, M =u — Uy, (1.6)

and discussed their Cauchy problems. The studies of the above equations generalized the related research
on the CH-type equations [1].

In this paper, we will investigate some pu-generalization of the sine-CH equation (1.6). Our research
interest here is the Cauchy problem of the p-version of the sine-type CH equation (1.6) (alias sine-uCH
equation)

my + sin (2p(u)u — u2)ugm + [sin(2p(u)u — u2)um], =0, m = p(u) — ugy,

m(0,z) = mo(x),

where u(t,z) denotes the fluid velocity and p(u) = fS udz represents the corresponding potential density.
The main task here is to understand the effect of the nonlinear term sin(2u(u)u — u2) on the breakdown
mechanism of Eq. (1.7). One can check that there are two conserved quantities associated with Eq. (1.7),
these are 9 = [qudz and py = (g u2dz)'/2. Eq. (1.7) can also be regarded as a sine-type extension of the

1CH equation (1.1) and modified pCH equation (1.4). In particular, we have

o Assin(2u(u)u —u2) =c#0, c € [-1,1], the sine-uCH Eq. (1.7) with u(z,t) = u(r, ), 7 = ct reduces
to the known pCH equation (1.1) with ¢t — 7.

o As 2u(u)u—u2 — 0, one has sin(2u(u)u — u2) ~ 2u(u)u — u2 so that Eq. (1.7) just reduces to the new
p-version of the fourth-order CH equation

e+ (2u(u)u — u2)mu, + [(2u(u)u —uZ)mul, =0, m = p(u) — g, (L8)

e As 0 < 2u(u)u — u2| < 1, we have

. 2 T (_1)k+1 9\ 21 2\2N—1
sin(2p(u)u =) ~ 37 o (2mlae =)+ O (Gl — 2PN,
k=1 ’
in which case the sine-uCH Eq. (1.7) becomes the higher-order ;CH equation (O ((Q,u(u)u — ui)QN_l)

is neglected)

N o (_1)ktl )\ 2k—1 N ()Rt o\ 2k—1
My + muy, Z ((216)_1)| (Z,u(u)u - uw> + 0z <mu Z ((21911)' (2,u(u)u - um) ) =0, (1.9

k=1 k=1

where m = p(u) — Ugy.



The main contents, also the arrangement, of this paper are as follows. First, in the spirit of [14—16, 30],
we will show the local well-posedness of strong solutions to Eq. (1.7) in the subcritical Besov spaces B; .,
i.e., Theorem 2.1, and this will be done in Section 3. Here, the derivative index and the integrable index
should satisfy s > max{2 + 1/p,5/2}. The main tool we will use to prove this result are the Besov space
theory and the transport equations theory. Second, we will prove its local well-posedness in the critical
Besov space BS)/f(Theorem 2.2) in Section 4, following the spirit of [35]. Then, in Section 5, we will be
concerned with the blow-up criterion and the precise blow-up quantity of Eq. (1.7) by means of the Moser-
type estimates in Sobolev spaces. Section 6 is devoted to putting forward a sufficient condition with regard
to the initial data to ensure the occurance of the wave-breaking phenomenon by tracing the corresponding
precise blow-up quantity along the characteristic. We will employ the energy method combined with some
Sobolev inequalities and commutator estimates of Calderon-Coifman-Meyer type to establish Theorem 2.6—
the Holder continuity of the data-to-solution map in Section 7. The last section will provide the weak peakon
solutions of the sine-uCH equation (1.7), i.e., Theorem 2.7.

Let S stand for the Schwartz space and S’ represent the space of temperate distributions. Let LP(S) be
the Lebesgue space equipped with the norm || - ||z» for 1 < p < oo and H*(S) be the Sobolev space equipped
with the norm || - || g« for s € R. Since the local well-posedness for the Cauchy problem (1.7) will be proved
in Besov-type space B, , (Appendix A, also see [2,5] for more details). Moreover, some lemmas of the
transport equation theory are used (see [2,14] for more details). Let

1 1\* 23
_1/o1 1.10
s =5 (o-5) + (1.10)
be the Green function of the operator (1 — d2)~1. Its derivative [27] can be assigned to zero at x = 0, so one

has
(z) def | 0, =0,
Pa 33—%, 0<ax<l.

S

It is easy to see that the operator y — 82 is an isomorphism between B; .

v = (u— 0%)~lw given explicitly by [24]

v(z) = <x22—x + 12) p(w) + 2362_ ! /Ol/oy w(s)dsdy — /ow/oyw(s)dsdy + /Ol/oy/os w(r)drdsdy.

From [30], we know that

and B;;? with the inverse

lp(@)s;, <clullpg,. s€R, >0, 1<pr<oo, |ul <llullfn <3ul,

where

2 _ — 2'LL’Z,L = 'LL2 'LL2.I' u21: 72U'U, = U2 'LL2 xZ.
Jall = (1= 32) ) = P+ [ ol = (1= 3w = [ (24 u)a

2 Main results

Our first result is about the local well-posedness to the Cauchy problem (1.7) in subcritical Besov spaces.

Theorem 2.1. (Local well-posedness in subcritical Besov spaces) Let ug € By, with 1 < p,r <
+00, s > max{2+ 1/p,5/2}. Then there exists a time T > 0 such that the Cauchy problem of the sine-pCH

equation (1.7) possesses a unique solution u € E; (T). Furthermore, the data-to-solution map ug + u is

continuous from a neighborhood of ug in B, , into C ([O,T];B;:r) nct ([O,T];B;:;l) for each s’ < s as

r =400 and s =s asr < 4oo.



Setting p = r = 2 in Theorem 2.1, one immediately deduces the following Corollary with respect to the
local well-posedness of (1.7) in Sobolev space, which is a more convenience setting for us to show the blow-up
results.

Corollary 2.1. Let s > 5/2 and ug € H®. Then there exists a time T > 0 such that the Cauchy problem (1.7)
admits a unique strong solution u € C ([0,T]; H*)NC* ([O, TJ; Hsfl), Furthermore, the data-to-solution map
ug — u is continuous from a neighborhood of ug in H* into C ([0, T); H*)N C* ([0, T); H*71).

The next Theorem states the local well-posedness of (1.7) in the critical Besov spaces B;/f(S).

Theorem 2.2. (Local well-posedness in critical Besov spaces) Let the data uy € B;)/lz (S). Then there
is some mazimal time T > 0 and a unique solution u(t,x) of the Cauchy problem (1.7) such that

u=u(t,-) € C((0,T]; By*(R)) n C((0,T]; B3/*(R)).
Furthermore, the data-to-solution mapping
o — u(uo, ) : By2(R) — C((0,T]; B3/*(R)) N C*((0, T; B3/ (R))
18 continuous.

The following Theorems are about the blow-up criterion and quantity.

Theorem 2.3. (Blow-up criterion) Let ug € H® be given as in Corollary 2.1 and u be the corresponding
solution to (1.7). Denote by T* the mazimal existence time, then

.
T <o = / il < dt = oc. (2.1)
0

Theorem 2.4. (Blow-up quantity) Let ug € H*(R) with s > 2, and T* > 0 be the mazimal ezistence

time of the solution u to the Cauchy problem (1.7). Then u will blow up in finite time iff

lim inf (inf (cos(2pou — uZ)uuym + sin(2pou — u2 )uy) (2, x)) = —00. (2.2)
t—=T* \z€S

Moreover, one has

sup (cos(Zuou — uZ)uuym + sin(2uou — ui)uw) (t,x) < C|luol|3: sup mo(x) 4 C|luol| 1 (2.3)
€S €S

for all t € [0,T*) if mo(x) = (1 — 02) up >0 for all x € S, and mq (z¢) > 0 at some point zo € S.
Having established Theorem 2.3, we will prove the following wave-breaking result:

Theorem 2.5. (Wave-breaking) Suppose that mo € H*(S) with s > & and mo(z) > 0 for all z € R, and
mo(zg) > 0 for some g € R. Let T* > 0 be the maximal existence time of strong solution m to the Cauchy
problem (1.7). Let M(t,x) be defined by (6.1), M\(t) = M(t,q(t,z0)) and m(t) = m(t,q(t,zo)) with q(t,x)
being defined in (5.12). Also, assume |p (sin(2pou — u2)uuy) | + 24 (cos(2pou — u2)mu2) | < Cy for some
constant C > 0 independent of t and m(t) > € for some small constant € > 0. If

M(0)¢ +1

Cs
M(0) <0 and 75 + 7(0)

<0, (2.4)



M(0)

where Cy = C1(141/¢e) with Cy defined by (6.7) and £ = —Gmoy: then the solution m will blow up at a time
_ — .2
T* € (0,). Furthermore, as T* = t_ = —CIZW%%) — ;\/<é%(00))) — CQ%(O)’ we can evaluate the blow-up
rate as
1
- R < L '
tgr?Tlgi ((T t) inf M (m)) < -3 (2.5)

Corollary 2.1 implies the continuity of the data-to-solution map u(0) € H® — u(t) € H?® for the Cauchy
problem (1.7). We next show the Holder continuity of this map in H® under a weaker topology H", i.e.,

Theorem 2.6. (Ho6lder continuity) Let 0 < r < s with s > 5/2, then the data-to-solution map for the
Cauchy problem (1.7) is Hélder continuous in H® under the H" norm. More precisely, for initial data ug, vg
with ||ug|lgs < p and ||vollas < p, the corresponding solutions u,v of Eq. (1.7) satisfy

lu = vlloqo,rp:mm) < C lluo — volle (2.6)

with the constant C = C(s,r,p) and the exponent B8 given by

1, (8,7”) €D

) (2s=3)/(s—r), (s,7)€ Do,
p= (s—1)/2, (s,r) € D3, (2.7)

s—r, (s,7) € Dy,

where the regions D1, Do, D3 and Dy in the (s,r)-plane are defined by
Dy ={(s,r)|0<r<3/2, 3—s<r<s—2}U{(s,r)]3/2<r<s—1},
Dy ={(s,7)|5/2<5<3, 0<r<—s+3},
D3 ={(s,7)|5/2<s, s —2<r<3/2},
Dy={(s,7)|5/2<s, s—1<r<s}

To establish the explicit formula of the peakon solution, we first give the definition of weak solution
associated to (1.7).

