References
  1. Du C, Zhang T, Xiao X, Shi Y, Duan H, Ren Y. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochemical Journal. 2017 Aug 15; 474 (16):2733-47. https://doi.org/10.1042/bcj20170272
  2. Palygin O, Ilatovskaya DV, Staruschenko A. Protease-activated receptors in kidney disease progression. American Journal of Physiology-Renal Physiology. 2016 Dec 1; 311 (6):F1140-4. https://doi.org/10.1152/ajprenal.00460.2016
  3. Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiological reviews. 2004 Apr; 84(2):579-621. https://doi.org/10.1152/physrev.00028.2003
  4. Waasdorp M, Duitman J, Florquin S, Spek CA. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Scientific reports. 2016 Sep 13; 6(1):1-0. https://doi.org/10.1038/srep33030
  5. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, Corat MA, Zeier M, Blessing E, Oh J, Gerlitz B. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nature medicine. 2007 Nov; 13(11):1349-58. https://doi.org/10.1038/nm1667
  6. Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Frontiers in endocrinology. 2014 Sep 25; 5:151. https://dx.doi.org/10.3389%2Ffendo.2014.00151
  7. Grandaliano G, Di Paolo S, Monno R, Stallone G, Ranieri E, Pontrelli P, Gesualdo L, Schena FP. Protease activated receptor and plasminogen activator inhibitor 1 EXPRESSION IN CHRONIC ALLOGRAFT NEPHROPATHY: THE ROLE OF COAGULATION AND FIBRINOLYSIS IN RENAL GRAFT FIBROSIS1. Transplantation. 2001 Oct 27; 72(8):1437-43. https://doi.org/10.1097/00007890-200110270-00018
  8. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS. Prevalence of chronic kidney disease in the United States. Jama. 2007 Nov 7; 298(17):2038-47. https://doi.org/10.1001/jama.298.17.2038
  9. Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. International journal of inflammation. 2011 Sep 20; 2011. https://doi.org/10.4061/2011/367284
  10. Rondeau E, Vigneau C, Berrou J. Role of thrombin receptors in the kidney: lessons from PAR1 knock‐out mice. Nephrology Dialysis Transplantation. 2001 Aug 1; 16(8):1529-31. https://doi.org/10.1093/ndt/16.8.1529
  11. Mercer PF, Chambers RC. Coagulation and coagulation signalling in fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2013 Jul 1; 1832(7):1018-27. https://doi.org/10.1016/j.bbadis.2012.12.013
  12. Waasdorp M, Florquin S, Duitman J, Spek CA. Pharmacological PAR‐1 inhibition reduces blood glucose levels but does not improve kidney function in experimental type 2 diabetic nephropathy. The FASEB Journal. 2019 Oct; 33 (10):10966-72. http://dx.doi.org/10.1096/fj.201900516R
  13. Brosius FC. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Reviews in Endocrine and Metabolic Disorders. 2008 Dec 1; 9(4):245. https://doi.org/10.1007/s11154-008-9100-6
  14. Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs)–focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Communication and Signaling. 2013 Dec; 11(1):1-26. https://doi.org/10.1186/1478-811x-11-86
  15. Packham DK, Alves TP, Dwyer JP, Atkins R, De Zeeuw D, Cooper M, Shahinfar S, Lewis JB, Heerspink HJ. Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. American Journal of Kidney Diseases. 2012 Jan 1; 59(1):75-83. https://doi.org/10.1053/j.ajkd.2011.09.017
  16. Lin C, Duitman J, Daalhuisen J, ten Brink M, von der Thüsen J, van der Poll T, Borensztajn K, Spek CA. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis. Thorax. 2014 Feb 1; 69(2):152-60. https://doi.org/10.1136/thoraxjnl-2013-203877
  17. Rullier A, Gillibert-Duplantier J, Costet P, Cubel G, Haurie V, Petibois C, Taras D, Dugot-Senant N, Deleris G, Bioulac-Sage P, Rosenbaum J. Protease-activated receptor 1 knockout reduces experimentally induced liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008 Jan; 294(1):G226-35. https://doi.org/10.1152/ajpgi.00444.2007
  18. Duitman JW, Ruela-de-Sousa RR, Shi K, de Boer OJ, Borensztajn KS, Florquin S, Peppelenbosch MP, Spek CA. Protease activated receptor-1 deficiency diminishes bleomycin-induced skin fibrosis. Molecular Medicine. 2014 Jan 1; 20(1):410-6. https://doi.org/10.2119/molmed.2014.00027
  19. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology. 2005 Nov 1; 16(11):3365-70. https://doi.org/10.1681/asn.2004090740
  20. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacological reviews. 2001 Jun 1; 53(2):245-82. https://pubmed.ncbi.nlm.nih.gov/11356985/#:~:text=2001%20Jun%3B53(2)%3A245-82.
