References
- Du C, Zhang T, Xiao X, Shi Y, Duan H, Ren Y. Protease-activated
receptor-2 promotes kidney tubular epithelial inflammation by
inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway.
Biochemical Journal. 2017 Aug 15; 474 (16):2733-47.
https://doi.org/10.1042/bcj20170272
- Palygin O, Ilatovskaya DV, Staruschenko A. Protease-activated
receptors in kidney disease progression. American Journal of
Physiology-Renal Physiology. 2016 Dec 1; 311 (6):F1140-4.
https://doi.org/10.1152/ajprenal.00460.2016
- Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution
to physiology and disease. Physiological reviews. 2004 Apr;
84(2):579-621. https://doi.org/10.1152/physrev.00028.2003
- Waasdorp M, Duitman J, Florquin S, Spek CA. Protease-activated
receptor-1 deficiency protects against streptozotocin-induced diabetic
nephropathy in mice. Scientific reports. 2016 Sep 13; 6(1):1-0.
https://doi.org/10.1038/srep33030
- Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik
J, Corat MA, Zeier M, Blessing E, Oh J, Gerlitz B. Activated protein C
protects against diabetic nephropathy by inhibiting endothelial and
podocyte apoptosis. Nature medicine. 2007 Nov; 13(11):1349-58.
https://doi.org/10.1038/nm1667
- Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular
events mediating glomerular podocyte dysfunction and depletion in
diabetes mellitus. Frontiers in endocrinology. 2014 Sep 25; 5:151.
https://dx.doi.org/10.3389%2Ffendo.2014.00151
- Grandaliano G, Di Paolo S, Monno R, Stallone G, Ranieri E, Pontrelli
P, Gesualdo L, Schena FP. Protease activated receptor and plasminogen
activator inhibitor 1 EXPRESSION IN CHRONIC ALLOGRAFT NEPHROPATHY: THE
ROLE OF COAGULATION AND FIBRINOLYSIS IN RENAL GRAFT FIBROSIS1.
Transplantation. 2001 Oct 27; 72(8):1437-43.
https://doi.org/10.1097/00007890-200110270-00018
- Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente
F, Levey AS. Prevalence of chronic kidney disease in the United
States. Jama. 2007 Nov 7; 298(17):2038-47.
https://doi.org/10.1001/jama.298.17.2038
- Chu AJ. Tissue factor, blood coagulation, and beyond: an overview.
International journal of inflammation. 2011 Sep 20; 2011.
https://doi.org/10.4061/2011/367284
- Rondeau E, Vigneau C, Berrou J. Role of thrombin receptors in the
kidney: lessons from PAR1 knock‐out mice. Nephrology Dialysis
Transplantation. 2001 Aug 1; 16(8):1529-31.
https://doi.org/10.1093/ndt/16.8.1529
- Mercer PF, Chambers RC. Coagulation and coagulation signalling in
fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of
Disease. 2013 Jul 1; 1832(7):1018-27.
https://doi.org/10.1016/j.bbadis.2012.12.013
- Waasdorp M, Florquin S, Duitman J, Spek CA. Pharmacological PAR‐1
inhibition reduces blood glucose levels but does not improve kidney
function in experimental type 2 diabetic nephropathy. The FASEB
Journal. 2019 Oct; 33 (10):10966-72.
http://dx.doi.org/10.1096/fj.201900516R
- Brosius FC. New insights into the mechanisms of fibrosis and sclerosis
in diabetic nephropathy. Reviews in Endocrine and Metabolic Disorders.
2008 Dec 1; 9(4):245. https://doi.org/10.1007/s11154-008-9100-6
- Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R.