Definition 2.1. Given initial data ug € W13, the function u € L>® ([0,T),W1’3) is said to be a weak
solution to (1.7) with initial data ug if it satisfies the following identity:

T

/0 /s [ — wpy + sin(2u(uw)u — uz)uuTga
— pa * [2p(w) sin(2p(u)u — ul)u — cos(2p(u)u — ul) (2u(u)uui — 2/30, (uu3) + 2/3uy)lp
— s (125 (2p()u — u2)0u (12) + () cos(2u(s — 1) () (42) — By (i) — u)

+ 1/2 cos(2p(u)u — u2)0y (uh)]p — p (sin(2p(u)u — u2)uu,) ¢ | dzdt
+ /Suo(x)go(o,x)dx =0

for any smooth test function o(t,xz) € C°([0,T) xS). If u is a weak solution on [0,T) for every T > 0, then
it is called a global weak solution.

Then our final result reads



Theorem 2.7. Eq. (1.7) possesses a global weak peakon solution, in the sense of Definition 2.1, of the form

uc(t,r) =a B <§_[§] _ ;)2_'_;2

where € =z — ct with € € [~1/2,1/2] and ¢ = Basin(23a?). Notice that u.(t,x) can be extended periodically
to the whole real line.

(2.8)

)

3 Local well-posedness in B;, with s > max{2 +1/p,5/2}

This section will give the proof of the local well-posedness result in subcritical Besov spaces B, with

the derivative index satisfying s > max{2 + 1/p,5/2}, namely, Theorem 2.1. The proof is completed based
on the properties [2,5, 14].

Proof. First, the classical Friedrichs regularization approach is used to construct the approximate solutions
of (1.7). Let m{+1) solve the following linear transport equation inductively

Aym Y + sin[2,(u®)u® — (120 g, m+D
= —2cos[2u(u®)u® — (u)2uOuP (m®)2 — 2sin[2pu(u®)u® — (W)2]ul (mW), (3.1)
I+

mt:Ol) = m(()lH)(x) = Si+1mo,

where m(® =0, 1=0,1,2, ....

Suppose m) € L>([0, T7; B;;Q) with s > max{2 + %, g} and consequently B;;,z is an algebra. So the
right-hand side of Eq. (3.1) is in L> ([0, T]; B3 ?) . Hence, Eq. (3.1) possesses a global solution m+) ¢ E5 2
for all positive T" and the high regularity of w.

Based on the property of the transport equation [2,14] it follows from Eq. (3.1) that one has

t
I exp ([ inf2n ) - @202 ) ol

t t

+C / exp <c / ||sin[2z(u®)u® — (u;l>)2}u<l>||B;2dT’>
0 T o

x| l2cos(2u(u®)u® — ()2uDul) (m®)?| 5,

+12sin[2p(u®)u® — (@)l (m®)]

B;;Z}dr, 1=0,1,2,---. (3.2

According to the product law in Besov spaces, one finds

3
By’

Isinf2p(u®)u® — ()2 u®]| go-2 < Cllu®] go-al|2(w®)u® — (u)?|

B2 S Cllu®|

. 1 l l l
|2sin[2p(u®)u® = (ul)2Jul) (mO)| 52 < Cluf’mO|| 5oz [20(u®)u® = @2 5oz < Clu®||}, |, (3.3)

l l l
[2cos(2p(u®)u® — (i (O g2 < Ol (mO) | gy < Clu®h,

Plugging (3.3) into (3.1) leads to

P,

t 3 dr b YR
D @), < e g, € [ O, (3.4
’ 0

p,T




Now, we need to find the uniform bound of the solution sequence {u(")(t)}. Suppose ||u(V)(t)] Bs, < af(t)
Substituting this into (3.4) generates
¢
lul D (6)]|ps . < s Catdry C/ oSt Catde’ g (3.5)
: o )

Then we take the equality sign to obtain
a(t) = 2Ca’(t), a(0) = [luollBs,,

which admits the solution

-1/3
3 /
Bs ., ‘

Accordingly, one can draw the conclusion that the solution sequence {u()}%°  of Eq. (3.1) is uniformly
bounded in C([0,T7; B, ,.) with T' <

B; . (1 - 60t||u0|

a(t) = [luo|

1
6C]luollfs

Next, we will prove that {m(+1)1% is a Cauchy sequence in C([0,T]; Bs.3). In fact, one can derive
from Eq. (3.1) that

0t[m(l+i+1) _ m(l+1)] + sin[Q,u(u(l"'i))u(lH) _ (u;l+1'))2]u(l+i)aw[m(l+i+l) _ m(l+1)]

= {Sin[?u(u(l))um — (u;l))2]u(l) — sin[2u(u(l+"))u(l+i) _ (uél+i))2]u(l+i)}3zm(l+1)

—Z{Sin[Qu(u(lH))u(lH) . (u;l+i))2]u;l+i)m(l+i) _ sin[?u(u(l))u(l) o (uzl))2}u§cl)m(l)}

(3.6)
As a result, we have
40 ) < exp € Dsinl )49 = )Py ]
t T
x{ / exp [_ C / | Dsin[2p(u D) FD — (4 +D)2 B;gdr’] lgll ps-sdr (3.7)
0 0 " "

+||m(l+i+1) _ m(l+1)|

By }

We will evaluate ||g]| p:-» step by step. One obtains

H{Sin[Qu(u(l))u(l) — (u)2)u® — sin[2(uH))u+) — (ug“))Q]u(l“)}@Km(l“)

By?
< Cllaxm”“)IIB;—,\SIISin[2u(u(l”))u(”i) — (uiT )2 — sin[2p(u®)ul) — (ug))zlu(”HB;;z

(2”<u<l+i>>u<l+i> — @) 4 2p(u®)u® <u§”)2>
2

2cos

< C||u(l+1)|B;)r{‘

X sin
2

|'u(u(l+i) _ u(l)>u(l+z’) + u(l)(u(l-‘rz’) _ u(l)>||B;;2 Hu(l-ﬁ-z’)'

i i 4 !
<2u(u(” Du®) — @i )2 — 2p(u®)yu® + <u§9>2> W0t um”BH}
2 p,7

s—
BP""

< Ollu™ V|5, {

s—2
BPv""



@) — @) o2 u D o2+ uD — 0@ o2
< Cllu V5 [u® = I g a (Ol + a3, +1). (3.8)

Similarly, we have

H . Q{Sin[2u(u(l+i))u(l+i) . (ugcl+i))2]u§cl+i)m(l+i) - sin[Z,u(u(l))u(l) . (uxl))Z}u;l)m(l)}

B;?
< O] {snlzn(u a0 — @02 = sinfu®)u? — (] O
B;
+C|lsin[2p(u)u® — (uP)?](ul*D — ud)ym I+
BB
+C||sin[2p(u)u® — (u)HuD (m+) —m®)
B;
< O s 9] o) — w0 ey (] s+ Ju D )
+C||m(l+i)|| Hu(l—H) &l)| B2t C”m(lﬂ) - m(l)l B;;s‘lugcl)l B2
< O O s (D, + O+ [l + 4@ (3.9
and
Jcos{2u(u+ yul+ —(u$+“>ﬂu“+“u$+“(nﬁ“4»2-—coqzuaﬁ”>u“>—<u“wﬂhﬁ”u“>on“h2|3rf

< ||{COS[2M(u(l+i))u(l+i) o (u(l—i-z)) = COS[QU(U(Z))U(Z) _ (ugl))Q]}u(l+i)u;l+z)< l-‘rz)) ||
—|—||COS[2,M( (l))u(l) (u(l))Q}(u(H'l) (l))u(zl+i)(m(l+i))2||
))Q}U(l [’LL(H_Z) ” l)](m(l+i))2|

-3
Byl

T B -3

Hlleosf2u(u®)u® — (uf -
Hleosf2a(@®)u® — (u®)2Ju®ud (D)2 — (mE+0))]| e g

x

< [l e Im 0| a2 a0 e a9 -2

<2M(u(l+z))u(l+z) _ (ug'ﬁ'i))Q + (u(l))z _ (ug))2>

X ||2sin
2

X sin
2

+||m(l+i)||13;;3||m(l+i)||13 ||u(l+l)||B ||U(l+i) - u(l)||B;;2

(2“0ﬁHi»u“+”<u¥+”V2uuﬂ”>u“>+<u9”2>

s—2
By r

+||m(l+i)||B§,‘r3||m(l+i)| B;;ZHU(I)HB;;zHuScl—H) —ul| By?
Hm D —mO)] B;;3||m(l+i) +m)] B;;2||“§cl)| B§;2||U(l)| B2

< Cllu D, (D — @)yt 4@ @D~ O)| e @) — @) o-2)
FO D, ) — a® ] ger + D gy, + a5 a3y [ = a®] 5y

< CHU(IH)||A}Bi,,,~(”u(l+i)||Bf,,7~ + ||u(l)||B;m)||u(l“) —

Ol D%, + u®)F, Mt —a® 5. (3.10)
On the other hand, notice that
I+i+1 l+1 _
lmg ™ —mg ™ s = IStrie1mo = Seimollgss = | 041 Agmoll gy < €27 Imol g5 (3.11)




and {m®} is bounded in C([0, T}; B;.?), one derives from (3.7)-(3.11) that

B;W3d7> .

t
Hm(l-‘ri-‘rl) _ m(l+1)||B;;3 < Cr (2—l +/ ||m(l+l) _ m(l)l
’ 0
Consequently, there holds

l
. Or <~ (2TCr)E  (TCrp)H!
I+ l T T T 1
Im D —m D oo rpgy < 5F D+ =] I = m @l 60, 71,552)-
2 .