  21. Grandaliano G, Pontrelli P, Cerullo G, Monno R, Ranieri E, Ursi M, Loverre A, Gesualdo L, Schena FP. Protease-activated receptor-2 expression in IgA nephropathy: a potential role in the pathogenesis of interstitial fibrosis. Journal of the American Society of Nephrology. 2003 Aug 1; 14(8):2072-83. https://doi.org/10.1097/01.asn.0000080315.37254.a1
  22. Watanabe M, Oe Y, Sato E, Sekimoto A, Sato H, Ito S, Takahashi N. Protease-activated receptor 2 exacerbates cisplatin-induced nephrotoxicity. American Journal of Physiology-Renal Physiology. 2019 Apr 1; 316(4):F654-9. https://doi.org/10.1152/ajprenal.00489.2018
  23. Lei Y, Ehle B, Kumar SV, Müller S, Moll S, Malone AF, Humphreys BD, Andrassy J, Anders HJ. Cathepsin S and protease-activated receptor-2 drive alloimmunity and immune regulation in kidney allograft rejection. Frontiers in Cell and Developmental Biology. 2020 Jun 5; 8:398. https://doi.org/10.3389/fcell.2020.00398
  24. Jin M, Yang HW, Tao AL, Wei JF. Evolution of the protease-activated receptor family in vertebrates. International journal of molecular medicine. 2016 Mar 1; 37(3):593-602. https://doi.org/10.3892/ijmm.2016.2464
  25. O’Brien PJ, Molino M, Kahn M, Brass LF. Protease activated receptors: theme and variations. Oncogene. 2001 Mar; 20(13):1570-81. https://doi.org/10.1038/sj.onc.1204194
  26. Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thrombosis journal. 2019 Dec; 17(1):1-24. https://doi.org/10.1186/s12959-019-0194-8
  27. Pan H, Boucher M, Kaunelis D. PAR-1 antagonists: an emerging antiplatelet drug class. http://www.ncbi.nlm.nih.gov/books/nbk391027/
  28. Hollenberg MD, Wijesuriya SJ, Gui Y, Loutzenhiser R. Proteinase‐activated receptors (PARs) and the kidney. Drug development research. 2003 Sep; 60(1):36-42.
  29. Gui Y, Loutzenhiser R, Hollenberg MD. Bidirectional regulation of renal hemodynamics by activation of PAR1 and PAR2 in isolated perfused rat kidney. American Journal of Physiology-Renal Physiology. 2003 Jul; 285(1):F95-104. https://doi.org/10.1152/ajprenal.00396.2002
  30. Vesey DA, Hooper JD, Gobe GC, Johnson DW. Potential physiological and pathophysiological roles for protease‐activated receptor‐2 in the kidney. Nephrology. 2007 Feb; 12(1):36-43. https://doi.org/10.1111/j.1440-1797.2006.00746.x
  31. Saleem MA. What is the role of soluble urokinase-type plasminogen activator in renal disease? Nephron. 2018; 139:334-41. https://doi.org/10.1159/000490118
  32. Sappino AP, Huarte J, Vassalli JD, Belin D. Sites of synthesis of urokinase and tissue-type plasminogen activators in the murine kidney. The Journal of clinical investigation. 1991 Mar 1; 87(3):962-70. https://doi.org/10.1172/jci115104
  33. Zhang G, Eddy AA. Urokinase and its receptors in chronic kidney disease. Frontiers in bioscience: a journal and virtual library. 2008 May 1; 13:5462. https://doi.org/10.2741/3093
  34. Cumming AD, Lambie AT. Urinary kallikrein excretion in chronic renal failure: relationship to blood pressure and the acute effect of captopril. Renal failure. 1987 Jan 1; 10(3-4):161-7. https://doi.org/10.3109/08860228709047651
  35. Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS, Mayfield RK. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation. The Journal of clinical investigation. 1987 Dec 1; 80(6):1651-9. https://doi.org/10.1172/jci113254
  36. Heydarigoojani M. Thrombin receptor activating peptide-6 (TRAP-6) promotes human umbilical vein endothelial cells proliferation (Doctoral dissertation, Wien). http://hdl.handle.net/20.500.12708/2741
  37. Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. International journal of inflammation. 2011 Sep 20; 2011. https://doi.org/10.4061/2011/367284
  38. Small M, Lowe GD, MacCuish AC, Forbes CD. Thrombin and plasmin activity in diabetes mellitus and their association with glycaemic control. QJM: An International Journal of Medicine. 1987 Dec 1; 65(3):1025-31. https://pubmed.ncbi.nlm.nih.gov/2971234/#:~:text=1987%20Dec%3B65 (248) %3A1025-31.