Proteinase-activated receptors (PARs)–focus on
receptor-receptor-interactions and their physiological and
pathophysiological impact. Cell Communication and Signaling. 2013 Dec;
11(1):1-26. https://doi.org/10.1186/1478-811x-11-86
- Packham DK, Alves TP, Dwyer JP, Atkins R, De Zeeuw D, Cooper M,
Shahinfar S, Lewis JB, Heerspink HJ. Relative incidence of ESRD versus
cardiovascular mortality in proteinuric type 2 diabetes and
nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment
for Renal Insufficiency Consortium) database. American Journal of
Kidney Diseases. 2012 Jan 1; 59(1):75-83.
https://doi.org/10.1053/j.ajkd.2011.09.017
- Lin C, Duitman J, Daalhuisen J, ten Brink M, von der Thüsen J, van der
Poll T, Borensztajn K, Spek CA. Targeting protease activated
receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis.
Thorax. 2014 Feb 1; 69(2):152-60.
https://doi.org/10.1136/thoraxjnl-2013-203877
- Rullier A, Gillibert-Duplantier J, Costet P, Cubel G, Haurie V,
Petibois C, Taras D, Dugot-Senant N, Deleris G, Bioulac-Sage P,
Rosenbaum J. Protease-activated receptor 1 knockout reduces
experimentally induced liver fibrosis. American Journal of
Physiology-Gastrointestinal and Liver Physiology. 2008 Jan;
294(1):G226-35. https://doi.org/10.1152/ajpgi.00444.2007
- Duitman JW, Ruela-de-Sousa RR, Shi K, de Boer OJ, Borensztajn KS,
Florquin S, Peppelenbosch MP, Spek CA. Protease activated receptor-1
deficiency diminishes bleomycin-induced skin fibrosis. Molecular
Medicine. 2014 Jan 1; 20(1):410-6.
https://doi.org/10.2119/molmed.2014.00027
- Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney
injury, mortality, length of stay, and costs in hospitalized patients.
Journal of the American Society of Nephrology. 2005 Nov 1;
16(11):3365-70. https://doi.org/10.1681/asn.2004090740
- Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R.
Proteinase-activated receptors. Pharmacological reviews. 2001 Jun 1;
53(2):245-82.
https://pubmed.ncbi.nlm.nih.gov/11356985/#:~:text=2001%20Jun%3B53(2)%3A245-82.
- Grandaliano G, Pontrelli P, Cerullo G, Monno R, Ranieri E, Ursi M,
Loverre A, Gesualdo L, Schena FP. Protease-activated receptor-2
expression in IgA nephropathy: a potential role in the pathogenesis of
interstitial fibrosis. Journal of the American Society of Nephrology.
2003 Aug 1; 14(8):2072-83.
https://doi.org/10.1097/01.asn.0000080315.37254.a1
- Watanabe M, Oe Y, Sato E, Sekimoto A, Sato H, Ito S, Takahashi N.
Protease-activated receptor 2 exacerbates cisplatin-induced
nephrotoxicity. American Journal of Physiology-Renal Physiology. 2019
Apr 1; 316(4):F654-9. https://doi.org/10.1152/ajprenal.00489.2018
- Lei Y, Ehle B, Kumar SV, Müller S, Moll S, Malone AF, Humphreys BD,
Andrassy J, Anders HJ. Cathepsin S and protease-activated receptor-2
drive alloimmunity and immune regulation in kidney allograft
rejection. Frontiers in Cell and Developmental Biology. 2020 Jun 5;
8:398. https://doi.org/10.3389/fcell.2020.00398
- Jin M, Yang HW, Tao AL, Wei JF. Evolution of the protease-activated
receptor family in vertebrates. International journal of molecular
medicine. 2016 Mar 1; 37(3):593-602.
https://doi.org/10.3892/ijmm.2016.2464
- O’Brien PJ, Molino M, Kahn M, Brass LF. Protease activated receptors:
theme and variations. Oncogene. 2001 Mar; 20(13):1570-81.
https://doi.org/10.1038/sj.onc.1204194
- Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs):
mechanisms of action and potential therapeutic modulators in
PAR-driven inflammatory diseases. Thrombosis journal. 2019 Dec;
17(1):1-24. https://doi.org/10.1186/s12959-019-0194-8
- Pan H, Boucher M, Kaunelis D. PAR-1 antagonists: an emerging
antiplatelet drug class. http://www.ncbi.nlm.nih.gov/books/nbk391027/
- Hollenberg MD, Wijesuriya SJ, Gui Y, Loutzenhiser R.