Since {m(} is uniformly bounded in C([0, T7; Bs7%), one can find a new constant Cf, so that

Cr

I+i+1 l+1
T —m D o rpy < r

Im

Therefore, {m(™} is a Cauchy sequence in C([0,T]; By,?) and converges to some limit function m €
C([0,7]; By ?).

To show the existence of the solution of Eq. (1.7), we would like to verify that the obtained limit function
m solves Eq. (1.7) in the sense of distribution, and one step further belongs to Ej ...

Firstly, the uniform boundedness of {m"} in L>(0, T; B3?) giverise to m € L>([0,T]; B ,?). Secondly,
we find that {m®} converges to m in C([0,T7; B;:T) for all s’ — s < —2, which follows from

Cllmi — m| B33 s —s< =3,
= mll gy, < 0 1-0 / /
CHml_m|B;,—r3(”ml|BZ}2+Hm‘B;,‘3) ,0=s—5 -2 -3<s—-s<-2

This claim enables one to take the limit in Eq. (3.1) to find that the limit function m indeed solves Eq.(1.7).
Moreover, Eq. (1.7) can be rewritten as the following transport equation

Oym + sin(2u(u)u — u)udym = —2uzm[sin(2u(u)u — u?) + cos(2u(uw)u — u)uml. (3.12)

Since m € LW(O,T;B;;Q), thus the right-hand side of equation (3.12) also belongs to L*°(0,T; Bf,;z)
by means of the product law in Besov spaces and the Sobolev embedding. Consequently, one has m €
C([0,T); By ,2) as 1 < 0o or m € Cy([0,T); B5,?) as r = co. On the other hand, the Moser-type estimates
can deduce that [sin(u? — uZ)]d,m is bounded in L*(0,T;Bj,?) and consequently one deduces dym €
C([0,T); B;f’) as r < oo in light of the high regularity of u and equation (1.7). Therefore, m € E;;z.

Furthermore, the continuity of the solution m in E;;z (T') can be shown by using the result that a sequence
of viscosity approximate solutions {u}eso for (1.7)converges uniformly in C([0,T]; B5,2)NC*([0,T]; Bs.?).

We next proof the uniqueness. Let m = pu(u) — ugy and n = pu(v) — vy, both be solutions of Eq. (1.7).
Then one has

O(m —n) + sin(2u(u)u — u2)ud,(m — n)

= —[sin(2u(u)u — u2)u — sin(2u(v)v — v2)v]dpn — 2[sin(2u(uw)u — u2)uym — sin(2u(v)v — v3)v,n]  (3.13)

2

—2[cos(2p(u)u — u2)uzum?

— cos(2p(v)v — v2)von?] = f.

As a result, one has

t
Im = nllge-s < llmo —noll s +C / (I = nll o N sin(paCuu = ) o + 1o ) dr. (314)



Again, according to the product law in Besov spaces and the embedding relation, we find

B .- (3.15)

Jusin(2pa(u)u — 2| 5z < Clu
We use the Moser-type estimates to generate
llcos(2p(u)u — uZ)uyum? — cos(2u(v)v — vi)vxvnzﬂBﬁs
< C|[{cos(2u(u)u — u2) — cos(2u(v)v — v2) bugum?|

+C|cos(2u(v)v — v2) v, (u — v)m?|

g2 + Clleos(2u(v)v — v2) (uy — vw)um2||B§;s

B2+ C|lcos(2u(v)v — v2) v v(m? — n?)|

s—3
By,

o i (2000 = 2o =B = 2o+ eRY
2 2 Bs—3
p,r
sl e ol = i — 2 =2 Il Il 2t — 0l e [ e
+||U:L’||B;;2 ”UHB;;Q ||m - n||B;;3 [m + n| B2
< Clllulls, . + ol . + s, + ol e - oll g, (3.16)

| — 2[sin(2u(u)u — u?)ugm — sin(2u(v)v — v2)vyn] HB;;3

< Cin(@u(w)u — u2) — sin(p(0) — 02)ugmll s + Cllsin(pa() — v2) (s — va)ml pes
+C||sin(2p(v)v — v2)v, (m — n)|l -2

< C (Jlu

B 4 olid, o+l

By, + vlls;, ) lu = ollgs, (3.17)

I {sin(2pa(u)u — u2)u — sin(2u(0)v — v2)o}n | g o

< CllanB;;s{IICOS[(%(U)U =+ 2p(v)v — v3) /2sin[(2p(w)u — uf = 2p(v)v + v3) /2l -2

Bs2 }

pet (lullh, , + ol

+llu — o

< Cllu— vl

+ IIvIIB;,T) : (3.18)

Finally, plugging (3.15)-(3.18) into (3.14) leads to

T

%+ lolls;, + ol

t
[m —nl[gs—1 <|Imo —nollgs-1 +C | [|m —nllgs=s ([|ullBs, + [|ul 5 )dr. (3.19)
P, P, 0 P, P,

Then we find m = n or w = v with the aid of the Gronwall inequality. This completes the proof of Theorem
2.1. O

4 Local well-posedness in B;,/f

We now show the local well-posedness of Eq. (1.7) in the critical Besov spaces B;f following the spirit
of [35]. The proof of the existence part will be handled first. We construct the smooth approximate sequence

{m(l)}fio as in Section 3. Suppose that m() € L>([0,T7; BQ%J). Since BQ%’1 is an algebra, one can check that

3 5
the right-hand side of Eq. (3.1) belongs to L>([0,T7; Bg ), which indicates that m+) e 12([0,T); B3 ).
Using the similar method as the case s > max{2 + %, %} in Section 3, we can find a time 7" > 0 depending
on the initial data such that, for all [ € N,

-1/3
||U(l)(t)||B5/2 < luoll gs/2 (1 - 60t||u0||?]’35/2) , Vtel0,T], (4.1)
2,1 2,1 2,1

10



where the constant C is independent of n and T. Accordingly, {u(®},cy is uniformly bounded in
c([o,TY; 323,1)- Employing Eq. (3.1), we easily know that {u(!)},cy is uniformly bounded in C([0,T7; Bil) N
CH(0.T): B ).

To show {u(®};cy is Cauchy in C([O,T];BEOO), we first denote the right-hand side of (3.1) by
F(u®), ulh), m®) and find that the difference m(++1) — m+1) gatisfies

[at + sin[2p(u(HD)u ) — (3xu(z+i))2]u(z+i)ax} (m(l+i+1) _ m(l+1)> — J(t, ) (4.2)
with
J(t,x) =F (U(Hi),@zu(lﬂ),m(lﬂ)) —-F (u(l),ﬁzu(l),m(l))
+ {sin[Z,u(u(l))u(l) — (u)2u® — sin[2p(uHD))u+) — (ug+i))2]u(l+i)} D+,

x

According to the equality (1 — 02) (f - 09) = fO» (0 — 02)g) + 1 (fOng) — O2f0rg — 20, fO2g, one can
find from (4.2) that

NE

8y + sin[2u(u+ D) 1+ _ (9,40+0)2] .u(lJri)ax} (u(l+i+1) _ u(z+1)) = (u— 921 Ant,z)  (4.3)

n=1
with
Ayt z) = —82{sm[2u( (), (D) — (142 (Hz)}am (it1) gy (D),
Ax(t,x) = =20, {sin[2p(u(l+i))u(l+l) (u(l+2) u(l“)}am (L+itD) (4D,
Ag(t,w) = 2sin2pu(u®)u® — @) uPm® — sin2pu(u)ul+D — (@) ul I m L

(
(
(
A4(t, !L‘) _ {cos[2,u(u(l))u(l)—(ug))g]u(l)ug)(m(l))z—cos[Z,u(u(Hi))u(lﬂ)—(ugH))2]u(l+i)u§f+i) (,,n(l-ﬁ-i))Q}7
As(t,x) = {Sm[2p(u(l))u(l) — (ui)?)u® — sin[2p(u+))uH+9) — (ug”))Q]u(l”)}amm(lﬂ),

Ag(t,x) = (bln(?u( (Hi))u(lﬂ) - (u;.lﬂ))Q)U(l”)@x(u(lﬂ'ﬂ) - u(lH))) )