  39. VR SK, Darisipudi MN, Steiger S, Devarapu SK, Tato M, Kukarni OP, Mulay SR, Thomasova D, Popper B, Demleitner J, Zuchtriegel G. Cathepsin S cleavage of protease-activated receptor-2 on endothelial cells promotes microvascular diabetes complications. Journal of the American Society of Nephrology. 2016 Jun 1; 27 (6):1635-49. https://doi.org/10.1681/asn.2015020208
  40. Bertog M, Letz B, Kong W, Steinhoff M, Higgins MA, Bielfeld-Ackermann A, Frömter E, Bunnett NW, Korbmacher C. Basolateral proteinase-activated receptor (PAR-2) induces chloride secretion in M-1 mouse renal cortical collecting duct cells. The Journal of Physiology. 1999 Nov 15; 521(Pt 1):3. https://dx.doi.org/10.1111%2Fj.1469-7793.1999.00003.x
  41. Morla L, Brideau G, Fila M, Crambert G, Cheval L, Houillier P, Ramakrishnan S, Imbert-Teboul M, Doucet A. Renal proteinase-activated receptor 2, a new actor in the control of blood pressure and plasma potassium level. Journal of Biological Chemistry. 2013 Apr 5; 288(14):10124-31.
  42. Vesey DA, Cheung CW, Kruger WA, Poronnik P, Gobe G, Johnson DW. Thrombin stimulates proinflammatory and proliferative responses in primary cultures of human proximal tubule cells. Kidney international. 2005 Apr 1; 67(4):1315-29.
  43. Coelho AM, Ossovskaya V, Bunnett NW. Proteinase-activated receptor-2: physiological and pathophysiological roles. Current Medicinal Chemistry-Cardiovascular & Hematological Agents. 2003 Mar 1; 1(1):61-72. https://doi.org/10.2174/1568016033356715
  44. Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocrine reviews. 2005 Feb 1; 26(1):1-43. https://doi.org/10.1210/er.2003-0025
  45. Chu AJ. Role of tissue factor in thrombosis. Coagulation-inflammation-thrombosis circuit. Front Biosci. 2006 Jan 1; 11(1):256. https://doi.org/10.2741/1796
  46. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clinical Journal of the American Society of Nephrology. 2017 Dec 7; 12 (12):2032-45. https://doi.org/10.2215/cjn.11491116
  47. Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney disease. Clinica Chimica Acta. 2019 Sep 1; 496:108-16. https://doi.org/10.1016/j.cca.2019.07.005
  48. Carr ME. Diabetes mellitus: a hypercoagulable state. Journal of Diabetes and its Complications. 2001 Jan 1; 15(1):44-54. https://doi.org/10.1016/s1056-8727(00)00132-x
  49. Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, Kuwabara T, Morishita A, Hitomi H, Mori K, Mukoyama M. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. Journal of pharmacological sciences. 2017 Oct 1; 135(2):81-8. https://doi.org/10.1016/j.jphs.2017.09.002
  50. Barros JB, da Silva Santos R, da Silva Reis AA. Implication of the MAPK signalling pathway in the pathogenesis of diabetic nephropathy. Diabetes. 2019 Nov.