Proteinase‐activated receptors (PARs) and the kidney. Drug development
research. 2003 Sep; 60(1):36-42.
- Gui Y, Loutzenhiser R, Hollenberg MD. Bidirectional regulation of
renal hemodynamics by activation of PAR1 and PAR2 in isolated perfused
rat kidney. American Journal of Physiology-Renal Physiology. 2003 Jul;
285(1):F95-104. https://doi.org/10.1152/ajprenal.00396.2002
- Vesey DA, Hooper JD, Gobe GC, Johnson DW. Potential physiological and
pathophysiological roles for protease‐activated receptor‐2 in the
kidney. Nephrology. 2007 Feb; 12(1):36-43.
https://doi.org/10.1111/j.1440-1797.2006.00746.x
- Saleem MA. What is the role of soluble urokinase-type plasminogen
activator in renal disease? Nephron. 2018; 139:334-41.
https://doi.org/10.1159/000490118
- Sappino AP, Huarte J, Vassalli JD, Belin D. Sites of synthesis of
urokinase and tissue-type plasminogen activators in the murine kidney.
The Journal of clinical investigation. 1991 Mar 1; 87(3):962-70.
https://doi.org/10.1172/jci115104
- Zhang G, Eddy AA. Urokinase and its receptors in chronic kidney
disease. Frontiers in bioscience: a journal and virtual library. 2008
May 1; 13:5462. https://doi.org/10.2741/3093
- Cumming AD, Lambie AT. Urinary kallikrein excretion in chronic renal
failure: relationship to blood pressure and the acute effect of
captopril. Renal failure. 1987 Jan 1; 10(3-4):161-7.
https://doi.org/10.3109/08860228709047651
- Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS, Mayfield RK.
Abnormal regulation of renal kallikrein in experimental diabetes.
Effects of insulin on prokallikrein synthesis and activation. The
Journal of clinical investigation. 1987 Dec 1; 80(6):1651-9.
https://doi.org/10.1172/jci113254
- Heydarigoojani M. Thrombin receptor activating peptide-6 (TRAP-6)
promotes human umbilical vein endothelial cells
proliferation (Doctoral dissertation, Wien).
http://hdl.handle.net/20.500.12708/2741
- Chu AJ. Tissue factor, blood coagulation, and beyond: an overview.
International journal of inflammation. 2011 Sep 20; 2011.
https://doi.org/10.4061/2011/367284
- Small M, Lowe GD, MacCuish AC, Forbes CD. Thrombin and plasmin
activity in diabetes mellitus and their association with glycaemic
control. QJM: An International Journal of Medicine. 1987 Dec 1;
65(3):1025-31.
https://pubmed.ncbi.nlm.nih.gov/2971234/#:~:text=1987%20Dec%3B65
(248) %3A1025-31.
- VR SK, Darisipudi MN, Steiger S, Devarapu SK, Tato M, Kukarni OP,
Mulay SR, Thomasova D, Popper B, Demleitner J, Zuchtriegel G.
Cathepsin S cleavage of protease-activated receptor-2 on endothelial
cells promotes microvascular diabetes complications. Journal of the
American Society of Nephrology. 2016 Jun 1; 27 (6):1635-49.
https://doi.org/10.1681/asn.2015020208
- Bertog M, Letz B, Kong W, Steinhoff M, Higgins MA, Bielfeld-Ackermann
A, Frömter E, Bunnett NW, Korbmacher C. Basolateral
proteinase-activated receptor (PAR-2) induces chloride secretion in
M-1 mouse renal cortical collecting duct cells. The Journal of
Physiology. 1999 Nov 15; 521(Pt 1):3.
https://dx.doi.org/10.1111%2Fj.1469-7793.1999.00003.x
- Morla L, Brideau G, Fila M, Crambert G, Cheval L, Houillier P,
Ramakrishnan S, Imbert-Teboul M, Doucet A. Renal proteinase-activated
receptor 2, a new actor in the control of blood pressure and plasma
potassium level. Journal of Biological Chemistry. 2013 Apr 5;
288(14):10124-31.