Lemma 2.5 in [35] then yields

H (u(l-i-i-i-l) - u(z+1)> (t)’

3

B3 o
) t 6 (44)
< e |uos o0y v [ eemimio-enino| S| an
B22'°° 0 n=1 B;Eo
where W, (t f [|ul+9) (7 )HB§ dr’.
2,1

According to (4.1) and the uniformly boundedness of {u()} in E5/2( T), there holds

Wia(t) < — 1 {1 (16 flug|32 1 2/3} <cC
1+ B S— - - Uo|| g5/2 ) = Ly
20 ||uo|[5/2 Ba
2,1
Hu(m) . +‘u s <142l 5 =K,
322,1 2,1 B22-,1
Sn+i+1u0 — 5n+1uo||3§ <c2™ HUOHBZg
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1
We use Lemma 2.6 in [35] to evaluate A; (i = 1,2,3,4,5,6). Since BJ, is an algebra, we find

[As]| 3 < Cllo3sin[2p(u™D)u — (@i 10, (D — W)
B2,oo B2 oo B2,1
< Ol g uTHY — D)
> B3
2,1 2,1
< CK||u(l+i+1) . u(lJrl)H

2,1

Similarly, there holds

142y < 2 —ul )|y 10 {sinf2pu(u D )uH) — (ufFD) 2Oy
’ < OHu(lJri)” N ||u(l+i+1) _ u(l+1)||
N B3, 31

< CK||u(l+i+1) . u(lJrl)H

2,1

4013 < € {ImOu e =t 4 @ =) — ) =)+l |
2,00

+ ClmO@® —ul )|y + O+ — )

2oo

< CllmON__y @1y (a1 g+ a2 )fu® —UZ“’H 3
21 2,1

3
B2
2 2,1

200

+ClmO_y u® — a0y [0y ® — )y

2
2,00 2,1 2,1 2,00

< CK3||u(l+i+1) _ u(lJrl)” 5

2,1

41,3 < O{I0nOPUuO = O (w49 )

SR CORRIAD (N

2

+ Cllm )2 ul) (u) —uf )|y + Cm @)l () —ufF]

2,00

+ C”u(l+i)u(l+i) (m(l) o m(l+l))(m(l) + m(lJri))” L
xT B7§

2,00

<ClmOY _y ImO w3 e@ g (@) s+ Y g ) =l
B, 2 B3, B3, B3, B, B3, BS
+C||m”)|| 3 Im®] Hu(”ll [u® —u|| o
By % 221 3221 B3a
+Cm"| _7||ml)|| Rl ||u§f)—ug“)||
By 2 BF 5 B3,
+C||ul“)H IIUl“)lI 3 Im@ +m @ —m )
B3, B3, B, 2
< CK5||u(l+z+1) (l+1)|| 5
B B3,
4513 < Clisinfzu®)u®) = @) = sin2u(u D)) — @Ry 0m D)y
< CKQHu(l—i-i-i-l) _ u(l+1)|| 3,
B3,
||A6H , < CHU l+z)a ( (I4+i+1) _ (l+1))|| , < CK||u(l+i+1) _ u(lJrl)H
B 2 B3, 2,1
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Having these estimates in hand, one can employ the similar arguments as those in Section 4 of [35] to
complete the proof of the existence part. So we Just omit the remaining details here.

We next verify the unlqueness Let u,v € E2 1(T) be two solutions of the Cauchy problem (1.7) with the

initial data ug,vg € 32,17 respectively. Set w = u— v, wo = up — vg, M = p(u) — Ugz, N = (V) — Vg Simple
calculation yields that w satisfies the following equation

6
[0 + sin(2p(w)u — ul)ud, | w = (u — 02)~ Z (4.5)
with

Si(t,z) = =02 [sin(2p(u)u — u2)u] Oyw,
Sy(t, ) = —20; [sin(2u(u Ju — u?) ]82
Ss(t,z) = 2[sin(2u(v)v — v2)ven — sin(2p(u)u — u)uym],
Sa(t,z) = 2[cos(2u(v)v — v2)vv,n? — cos(2p(u)u — ul)uum?],
Ss(t,x) = [sin(2p(v)v — v2)v — sin(2p(w)u — u})u]dyn,

Se(t,z) = p (sin(2p(w)u — u2)udw) .

Let P(t) := e‘CU(t)Hw(t)HB% with U(t fo |0 [sin(2pe(w)u — ui)}HB% (r')dr’ and Q(t) =
H“(t)”B% + ||v(t)HB% <Q = 2<||uo||B% + ||v0||g ). Then, we can refer to section 4 [35] to conclude
for all £ € [0,T] that

exp(—CQt)
P _ <P(9)> (4.6)
eQ e@

implying the uniqueness. This completes the proof of Theorem 2.2.

5 Blow-up criterion and quantity

In this section we would like to give the proofs of the blow-up criterion and precise blow-up quantity for
the solution of the Cauchy problem (1.7).

Proof of Theorem 2.3. The proof contains three steps. The method is mainly induction with regard to
the derivative index s.

Step 1. AS s € (1/2,1), based on a priori estimate in the Sobolev space [2,19], it follows from the
transport form (3.12) of Eq. (1.7) that one has

t ¢
[lmllers < {lmol[ms + C/ [[mll a2+ 110 [usin(2uou — u3)][| L dr + C/ lleos(2pou — w3 Jurgm? || -dr
0 0
¢
+C/ llsin(2pou — u2)ugm|| gr-dr. (5.1)
0

Employing u = (u — 82)~1m = p x m, one finds with the help of the Young inequality that

[ullpoe + luzllpoe + [[tazll L < Cllmze,

[ullzrs + lluzll gs + ltaell e < Cllmlae,

13



which further yield
10s[usin(2uou — uF)][l L= < Cllusl|= + Cllugmull < C(llm||7~ + [mllL=),

Isin(2pow — u2)ugml e < lugmlze < Cllml| m] -,

2

Dugum?|| s < Cllugum?| g

< Cllm|| o< lugum|[ g + Cllm| a
< Cllml e llmll e

lcos(2uou — u

Upum|| e
It follows from Egs. (5.1) and (5.2) that one has

t
0

[l s < llmol| s exp <C/ (Imll7e + 1)dT) :

(5.2)

(5.3)

Therefore, if fOT* |m(7)||3 s d7 < 00 for the maximal existence time T* < oo, then the inequality (5.3) yields
lim sup||m(t)||g= < oo, which contradicts the assumption on T*. Thus the proof of Theorem 2.3 is completed
t—T*

for s € (1/2,1).
Step 2. For s € [1,2), we differentiate (3.12) once with respect to x to find

Mgt + sin(2pu — u2)udym, = —2c08(2uu — u2)uzummy — sin(2pou — u2)uym,

—20,[cos(2uou — uZ)uzum?| — 20, [sin(2uou — u2)uym).

We further have
maliees < oclcs +C [ mallecs o fusin(pon — )i
+C /t | — 2cos(2pou — u?)ugummy, — 20, [cos(2pou — u2)uyum?]| gs—1dr
0
+C /t | — sin(2uou — u2)upmy — 20, [sin(2uou — u2)uym]| gs—1dr.
0

Direct calculation generates

| — 2cos(2uou — u2)uzummy — 20,[cos(2uou — u2 ) uzum?]| gs—1
< Cllugummy || g1 + C|lugum?|| g

< Cll0s (ugum?®) || a1 + Clluggum?®|| a1 + Clluzm?|| g + Cllm|l g« m |1

< Climl| g [Iml|7 =
and

| — sin(2pou — w2 Yuzm, — 20, [sin(2uou — u2)uzm)|| g1 Cllugma || gs—1 + Cllugm|| g

Cllusmlar- + C s szo-

IN N TN

Cllm| ze lml[ poe -

Combining (5.2) and (5.5)-(5.6), one deduces

t
[l e < [lmoa | e +C/ Imlzz+ (Il Zoe +1)dr.
0

(5.4)

(5.6)

(5.7)

By using the same argument as in Step 1, we know that this theorem also holds for the case s € [1,2).
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Step 3: Let 2 <! € N and (2.1) hold true for I — 1 < s < [. We will invoke induction to prove the validity
of (2.1) for I < s < 1+ 1. Applying 9% to both sides of Eq. (3.12), one obtains

Dr0Lm + sin(2uou — u2)uds tm
-1

=- Z CioL [usin(2uou — u2)]05H m — 20! [cos(2uou — u2 )uzum?] — 20L[sin(2pou — uZ)uzm] = fo.
i=0

Moreover one has

t t
|0l et < llmoler- +C / |8l -1 B [usin 2ot — u2)]|| pdr + C / Vol gemsdr. (5.8)
0 0

According to the Sobolev embedding inequality one has

-1
IS Ciok usin(2ugu — u2)]05 .-

i=

~
|
-

< D 0L [usin(2p0u — u3)]0y " ml| o

=
o

< C<3i_i[usin(2uou — )]l e |05l Lo + 1|05 [usin(2pou — ul)] |2 ||5i+1m||Hst)

< C|lm| grsrszve |lusin(2pou — u2) || gs—iv1 + Cllml| gre—rsivr Jusin(2pou — u2) || grr—ivi/2+e

S C||m||Hl+1/2+e U||Hs—i+1 =+ CHmHHs—H»H»l ||u||Hl—i+1/2+e

where € € (0,1/8) such that one has H2H¢(S) < L>(S).
Moreover we have

< Cllmll o172

1205 [cos(2uou — w3 )ugum?||| a1 < Cllugum?|[ = < Cllmllasmlfn-1 24, (5.10)
120% [sin 20 — w2 Yugm]| gt < Cllugmilzzs < Cllmllzsllmll sz '
Eq. (5.2) and Egs. (5.8)-(5.10) leads to
105 mllgre—1 < [lmollz= + C/Ot Il = (Imll 3= /24c + 1)dr,
that is, ,
@l < ol exp {C [ oIy + s (511)

Thus, if fOT* |m(7)||3 d7 < 0o for the maximal existence time T* < oo, then the uniqueness of the solution
given by Theorem 2.1 makes sure the uniform boundedness of Hm(t)||H,,%+€ in t € (0,7*), which and
(5.11) give rise to the contradiction limsup, ,p« ||m(t)||gs < oco. Therefore, the proof of Theorem 2.3 is
completed. O

Before we deduce the precise blow-up quantity for strong solutions of (1.7), we first give the following
proposition. Let ¢(t, ) solve the following trajectory equation:

%q(t,x) = [usin(2uou — u2)](t,q(t,x)), z €S, te€|0,T),
(5.12)

q(0,2) =z, x€S.