- Vesey DA, Cheung CW, Kruger WA, Poronnik P, Gobe G, Johnson DW.
Thrombin stimulates proinflammatory and proliferative responses in
primary cultures of human proximal tubule cells. Kidney international.
2005 Apr 1; 67(4):1315-29.
- Coelho AM, Ossovskaya V, Bunnett NW. Proteinase-activated receptor-2:
physiological and pathophysiological roles. Current Medicinal
Chemistry-Cardiovascular & Hematological Agents. 2003 Mar 1;
1(1):61-72. https://doi.org/10.2174/1568016033356715
- Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C,
Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors:
transducers of proteinase-mediated signaling in inflammation and
immune response. Endocrine reviews. 2005 Feb 1; 26(1):1-43.
https://doi.org/10.1210/er.2003-0025
- Chu AJ. Role of tissue factor in thrombosis.
Coagulation-inflammation-thrombosis circuit. Front Biosci. 2006 Jan 1;
11(1):256. https://doi.org/10.2741/1796
- Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges,
progress, and possibilities. Clinical Journal of the American Society
of Nephrology. 2017 Dec 7; 12 (12):2032-45.
https://doi.org/10.2215/cjn.11491116
- Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney
disease. Clinica Chimica Acta. 2019 Sep 1; 496:108-16.
https://doi.org/10.1016/j.cca.2019.07.005
- Carr ME. Diabetes mellitus: a hypercoagulable state. Journal of
Diabetes and its Complications. 2001 Jan 1; 15(1):44-54.
https://doi.org/10.1016/s1056-8727(00)00132-x
- Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, Kuwabara T,
Morishita A, Hitomi H, Mori K, Mukoyama M. A protease-activated
receptor-1 antagonist protects against podocyte injury in a mouse
model of nephropathy. Journal of pharmacological sciences. 2017 Oct 1;
135(2):81-8. https://doi.org/10.1016/j.jphs.2017.09.002
- Barros JB, da Silva Santos R, da Silva Reis AA. Implication of the
MAPK signalling pathway in the pathogenesis of diabetic nephropathy.
Diabetes. 2019 Nov.
- Komers R, Lindsley JN, Oyama TT, Cohen DM, Anderson S. Renal p38 MAP
kinase activity in experimental diabetes. Laboratory investigation.
2007 Jun;87 (6):548-58. https://doi.org/10.1038/labinvest.3700549
- Nomura K, Liu N, Nagai K, Hasegawa T, Kobayashi I, Nogaki F, Tanaka M,
Arai H, Fukatsu A, Kita T, Ono T. Roles of coagulation pathway and
factor Xa in rat mesangioproliferative glomerulonephritis. Laboratory
investigation. 2007 Feb; 87(2):150-60.
https://doi.org/10.1038/labinvest.3700502
- Undas A, Wiek I, Stêpień E, Zmudka K, Tracz W. Hyperglycemia is
associated with enhanced thrombin formation, platelet activation, and
fibrin clot resistance to lysis in patients with acute coronary
syndrome. Diabetes care. 2008 Aug 1; 31(8):1590-5.
https://doi.org/10.2337/dc08-0282
- Vaidyula VR, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G. Effects of
hyperglycemia and hyperinsulinemia on circulating tissue factor
procoagulant activity and platelet CD40 ligand. Diabetes. 2006 Jan 1;
55(1):202-8. https://doi.org/10.2337/diabetes.55.01.06.db05-1026
- Waasdorp M, Duitman J, Florquin S, Spek CA. Vorapaxar treatment
reduces mesangial expansion in streptozotocin-induced diabetic
nephropathy in mice. Oncotarget. 2018 Apr 24; 9(31):21655.
https://doi.org/10.18632/oncotarget.25069
- Bjornstad P, Cherney D, Maahs DM. Early diabetic nephropathy in type 1
diabetes–new insights. Current opinion in endocrinology, diabetes,
and obesity. 2014 Aug; 21(4):279.
https://doi.org/10.1097/med.0000000000000074
- Fagerudd JA, Tarnow L, Jacobsen P, Stenman S, Nielsen FS,
Pettersson-Fernholm KJ, Grönhagen-Riska C, Parving HH, Groop PH.