Then one has
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Proposition 5.1. Suppose ug € H*(S) with s > g Let T* > 0 be the mazimal existence time of the solution
u to Eq. (1.7). Then there exists a unique solution q(t,z) € C*([0,T*) x S;S) to Eq. (5.12) satisfying

¢z(t,x) = exp { /0 [sin(2pou — u2)uy + 2 cos(2pou — u)uuym| (s, q(z, s))ds} > 0. (5.13)

Moreover, the momentum density m(t, q(t,z)) satisfies

m(t, q(t,x))q.(t, x) = mo(x) exp{ - /0 [sin(2uou — u2)u,](s, q(s, x))ds}, (5.14)

which implies that the sign and zeros of m(x,t) and mo(x) are same.
Proof. It follows from Eq. (5.12) that
d

aqm(t, x) = [sin(2uou — u2)uy + 2 cos(2uou — u2)uuym](t, q(t, 2))q.(t, ),
(5.15)

qz(0,2) =1

Solving (5.15) produces the solution ¢, (¢, z) given by (5.13). Egs. (1.7) and (5.12) give

i[ (t,q(t,z))qu(t,z)] = [mu(t,q(t, ) +ma(t, q(t, ))q:(t, v)]qe (t, v) + m(t, q(t, x))qut (¢, )

= qz[ms + mgsin(2uou — u )u + MmOy, (sin(2uou — ui)u)](t, q(t,x))
implying

a(mqm) + sin(2uou — ui)uxqu =0,

which further yields Eq. (5.14). Therefore, the proof of Proposition 5.1 is completed. O

We next deduce the precise blow-up quantity of the Cauchy problem (1.7), that is, the proof of Theo-
rem 2.4.

Proof of Theorem 2.4. It suffices to consider the case s = 3. We will prove this Theorem by contradiction.
Suppose there exists a positive constant K7 such that

inf [cos(2u0u —u2)ugum(t, x) + sin(2uou — u)ug(t,x)] > —K;, 0<t<T (5.16)
z€S

From Eq. (1.7), one obtains

2k —1
2k % /m%dx = /SIH(QMOU —u?)uy,m*de — o% /Saz[sin@you —u?)ulm*dz, (5.17)

which with k = 1 generates

1
/dem = —/sm(2,u0u —u2)uymide — = /[sin(?uou — u2)u],m?dw. (5.18)
2dt 2Js

It follows from Eq. (5.18) along with the following two inequalities

1
[uallZoe < lullfn +ImlZs,  lullze < \/>Hu||H1 = ﬁllwllf;1
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that one has
Imllze < Clluollar [lmollL2),  [luelze < Clluollar, lmoll22)- (5.19)
Combining (5.17), (5.19) and the Gronwall inequality yields
[l z2e < C(lluollars [lmol[ L2 )- (5.20)

Then we applying 9, to Eq. (1.7) and dotting the result equation with d,m to obtain

1d
—— /midx = —2/005(2,u0u — w2 uim*myde — Z/Sin(Quou — w2 ug,mmydes

)
~3 /sin(2u0u —u)uymidr + 4/sin(2,uou — u)uium®m,dx
s s

(5.21)
—2/005(2u0u — u2)ugpum*myde — 5 / cos(2pou — u2)ugumm?da
s s
—4 [ cos(2uou — u?)uZm>m, dz.
s
Combining Egs. (5.18) and (5.21) yields
1d 2 2 : 2 2 2 3
—— [ (m*+mi)de = — [ sin(2uou — uZ)uy;m de — [ cos(2uou — uZ)uzum>de
Ey
1
. /s sin(2pou — u?)uy,m?dx — 2 /S cos(2pou — u?)uim?mydx
2 [ sin(2 2) dz—2 [ (2 2 2d
- Ssm( Hot — Uz )z mimgde — o Ssm Lot — uy )uymada (5.22)

+4 / sin(2pou — u?)ulumim,dx — 2 / cos(2pou — u2)uzzum?myde
s s

-5 / cos(2pou — u?)ugumm?2de 74/COS(2,LL0’U, — u2)uim*m,de.
S s

Eo

The integrals F; and Es in (5.22) can be controlled by using (5.19) and the assumption (5.16), since it
indicates

— cos(2uou — u2)ugum(t, ) < sin(2uou — uZ)uy(t, ) + K. (5.23)

The remaining integrals in (5.22) can be estimated by just employing (5.19). This argument finally enables
us to arrive at

1d
T (m2 + mi) dz < (6K71 + Cy (ug, mo)) / (m2 + mi) da + Co (t,up, mo) ||Mmg]| 12
S S

which combined with the Gronwall inequality yields

t
||mHH1 S €[6K1+Cl(uo,mg)]tHmOHHl +/ 6[6K1+Cl(’u.o,’lno)](t—‘l’)c2(7_’ uO,mO)dT
0

for t € [0,7*) and consequently m(t, ) will not blow up in finite time recalling Theorem 2.3. However, if
Eq. (2.2) holds true, then the Sobolev embedding ensure that m(t, z) or u, will blow up in finite time.
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We next consider the proof of Eq. (2.3). Let M(t,x) = cos(2uou — u2)uu,m + sin(2uou — u2)u,. It
follows from Corollary 2.1 that M € C([0,7*); H*)NC([0,7*); H*~1). For the given t € [0,7*), there exists
some point xo(t) € R such that

M (t,zo(t)) =sup M (t,x), i.e., M, (t,zo(t)) =0, ae. on (0,77). (5.24)
z€R

It follows from Theorem 2.1 in [7], Corollary 2.1 and H*(S) — Co(S) with s > 1/2 that
M (t,xo(t)) >0 forall te][0,T7). (5.25)
Eq. (5.13) implies that the map ¢(¢,-) is an increasing diffeomorphism of S such that ¢ (¢, & (t)) = zo(¢)

for some &y(t) € S. For the point (¢, zo(t)) = (¢, q (¢,&0(t))), it follows from Eq. (1.7) that

m(t, zo(t)) = mo(20(0)) exp (—2/0 M(r, xO(T))dT) < mg(x0(0)) < ilgs) mo(x). (5.26)

On the other hand, the non-sign-changing condition indicates |u;| < u, which combined with (5.26) and
(??) leads to

M(t,zo(t)) = cos(2uou — u)uuzm + sin(2puou — u?)u,

AN

[[ul| oo [t || oo supmo () + [|ug || Lo
€S

< lull~ supmo (@) + [Jul| e
z€S
< Clluol|F sup mo(@) + Clluol| a1,
€S
which gives rise to (2.3). We thus complete the proof of Theorem 2.4. O

6 The wave-breaking phenomenon

We now give the proof Theorem 2.5.

Proof of Theorem 2.5. Let the precise blow-up quantity M be
M = cos(2pou — u2)uuzm + sin(2uou — u2)u,. (6.1)
In what follows, we would like to estimate the dynamics of M along the characteristic. Firstly, one has

(1 = 2)[ue + sin(2pou — u2)uu,]

— my + (1 — 92)lsin(2pou — u2)uu, ]

= g (sin(2pou — u2)uug) + sin(2pou — u2)mu, — pesin(2pou — ul)u,

2 2

—2p10c08(2p0u — u2)Ymua, — 20, [cos(2uou — uZ)muu?] — 2cos(2pou — uZ)mu?, (6.2)

from which we have

u = uy + sin(2pou — u2)uuy,

(u — 0%)~Lsin(2uou — u2)mu, — 3posin(2pou — u2)u, — 2upcos(2pou — uZ)mut, (6.3)

x

x x

—2cos(2pou — u2)mud] — 2(p — 92) 710, [cos(2uou — u2)muu?] + p (sin(2pou — u2)uug) .
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It follows from Eq. (6.3) that one has

!/
u(L‘

Uzt + SIN(200U — U2 ) Uty
= (u — 02) 710, [sin(2uou — u2)muy — 3uosin(2pou — u2)u, — 2ppcos(2pou — uZ)muu, (6.4)
2l

—2cos(2pou — u2)mul] — sin(2uou — u2)u? — 2u (cos(2pou — uZ)muu?) .