Predisposition to essential hypertension and development of diabetic
nephropathy in IDDM patients. Diabetes. 1998 Mar 1; 47(3):439-44.
https://doi.org/10.2337/diabetes.47.3.439
- Wolf G, Ritz E. Diabetic nephropathy in type 2 diabetes prevention and
patient management. Journal of the American society of nephrology.
2003 May 1; 14(5):1396-405.
https://doi.org/10.1097/01.asn.0000065639.19190.cf
- Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, Ito S, Takahashi
N. Coagulation factor Xa and protease-activated receptor 2 as novel
therapeutic targets for diabetic nephropathy. Arteriosclerosis,
thrombosis, and vascular biology. 2016 Aug; 36(8):1525-33.
https://doi.org/10.1161/atvbaha.116.307883
- Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in
inflammation. In Seminars in immunopathology 2012 Jan 1 (Vol. 34, No.
1, pp. 133-149). Springer-Verlag.
https://doi.org/10.1007/s00281-011-0289-1
- Chung H, Ramachandran R, Hollenberg MD, Muruve DA.
Proteinase-activated receptor-2 transactivation of epidermal growth
factor receptor and transforming growth factor-β receptor signaling
pathways contributes to renal fibrosis. Journal of Biological
Chemistry. 2013 Dec 27; 288(52):37319-31.
doi: 10.1074/jbc.M113.492793
- Pejler G, Lunderius C, Tomasini-Johansson B. Macrophages synthesize
factor X and secrete factor X/Xa-containing prothrombinase activity
into the surrounding medium. Thrombosis and haemostasis. 2000; 84
(09):429-35. DOI: 10.1055/s-0037-1614040
- Li F, WANG CH, WANG JG, Thai T, Boysen G, Xu L, Turner AL, Wolberg AS,
Mackman N, Maeda N, Takahashi N. Elevated tissue factor expression
contributes to exacerbated diabetic nephropathy in mice lacking eNOS
fed a high fat diet. Journal of Thrombosis and Haemostasis. 2010 Oct;
8(10):2122-32 https://doi.org/10.1111/j.1538-7836.2010.03976.x
- Waasdorp M, Duitman J, Florquin S, Spek AC. Protease activated
receptor 2 in diabetic nephropathy: a double edged sword. American
journal of translational research. 2017; 9(10):4512.
- Mitsui S, Oe Y, Sekimoto A, Sato E, Hashizume Y, Yamakage S, Kumakura
S, Sato H, Ito S, Takahashi N. Dual blockade of protease-activated
receptor 1 and 2 additively ameliorates diabetic kidney disease.
American Journal of Physiology-Renal Physiology. 2020 May
1;318(5):F1067-73. doi: 10.1152/ajprenal.00595.2019.
- Jeong BY, Uddin MJ, Park JH, Lee JH, Lee HB, Miyata T, Ha H. Novel
plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney
injury in a mouse model. PLoS One. 2016 Jun 3;11(6):e0157012.
https://doi.org/10.1371/journal.pone.0157012
- Zhang YY, Tang PM, Tang PC, Xiao J, Huang XR, Yu C, Ma RC, Lan HY.
LRNA9884, a novel smad3-dependent long noncoding RNA, promotes
diabetic kidney injury in db/db mice via enhancing MCP-1–dependent
renal inflammation. Diabetes. 2019 Jul 1;68(7):1485-98.
https://doi.org/10.2337/db18-1075
- Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K,
Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-induced podocyte
injury is protease-activated receptor dependent. Journal of the
American Society of Nephrology. 2017 Sep 1; 28(9):2618-30. DOI:
https://doi.org/10.1681/ASN.2016070789
- Orth SR, Ritz E. The nephrotic syndrome. New England Journal of
Medicine. 1998 Apr 23;338(17):1202-11. doi:
10.1056/NEJM199804233381707.
- Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute
kidney injury. The Journal of clinical investigation. 2011 Nov 1;
121(11):4210-21.doi: 10.1172/JCI45161.