Combining (6.3)-(6.4) and using m; + sin(2puou — u2)um, = —2mM, one obtains

My + sin(2pou — u2)uM,
= —sin(2uou — u2)mugu(2uou’ — 2uzul)) + cos(2uou — u ) ugzu(—2mM) + cos(2uou — u?)mund,
Hcos(2pou — uZ)uzmu’ 4 cos(2uou — uZ)ug (2uou’ — 2uzul,) + sin(2uou — u?)ul,. (6.5)

From the inequality |u,| < u and the assumption |24 (cos(2uou — u2)muu?) | < C,, one concludes

(6.5) < —2M? + 2sin(2pou — uj)us M + (mllul[f + ullze) [2luol (lullZ~ + 3ol llull 2o + 2[polllull~
Hllulle + Co) + 2|lull oo (2[lullZoe + 3lpolllull e + 2luolllullz~ + 2[ullzw + Cs)]
+(mllull e + 1) (2llulZe + 3lpolull e + 2lpolllullz~ +2[ulf~ + C.)
+mllu e (ullzee + 3luolllullze + 2lpolllull7 + 4lullf=~ + C.)

< —2M2 + m{(2|po| + 1)Cullull o + 3ol llullFe + (611 + 2Cs + 4)||ul|7 o0 + 10]po] [l 1
+(4|po| + 6)[|ullf = + 12lpol[lulF + 4llullf} + {(2luol + D)Cu + 3pol[|ul Lo
(645 + 2C. + 4)[|ullZo + 10]po|[Jull7 o + (4]po] + 6)[lul| 70 + 12|l 2o + 4] ul| }
< —2M? + (m + 1){(2|po| + D)Cu + (50| + 1)C.[ul| Lo + (64 + 3|po| + 2C. + 4)[[u]|7
+(65 + 10] o + 2Cs + 4) |ul|F = + (14|0] + 6)[[ul| 700 + (16]p10] + 6) ]| 7 <
+(12p0] + 4)|ullfoe + 40T }
< —2M?* + Cy(m + 1), (6.6)

where we use |[u(t, )|z~ < |po| + v/3/6u1 [18] to control ||u| -~ and the constant Cy is defined as

01::4u3+~nuoP—+22ué+-mﬂuoP-+20u8+-uﬂro—+{}%@uud-+9u3+-smunﬁ

15 27 95
+52415 + 52|p0l” + 50u5) + (5 + Flmol + 6415 + S lwol® + Z- 4o + 22|pol”)

3
3

+151 S(2 4+ 170l + 61 + 120[1of° + 190u§)

(g + solbol + oo+ 2 lol®) + ol + —> )
24 36 48f 36\f 24{

1 3
+ﬂ1(@+2716‘,“0|) 864\[ +C (1+3|,u0|+7/t0+2|/$0| 2\/§'u1

3v3 1 1
+= VB S S lpold 4 — ). 6.7
5 IHolp & V3o + G+ g luolin + ) (6.7)
Let ]\//.T(t) = M(t,q(t,z0)) and m(t) = m(t,q(t, z9)) with ¢(t, ) being defined in (5.12), then Eq. (6.6)
can generate the relation about M(t) as

d —

M) = (M + sin(2puou — uZ)ubL) (¢ (t, 20)) < —2M3(8) + Ca (1 +1). (6.8)
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Moreover, one has

d o~
&m(t) = —2mM (6.9)
It follows from (6.8)-(6.9) that we have
F(5a) = TR0 - M)
< ﬁ@%(t) [7(t)(—231%(t) + Cuifs + Cy) — M(—2mA0)]
:Cl(l—k%) 501(1—#%) < Cs. (6.10)
Integrating (6.10) from 0 to ¢ can give rise to
M(t) < <J\ﬁf((8>) + C’gt)ﬁl(t). (6.11)

Therefore, one has

Integrating once again, we obtain

1 2M (0) 1
0< —— <Cot? + ——t+ —— = h(t).
a0 = w0 e Y
Since ]\//.7(0) < 0, thus '(0) < 0. According to lim; ,o, A'(t) = +00 and the continuity of h’(t), there exists a
& > 0 such that h/(§) = 0. Under the assumption (2.4), we have h(§) < 0. Note that h(0) = % > 0 and
h(t) € C[0,400), one can find some T € (0, &) such that

1

which indicates that lim;_, 7+ m(t) = +o0. Since 1\7%1((8)) + O T* < %((8)) + C5¢ = 0, then by using Egs. (6.11)
and (6.12), one can derive

inﬂf§ [cos(2pou — u2)uuym + sin(2uou — u2)uy | (t,x) = —o0 as t— T™.
FAS

Using Theorem 2.4, one can know that the solution m blows up at the time T* € (0,¢].
To prove the blow-up rate (2.5), one solves the algebraic equation h(t) = 0 to find

M) 1| 2M(0) ’ 2
= ER) T Q\J (cgm(o)> ~ Comn(0) (6.13)
implying
1
0< =5 <Co(t—t ) (t—ty), (6.14)
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which combined with Eq. (6.11) generates

z€R

2(T* —t) M(0)
S -) (” @WO)) |

2(T* —t) inf M(t,x) < 2(T* —t) M(t) < 2(T* — t) m(t) (AZ(O) + 02t>

and consequently there holds (2.5) when 7™ = ¢_. This completes the proof of Theorem 2.5. O

7 Holder continuity

In this section, we would like to prove Theorem 2.6 in the spirit of [22] for the mCH equation. we firstly
consider the Lipschitz continuity, namely, 8 = 1 in the region D;. Eq. (1.7) can be rewritten as

wy + sin(2u(u)u — v )uu,

2 2
= (p— 83)—151,{ — 2ppsin(2pou — u2)u — cos(2uou — u2) | 2pouu’ — gam(uui) + 3ui} }

=02 = oo~ 12)0.) + pocos(2pan — )uds (1) ~ 0y (i) ~ 1)

—l—%cos(Q,uou - ui)&l(ui)} + 1 (sin(2p(w)u — ul Juug) . (7.1)

Differentiating Eq. (7.1) once with respect to z and employing the relation (u — 82)7192f = u(f) — f lead
to
Ugs + sin(2p(u)u — u2)u? 4 sin(2p(u)u — u2)utiyy — 2p0sin(2u(uv)u — u2)u

. airlax{ — S sin(2pgu — u2)0, (u2) + pocos(2pion — u2) oDy (u2) — Oy (uni2) i
+%cos(2uou — ui)@m(ufﬁ)}
. 2 2 2 2 3y, 2 4
+u| — 2posin(2uou — uZ)u — cos(2uou — uZ) | 2uouuy — gﬁx(uux) + FUz| |- (7.2)

Set w = u,. Then Egs. (7.1) and (7.2) yield

uy = —sin(2uou — w?)uw — F(u, w),
wy = —sin(2pou — w?)uw, — sin(2pou — w?)w? + 2pgsin(2pou — w?)u — Gu, w), (7.3)
U(O"T) - UO({E)7 ’LU(O, ‘T) - 8zuo(sc) = wo(x),

where the nonlocal terms F and G are defined as

2 2
F(u,w) = —py * { — 2ppsin(2pou — w?)u — cos(2uou — w?) | 2pouw? — gﬁr(uwS) + 3w4] }

—p* { - %sin(Q,uou — w?) 0y (w?) + pocos(2pou — w?) [0z (u?) — Oy (uw?) — w?]

+%COS(2,uou - wZ)aI(w‘l)} — g (sin(2p(u)u — w?)uw), (7.4)
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1
G(u,w) = —p, * { - isin(Quou — w?) 0y (w?) + pocos(2pou — w?) [0z (u?) — dy (uw?) — w?]

+%cos(2,uou —w?)d, (w4)}

2 2
u< — 2u0sin(2pou — w?)u — cos(2uou — w?) {Q,uguwQ - gaz(uw?’) + Swﬂ ) . (7.5)

Using similar method as that in [21], we can prove that for ug(z) € H® (s > 5/2) the solution of system
(7.3) corresponding to initial data (ug(x),wq(x)) satisfies (u,w) € C([0,T]; H*~!) and the following size
estimates

[(u, )| -1 < Clluollms, (s >5/2) (7.6)

in the lifespan of the solution with C' a generic constant.
Let (v,2) € C([0,T]; H*~!) with initial data (vo(x), z0(z)) be another solution to system (7.3). Let
p=u—v, ¥ =w— z. Then we find

P [COS 2pou — w? 2+ 2ppv — 2% . 2p(p)u+ 2#(1)2)90 —(w+ Z)ﬂ »
—sin(2upv — 2%)we — sin(2upv — 2%)vyp — F(u,w) + F(v, 2) (7.7)
and
O = —2 [COSQ,uou —w? ;_ 2ppv — 2> SinQu(gp)u + 2u(112)<p —(w+ 2)1/)} ww,

—sin(2upv — 23)wep — sin(2upv — 2%)veh,

2pou — w? + g — 2 . 2p(p)u+2u(v)p — (w + Z)w} w2
2 2

—sin(2upv — 2%)(w + 2)

—2 [cos

2pou — w? + 2upv — 2% 2 2 _
+2u0u {cos pow —w ;_ HoV — 2 sin p(p)u + /l(i;)s@ (w+ z)d;]
2sin(2ptho — 2)plp)u -+ 2sin(2php — 2o — Gl w) + (o, 2), 8)

where p, corresponds to vg.
In view of Egs. (7.7)-(7.8), one can find from the energy method that

1d 2ot — w2 + 2w — 22 2 9 _
Il = [ o [—2[cos pow — w? 2 — 2% o 2o+ 2u(v)e <w+z>ﬂuw] Drgde (7.99)
R

2dt 2 2
- /RDT[Sin(ngv — 2 we] - D" pdx (7.9b)
- /RDT[Sin(Zuf)v — 23wy - D"pdx (7.9¢)
- / D"[F(u,w) — F(v,2)] - D"pdx (7.9d)
R
and
2 o2 _
lgszH%{T :/ D l_9 COS2M0U w” 4 2p5v — 2 Sinm‘(@)”“"l“(”)@ (w+2)y wwy | - DTpdx
2dt . 2 2
(7.10a)
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- / D" {sin(2upv — 23wy} - D abda (7.10b)
R

- / D" {sin(2upv — 2*)vip, } - D"pda (7.10c)
R
n / D {2 {COSQMOU —w? 4 250 — 27 . 2u(p)u+ 2u(v)p — (w + Z)w} wz} D7
e 2 2
(7.10d)
- / D" {sin(2upv — 2%)(w + 2)b} - D"¢pdx (7.10e)
R
+ / D" [—2/¢0u [cos 2pgu — w* ; 240 = 2 sin%((p)u i 2/‘(1]2)%0 —(w+ z)wH - D"pdw
R
(7.10£)
+ 2/ D™ {sin(2upv — 2*)up(p)} - D"pda (7.10g)
R
+ zug/ D" {sin(2upv — 2*)p} - D"pdx (7.10h)
R
_ / DG, w) — G, 2)] - Dpda. (7.100)
R

We first deal with the terms in (7.9). When 1/2 < r < s — 1, we use the algebra property of H" and
(7.6) to derive

(7.90)] < CI2u(p)u + 2u(v)e — (w + 2)Pluw]| g o]l
< Cllwlg-lellz-(lullze + olla) + (wllme + 12lm)lAlelz + lela 1¢la-)
< Clllwllzga—r + 2ll3ra -1 + Nlizgems + lolze-) Uelle + el 191l e)
< C(lluollFre—r + llvollzz-- ) Ulellzr + lll e 19l -)
< CP (el + lellae el ) (7.11)

remembering ||ugl|g= < p and |lvo||g= < p in the assumption of Theorem 2.6.
As —1/2 <r<1/2 and r < s — 2, Lemma ?? and (7.6) give rise to

(7.90)] < Clllwllgre ullzrss (el g + Mol + [l + 2Ol (el + el 1¢l)
< Cllwllgre—r + N2l + lullzres + ol el + lella-1$]ar)
< ClllwollFre—r + llvollzz--) el + lella- 19l mr)
< CP(lellir + llella- Il ). (7.12)

When —1 < r < —1/2, invoking the inequality

Ifgllar < Clflla=-1llgl

ar (~1<r<0,s>3/2) (7.13)

given by Lemma 2 in [22], we find

1(7.90)] < Cllwllgze—llullzro=s (el o1 + Woll =1 + llwllze=s + Izl g0l Zr + Nl 19]lz-)
< Cllwllgger + 2l + lullzges + ol el + lellar 1$]lar)
< ClluollFre—r + lvollzza-) Il + llollz 19 ll-)
< Co’(leliz + lellzr ). (7.14)
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Using similar procedure as above, we can estimate (7.9b)-(7.9¢) as

(7.90)] < Collpllzr-,  [(7.90)] < Copllellmrllv ||z (7.15)

forre{-1<r<-1/2}U{-1/2<r<1/2,r<s—-2}U{l/2<r<s—1}.
For the nonlocal terms (7.9d), a simple computation yields

2pou — w? + 2ppv — 22 . 2p(p)u+ 2pupp — (w + 2)¢
2 2

|(7.9d)] <’ /DT_Q(?x [4u0ucos } - D"pdz
]

+2) [ D772, (ot epsinCupe )] - D7 e
S L

2pou — w? 4 2ugv — 2 . 2p(p)u+ 2ppp — (w +2)P

+4 /DHaz pouw?sin ] - D"pdx
S 2 2

2| [ Dr 20 eos(zuio = ) utohun? + g + it + zm} Drds
+% Dr72a _a (U’LUB)SiHQ'uOU_wz +2ﬂ67)_2281n2[1:(§0)u+2/146§0_ (w—+—z)1/) DTQDdZL'
3| Js 1 2 2
) -
+3 D" 20, |cos(2upv — 22)dx[pw® + vip(w? 4+ wz + z2)]] - D" pdx
s
4 [ 2 —w? +2uhv — 2% | 2 2400 —
L2 /Drfzax i ZHot — W™+ 2upv — 27 . 2p(p)u + 2ppp — (w + 2)¢ D'pda
3] /s i 2 2
) -
—|—§ /DT_28$ cos(2u6v—22)[w(w+z)(w2+z2)]} - D"pdx
s L
[ 2 —w? +2uhv — 22 | 2 2400 —
+o| [ 2|0, (w?)cos 28— Y ; pov — 27 . 2u(p)u+ ,U02</7 (w+2)ﬂ D' dz
s L
+ ‘ D2 [am[w(w + 2)]sin(2ugv — 2’2):| - D"pdzx
]
r 2 a2 2l — 2 2 2l —
+2 /DT_Q 20, (u?)sin 10— 2 ; Hov — 27 o 2H(p)u + “02‘p (“’Jrz)ﬂ - D" pdz
S L
r 2 a2 2l — 2 2 2l —
+2 /DT_2 1100y (uw?)sin ot — 10 ; Ho¥ % gin plp)u+ M02<P (w+z)¢] - D"pdx
s L
[ 2 —w? +2uhv — 22 | 2 2ppp —
vl [ D2 | poussin 21O ;L pov — 2% . 2p)ut Ho2<P (w+2)¢] D" dz
s L

| [ 02| (@)t +v)0u () + (145?00 (ol + v))cos(2pyo — z?)} D da

)00 + i + 00+ 2)eos(2pyo — )| - D" g

i) + i+ ws + eos(zpyn - )| - Do

: Qo — w? + 2y — 22 . 2 2o —
+2‘ Dr-2 [31(w4)sin fiou — w ; pov — 2" . 2u(p)u+ uo; (w+2)9
S

] - D"pdx| (7.16a)

(7.16b)

+| [ D72 |0u[th(w + 2)(w? + 2%)]cos(2upv — 22)} - D"pdx
N L

+ /DT [,u (sin(2pou — w?)uw — sin(2pgv — 2*)vz) } - D"pdx
s
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Not all terms in the above will be estimated. Instead, we will just evaluate two terms containing the
derivatives of ¢ or w. The remaining terms can be estimated in a similar way. We first handle the term
(7.16a). When 1/2 < r < s — 2, this term can be controlled as

Cllw’w[2u(p)u + 2up¢ — (w + 2)Y]|| - @l e

< Cllwg || gr— |0 2u(p)u + 2p5p — (w + 2)P) | - o ar

< ClllwlFe—r + 1wl Fro—r + lullFre-1 + 12172 ) (el + el zr
<C(®+ ")l + llelar ]

Yllar)

Hr)-
When —1/2 < r <1/2 and r < s — 3, we can control it as
Cllwaw?[2u(p)u + 2ugp — (w + 2)P]llae |l zr-
< Cllwg|| s [w?20(0)u + 2050 — (w + 2)9][|ze [l -
< Cllwlfe— + lwllFe + lullfre + Izl + lollar 1))
< C(* + p*) Il + llell 1]l r).-

When —1 <r < —1/2 and r 4+ s > 2, the following inequality [22]
Ifgllar < crsllfla—llgllar (=1 <r<0,7+s22,5>5/2) (7.17)
will be employed to handle it as

Cllwaw® [2p(p)u + 2uh0 — (w + 2)P] |+l @l 1

< Cllwa || o2 | w*2u(p)u + 2upp — (w + 2)¢] ||zl @l v

< Clllwle-r + NlwllFre-1 + lullzre-1 + N2 Fs- 1l + Nl 1] ar)
< C®*+ )Nl + el a9l ).