- Thuillier R, Favreau F, Celhay O, Macchi L, Milin S, Hauet T. Thrombin
inhibition during kidney ischemia-reperfusion reduces chronic graft
inflammation and tubular atrophy. Transplantation. 2010 Sep 27;
90(6):612-21. doi: 10.1097/tp.0b013e3181d72117 .
- Kerlin BA, Ayoob R, Smoyer WE. Epidemiology and pathophysiology of
nephrotic syndrome–associated thromboembolic disease. Clinical
Journal of the American Society of Nephrology. 2012 Mar 1; 7(3):513-20doi: 10.2215/CJN.10131011.
- Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor, U0126,
attenuates cisplatin-induced renal injury by decreasing inflammation
and apoptosis. Kidney International. 2005; 67(2):458–466.doi: 10.1111/j.1523-1755.2005.67102.x.
- Madhusudhan T, Wang H, Straub BK, Gröne E, Zhou Q, Shahzad K,
Müller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, Griffin JH.
Cytoprotective signaling by activated protein C requires
protease-activated receptor-3 in podocytes. Blood, The Journal of the
American Society of Hematology. 2012 Jan 19;119(3):874-83. DOI:
10.1182/blood-2011-07-365973
- Harris JJ, McCarthy HJ, Ni L, Wherlock M, Kang H, Wetzels JF, Welsh
GI, Saleem MA. Active proteases in nephrotic plasma lead to a
podocin‐dependent phosphorylation of VASP in podocytes via protease
activated receptor‐1. The Journal of pathology. 2013
Apr;229(5):660-71. doi: 10.1002/path.4149.
- Vergnolle N Protease-activated receptors as drug targets in
inflammation and pain. Pharmacol Ther 2009;123(3):292–309.doi: 10.1016/j.pharmthera.2009.05.004
- Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW,
Gater PR, Geppetti P, Bertrand C, Stevens ME. Protease-activated
receptor 2 mediates eosinophil infiltration and hyper reactivity in
allergic inflammation of the airway. The Journal of Immunology. 2002
Nov 1; 169(9):5315-21. doi: 10.4049/jimmunol.169.9.5315.
- Yuan Z, Cao A, Liu H, Guo H, Zang Y, Wang Y, Wang Y, Wang H, Yin P,
Peng W. Calcium uptake via mitochondrial uniporter contributes to
palmitic acid‐induced apoptosis in mouse podocytes. Journal of
cellular biochemistry. 2017 Sep; 118(9):2809-18. doi:
10.1002/jcb.25930. Epub 2017 Apr 27.
- Burford JL, Villanueva K, Lam L, Riquier-Brison A, Hackl MJ, Pippin J,
Shankland SJ, Peti-Peterdi J. Intravital imaging of podocyte calcium
in glomerular injury and disease. The Journal of clinical
investigation. 2014 May 1; 124(5):2050-8. doi: 10.1172/JCI71702
- Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute
kidney injury. The Journal of clinical investigation. 2011 Nov 1;
121(11):4210-21 doi: 10.1172/JCI45161.
- Oe Y, Fushima T, Sato E, Sekimoto A, Kisu K, Sato H, Sugawara J, Ito
S, Takahashi N. Protease-activated receptor 2 protects against VEGF
inhibitor-induced glomerular endothelial and podocyte injury.
Scientific reports. 2019 Feb 27; 9(1):1-1. doi:
10.1038/s41598-019-39914-8
- Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch
J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP. VEGF
inhibition and renal thrombotic microangiopathy. New England Journal
of Medicine. 2008 Mar 13; 358(11):1129-36. doi:
10.1056/NEJMoa0707330.
- Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular
endothelial growth factor (VEGF) in renal pathophysiology. Kidney
international. 2004 Jun 1;65(6):2003-17. doi:
10.1111/j.1523-1755.2004.00621.x.
- Hayman SR, Leung N, Grande JP, Garovic VD. VEGF inhibition,
hypertension, and renal toxicity. Current oncology reports. 2012 Aug
1; 14(4):285-94. doi: 10.1007/s11912-012-0242-z.