The evaluation of this term is finished. We next estimate the term (7.16b). When 1/2 < r < s — 2, one finds
this term can be controlled by

Cli(w + 2)(w? + )¢l el m < CUwli + [ollEe + Iz e lalela < Colllla el

As —1/2 <r <1/2 and r < s — 3, we evaluate it as

< Cllw’ e + 122 ) [l e ool e
< C([w?lle—s + 12 =)l e ool
< Collella 19l

When —1 <r < —1/2 and r 4+ s > 2, this term can be estimated as

Cli(w + 2)(w? + 2| |l ol e

Cllwll o=z + 12l zza-2) 1 - ol e
Clwllge=r + 12l 1l - ol -
Collel 1]l

Cll(w + 2)(w? + 2 - |l ol e

ININ A

Combining all the above estimations, we find

(7.9d)] < C(° + p)llellz- 1l me + llol7r]-
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Consequently, we derive

d
el < CO° + p) (gl + [1$llar) (7.18)

forre{-1<r<-1/2,r+s>2}U{-1/2<r<1/2,r<s—-3}U{l/2<r <s—2}.
We next estimate ||¢| . We first estimate the term (7.10c), To do this, we will employ he following
Calderon-Coifman-Meyer commutator estimate [22, 33]

D" 0, f1gll 2 < Cllf L1 llgllar, (0 <7 +1<s—1;5—1>3/2), (7.19)

where [A, B] = AB — BA represents the commutator. We then recast (7.10c) as

(7.10¢) :/ [D7 0y, vsin(2upv — 2°)] 1 - D"pdz (7.20a)
R
+ / vsin(2ppv — 2%)D" 9,1 - D™pdx (7.20b)
R
- / D" [0, (vsin(2ppv — 2°))] - D ¢da. (7.20c)
R

From (7.19), there holds

(7.200)| < Cl[D70,, vsin(2pho — )]l 2|0 < Cllosin(payo — =)o [0l
< Cpllwll3 (7.21)

forre{-1<r<-1/2,r+s>2}U{-1/2<r<1/2,r<s—-3}U{r>1/2,r <s—2}.
Invoking integration by parts and Sobolev embedding inequality, one obtains

|(7.200)| < O [vsin(2ugv — 2°)]l| = ¥ |G < Cllusinugv — 22) | g1 ¢l 7 < Collpl[--(7.22)
(7.20c) can be estimated as
|(7.20¢)| < Clld, [vsin(2ugo — 2°)] |l ¥ e
C|0z [vsin(2pgv — )| W1, (1/2 <7 < 5 = 2),
C|0z [vsin(2ptv — 2*)] | -+ 19117+
< Clvsin @y — 2|2 913, (<12 <7 < 127 < 5 - 3),
C|0z [vsin(2phv — 2| o2 l[lFr, (-1 < 7 < =1/27 +5 > 2)
< Cllusin(2pgv — 2%) | g1 [ [l7- < CollW Il (7.23)
recalling the inequality [22]

Ifallar < crsllfllas—2llgllar (=1 <r<0,7+5>2,5>5/2) (7.24)

used to handle the third case in the brace.

Combining Egs. (7.21)-(7.23) produces |(7.10c)| < Cpl[¢||3;- forr € {—1 <r < —1/2,r+s > 2}U{-1/2 <
r<1/2,r<s—3}U{r>1/2,r <s—2}.

The remaining terms in (7.10) can handled similarly as those in (7.9). We finally deduce

wr < OGP+ p)(llelr + []er) (7.25)

d
vl

forre{-1<r<-1/2,r+s>2}U{-1/2<r<1/2,r<s—-3}U{l/2<r <s—2}
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It follows from Egs. (7.18) and (7.25) that we find

d
g lellz + 1 lae) < C(o® + o)l + [¥llar) (7.26)

or

el + 81 < CUeO) e + 10O ]|)e™ %, (¢ € [0,T)) (7.27)

forre{-1<r<-1/2,r4+s>2}U{-1/2<r<1/2,r<s-3}U{r>1/2,r <s-—2}.
Accordingly, there holds

[ = || g1 < Cllug — vo|| grrs1e@ AT (7.28)
Replacing r 4+ 1 with r in (7.28) leads to
lu— vl < Cllug — vl re®™ 7T (7.29)

forre {0<r<1/2,r+s>3tU{1/2<r<3/2,r<s—2}U{3/2 <r <s—1}. We therefore have
established the Lipschitz continuity in the region D;.

Next, we show the Holder continuity in the region Do U D3 U Dy. The method is interpolation based on
the Lipschitz continuity proved previously. The inequality [22]

o9 —0 o—o1

[l < flE 17" (o1 <o <o) (7.30)

will be used frequently in the remaining parts of this section.
When (s,r) € Dy, we have

lu—vlgr < fu—vl|gas
< Clluo —vouHs >e<P8+P>T (by (7.29))
3—s—1
< cnuo—vonH, o — woll g e®HIT (by (7.30))
< Cp S ()T

When (s,r) € D3, one finds s — 2 < r < s, consequently

s—r r—s+2
lu=vllar < Jlu—vlgfislu—vlgs (by (7.30))
< cﬁ“ o — wol ; HIT by (7.29))
< Cp =5+ ||u0 _ Uo|| =5t (p +0)T'
When (s,r) € Dy, there holds
lu=vllze < flu =l e = vl (by (7.30))
< Cp ™ |ug — wol|3m T (by (7.29))
< Cp M Jug — ol (P )T

We thus complete the proof of Theorem 2.6.
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8 Peakon solutions

We here give the proof of Theorem 2.7) about the peakon solutions of Eq. (1.7):

Proof. Let u.(t,z) be defined as in (2.8) with a to be determined. Substituting (2.8) into definition 2.1 yields

T
/ / [ucﬁﬁp + sin(2p(ue)ue — uiz)ucuc’xgo
0o Js

—pa * [—2p(ue) sin(2p(ue)ue — u?,x)“c — cos(2p(uc)uc — u?,x)(QM(UC)UcUim —2/30, (ucuim) + 2/3“iz)]§0

—p * [=1/2sin(2p(uc)ue — ugz)ar (uim) + p(ue) cos(2p(uc)ue — ug 2) (1 () Ox (ug) — 0z (ucuix) - ug,m)

s

+1/2 cos(2p(uc)ue — u? )0y (up ) — p (sin(2p(ue)ue — uZ ;) uctics ) w] dadt =0, (8.1)

where p(z) = 2(z — [z] — )2 + 23, For x € S, we have

o =a [ |5 (rmas )+ Blarra [ |2 (rma ) B
M\ Ue —ao B x C 9 2 X act 2 X Ci 9 21 T = Q.

Simple computation leads to
alx—ct—1), (z>ct)
Uc,x =

alx—ct+1), (z<ct)

implying

2 _@2

2/’[’(uc)uc - uc,x - 12a

whenever x > ct or x < ct. Gathering the above, one can simplify (8.1) as

T 23, [T 23, [T
U ppdxdt 4 sin(—a®) Ul ppdzdt + 3asin(——a®) Do * Uepdxdt =0 (8.2)
o Js 12 o Js ’ 12 o Js

by noticing t¢ z. = a.
On the other hand, for x > ct, one has

— g D) [E(y—ect— e - 1)+ 2
poxuc=a | (z—y—[r—yl—3)5(v—ct—ly—cl=5) +57|dy
a/Ct x — T fct+1 2+§d
— ), Y AP 2 24|
—&-a/x T — T —ct—l 2—i—§d
. Y7512\ 2) T 2|V
+/1 + 0L - 2+§d
e\ )2\ T T, 24 |

_ %a(x — )1 — 2z — eb)[(z — ct) — 1], (8.3)

For = < ct, one has

pevve=a [ (v-v—te-- D) [E(o-et - 2) + Bay
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T (x —ct)[1 +2(z — ct)][(z — ct) + 1]. (8.4)
Plugging u.; = —ac(x —ct — [x — ct] — 1/2) and uc, = a(z — ¢t — [z — ct] — 1/2) into (8.2) yields
c = sin($a?). O

Gathering the above together, we find (8.2) is equivalent to

//{—ac 5+ asin(*oa )(5—)@(5—;)2+§i]—;a2s1n< )(5—)§(£+1)}<pdxdt=0

for x > ¢t and

/ /{acg+ +a? Sln(—a )€+ ){ €+ ) Jr;i]a2sin(2a2)(€+;)§(§+1)}<pdxdtO

for x < ct, which indicates
13 23 o2

¢c= —asin(—
12 12

We thus complete the proof of Theorem 2.7.
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Appendix A.

Let C = {€ € S44/3 < |¢] < 8/3} and C = B(0,2/3) 4 C, where B(z,r) stands for the open ball with
center zg and radius 7. Then there exist two functions x € D(B(0,4/3)) and ¢ € D(C) which are both radial
satisfying

x(€) + quo p(279€) =1, 1/3<x*(&) + Zqzo p?(2796) <1 (Ve s,
|4 —d'| = 2= Supp(277-) N Supp p(277-) = &,
¢>1=Suppx()NSuppp(279) =2, |¢—d|>5= 29CN21C = 2.

In the periodic setting, the functions on the torus S are decomposed in Fourier series:

= Z Uq exp(i2ma - )  where u, = / u(zx) exp(—i2ra - x)dx. (A1)
a€Zd 8¢
Let
hy(z) = Z ¢ (27%) exp(i2rv - )  and h(z) = Z x(a) exp(i2ra - x). (A.2)
aezZd a€cZd
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Then two dyadic operators A, and S, acting on functions u(t, z) belonging to S’(S?) are defined as

07 q S _27
Agqu= 14 x(D)u= [o. h(y)u(z —y)dy, q=-—1,

©(279D)u =29 [, h (29y) u(z — y)dy, q >0,
Squ =73 cq 1 Dy

The Besov space is defined as Bj ,.(S) = {u € S5'(SY| Hu||Bp (s = (ij_l 2Tj5||Aju||TLp(Sd))1/T < oo}.
Let E; (T) with T'> 0, s € R and 1 < p,r < oo be defined as

C ([0,T); B;,) nC* ([0,T); Bs,'), as r < oo,
Cu ([O,T);B;oo) N Cot ([O,T);B;:le) , as r = 09,

and B, . = Ny Ep - (T).
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