- Müller-Deile J, Bröcker V, Grünwald V, Hiss M, Bertram A, Kubicka S,
Ganser A, Haller H, Schiffer M. Renal side effects of VEGF-blocking
therapy. NDT plus. 2010 Apr 1; 3(2):172-5.
https://doi.org/10.1093/ndtplus/sfp175
- Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clinical
Journal of the American Society of Nephrology. 2017 Mar 7;
12(3):502-17. doi: 10.2215/CJN.05960616. Epub 2017 Feb 27.
- Wang Y, He Y, Wang M, Lv P, Wang J, Liu J. Role of protease-activated
receptor 2 in regulating focal segmental glomerulosclerosis.Cellular
Physiology and Biochemistry. 2017; 41(3):1147-55. doi:
10.1159/000464121
- Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth
JL. Protein kinase A-dependent and-independent signaling pathways
contribute to cyclic AMP-stimulated proliferation. Molecular and
cellular biology. 1999 Sep 1;19(9):5882-91. doi:
10.1128/MCB.19.9.5882.
- Li J, Gobe G. Protein kinase C activation and its role in kidney
disease. Nephrology. 2006 Oct;11(5):428-34. doi:
10.1111/j.1440-1797.2006.00673.x.
- Shi H, Sun X, Kong A, Ma H, Xie Y, Cheng D, Wong CK, Zhou Y, Gu J.
Cadmium induces epithelial–mesenchymal transition and migration of
renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2
dependent mechanism. Ecotoxicology and Environmental Safety. 2021 Jan
1;207:111480. doi: 10.1016/j.ecoenv.2020.111480.
- Xu S, Jiang Y, Wang H, Wang Z, Liu H, Peng L, Fang Q, Deng T, You J,
Zhou X, Zhang W. C-peptide ameliorates renal injury in type 2 diabetic
rats through protein kinase A-mediated inhibition of fibronectin
synthesis. Biochemical and biophysical research communications. 2015
Mar 13;458(3):674-80. doi: 10.1016/j.bbrc.2015.02.022.
- Rong S, Hueper K, Kirsch T, Greite R, Klemann C, Mengel M, Meier M,
Menne J, Leitges M, Susnik N, Meier M. Renal PKC-ε deficiency
attenuates acute kidney injury and ischemic allograft injury via
TNF-α-dependent inhibition of apoptosis and inflammation. American
Journal of Physiology-Renal Physiology. 2014 Sep 15;307(6):F718-26.doi: 10.1152/ajprenal.00372.2013
- Paulin D, Li Z. Desmin: a major intermediate filament protein
essential for the structural integrity and function of muscle.
Experimental cell research. 2004 Nov 15;301(1):1-7. doi:
10.1016/j.yexcr.2004.08.004.
- Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, Qu Z, Yamamoto
T. Upregulation of nestin, vimentin, and desmin in rat podocytes in
response to injury. Virchows Archiv. 2006 Apr;448(4):485-92.doi: 10.1007/s00428-005-0134-9.
- Maruyama M, Sugiyama H, Sada K, Kobayashi M, Maeshima Y, Yamasaki Y,
Makino H. Desmin as a marker of proteinuria in early stages of
membranous nephropathy in elderly patients. Clinical nephrology. 2007
Aug 1;68(2):73-80. doi: 10.5414/cnp68073.
- Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse role of TGF-β in
kidney disease. Frontiers in cell and developmental biology. 2020 Feb
28; 8:123. doi: 10.3389/fcell.2020.00123.
- Lee HS, Song CY. Differential role of mesangial cells and podocytes in
TGF-ß-induced mesangial matrix synthesis in chronic glomerular
disease. Histology and histopathology. 2009. doi:
10.14670/HH-24.901.
- Kim TS, Kim JY, Hong HK, Lee HS. mRNA expression of glomerular
basement membrane proteins and TGF‐β 1 in human membranous
nephropathy. The Journal of pathology. 1999 Nov; 189(3):425-30.
doi:
10.1002/(SICI)1096-9896(199911)189:3<425::AID-PATH454>3.0.CO;2-6.
- Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer,
and heritable disorders. Cell. 2000 Oct 13; 103(2):295-309. doi:
10.1016/s0092-8674(00)00121-5.
- Troyanov S, Wall CA, Miller JA, Scholey JW, Cattran DC, Toronto
Glomerulonephritis Registry Group: Focal and segmental
glomerulosclerosis: Definition and relevance of a partial remission. J
Am Soc Nephrol 16 : 1061–1068, 2005pmid:15716334 doi:
10.1681/ASN.2004070593.
- Korbet SM: Angiotensin antagonists and steroids in the treatment of
focal segmental glomerulosclerosis. Semin Nephrol 23 : 219–228, 2003pmid:12704582 doi:10.1053/snep.2003.50020.
- Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management.
Bmj. 2016 May 23;353:i1585. doi: 10.1136/bmj.i1585
- Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo
L, Villa G, Fiaccadori E. Recent advances in the pathogenetic
mechanisms of sepsis-associated acute kidney injury. Journal of
nephrology. 2018 Jun 1;31(3):351-9. doi:
10.1007/s40620-017-0452-4.
- Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in
sepsis. Nature Reviews Immunology. 2008 Oct;8(10):776-87 doi:
10.1038/nri2402.
- Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, Bauer M,
Riedemann NC. The late phase of sepsis is characterized by an
increased microbiological burden and death rate. Critical care. 2011
Aug;15(4):1-8.doi: 10.1186/cc10332.
- Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis
and sepsis-induced kidney injury. The Journal of clinical
investigation. 2009 Oct 1;119(10):2868-78. doi:
10.1172/JCI39421.
- Chen M, Todd-Turla KA, Wang WH, Cao XI, Smart A, Brosius FC, Killen
PD, Keiser JA, Briggs JP, Schnermann JO. Endothelin-1 mRNA in
glomerular and epithelial cells of kidney. American Journal of
Physiology- Renal Physiology. 1993 Oct 1;265(4):F542-50. doi:
10.1152/ajprenal.1993.265.4.F542.
- De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1
and the kidney: new perspectives and recent findings. Current opinion
in nephrology and hypertension. 2016 Jan; 25(1):35. doi:
10.1097/MNH.0000000000000185.
- Jesmin S, Shimojo N, Yamaguchi N, Mowa CN, Oki M, Zaedi S, Sultana SN,
Rahman A, Islam M, Sawamura A, Gando S. Effects of protease activated
receptor (PAR) 2 blocking peptide on endothelin-1 levels in kidney
tissues in endotoxemic rat mode. Life sciences. 2014 May 2;
102(2):127-33. doi: 10.1016/j.lfs.2014.03.013
- Mayeux PR. Pathobiology of lipopolysaccharide. Journal of toxicology
and environmental health. 1997 Aug 1; 51(5):415-35. doi:
10.1080/00984109708984034.
- Millar CG, Thiemermann C. Intrarenal haemodynamics and renal
dysfunction in endotoxaemia: effects of nitric oxide synthase
inhibition. British journal of pharmacology. 1997 Aug; 121(8):1824-30.doi: 10.1038/sj.bjp.0701335.
- Lu R, MuciAo-Bermejo MJ, Armignacco P, Fang Y, Cai H, Zhang M, Dai H,
Zhang W, Ni Z, Qian J, Yan Y. Survey of acute kidney injury and
related risk factors of mortality in hospitalized patients in a
third-level urban hospital of Shanghai. Blood purification.
2014;38(2):140-8. doi: 10.1159/000366127.
- Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation
proteases in kidney disease. Nature reviews nephrology. 2016 Feb;
12(2):94. doi: 10.1038/nrneph.2015.177.
- Jansen MP, Claessen N, Larsen PW, Butter LM, Florquin S, Roelofs JJ.
Dual role of protease activated receptor 4 in acute kidney injury:
contributing to renal injury and inflammation, while maintaining the
renal filtration barrier upon acute renal ischemia reperfusion injury.
BioRxiv. 2019 Jan 1:540427. doi: https://doi.org/10.1101/540427