  51. Komers R, Lindsley JN, Oyama TT, Cohen DM, Anderson S. Renal p38 MAP kinase activity in experimental diabetes. Laboratory investigation. 2007 Jun;87 (6):548-58. https://doi.org/10.1038/labinvest.3700549
  52. Nomura K, Liu N, Nagai K, Hasegawa T, Kobayashi I, Nogaki F, Tanaka M, Arai H, Fukatsu A, Kita T, Ono T. Roles of coagulation pathway and factor Xa in rat mesangioproliferative glomerulonephritis. Laboratory investigation. 2007 Feb; 87(2):150-60. https://doi.org/10.1038/labinvest.3700502
  53. Undas A, Wiek I, Stêpień E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes care. 2008 Aug 1; 31(8):1590-5. https://doi.org/10.2337/dc08-0282
  54. Vaidyula VR, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes. 2006 Jan 1; 55(1):202-8. https://doi.org/10.2337/diabetes.55.01.06.db05-1026
  55. Waasdorp M, Duitman J, Florquin S, Spek CA. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice. Oncotarget. 2018 Apr 24; 9(31):21655. https://doi.org/10.18632/oncotarget.25069
  56. Bjornstad P, Cherney D, Maahs DM. Early diabetic nephropathy in type 1 diabetes–new insights. Current opinion in endocrinology, diabetes, and obesity. 2014 Aug; 21(4):279. https://doi.org/10.1097/med.0000000000000074
  57. Fagerudd JA, Tarnow L, Jacobsen P, Stenman S, Nielsen FS, Pettersson-Fernholm KJ, Grönhagen-Riska C, Parving HH, Groop PH. Predisposition to essential hypertension and development of diabetic nephropathy in IDDM patients. Diabetes. 1998 Mar 1; 47(3):439-44. https://doi.org/10.2337/diabetes.47.3.439
  58. Wolf G, Ritz E. Diabetic nephropathy in type 2 diabetes prevention and patient management. Journal of the American society of nephrology. 2003 May 1; 14(5):1396-405. https://doi.org/10.1097/01.asn.0000065639.19190.cf
  59. Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, Ito S, Takahashi N. Coagulation factor Xa and protease-activated receptor 2 as novel therapeutic targets for diabetic nephropathy. Arteriosclerosis, thrombosis, and vascular biology. 2016 Aug; 36(8):1525-33. https://doi.org/10.1161/atvbaha.116.307883
  60. Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. In Seminars in immunopathology 2012 Jan 1 (Vol. 34, No. 1, pp. 133-149). Springer-Verlag. https://doi.org/10.1007/s00281-011-0289-1
  61. Chung H, Ramachandran R, Hollenberg MD, Muruve DA. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. Journal of Biological Chemistry. 2013 Dec 27; 288(52):37319-31. doi: 10.1074/jbc.M113.492793
  62. Pejler G, Lunderius C, Tomasini-Johansson B. Macrophages synthesize factor X and secrete factor X/Xa-containing prothrombinase activity into the surrounding medium. Thrombosis and haemostasis. 2000; 84 (09):429-35. DOI: 10.1055/s-0037-1614040
  63. Li F, WANG CH, WANG JG, Thai T, Boysen G, Xu L, Turner AL, Wolberg AS, Mackman N, Maeda N, Takahashi N. Elevated tissue factor expression contributes to exacerbated diabetic nephropathy in mice lacking eNOS fed a high fat diet. Journal of Thrombosis and Haemostasis. 2010 Oct; 8(10):2122-32 https://doi.org/10.1111/j.1538-7836.2010.03976.x
  64. Waasdorp M, Duitman J, Florquin S, Spek AC. Protease activated receptor 2 in diabetic nephropathy: a double edged sword. American journal of translational research. 2017; 9(10):4512.
  65. Mitsui S, Oe Y, Sekimoto A, Sato E, Hashizume Y, Yamakage S, Kumakura S, Sato H, Ito S, Takahashi N. Dual blockade of protease-activated receptor 1 and 2 additively ameliorates diabetic kidney disease. American Journal of Physiology-Renal Physiology. 2020 May 1;318(5):F1067-73. doi: 10.1152/ajprenal.00595.2019.
  66. Jeong BY, Uddin MJ, Park JH, Lee JH, Lee HB, Miyata T, Ha H. Novel plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS One. 2016 Jun 3;11(6):e0157012. https://doi.org/10.1371/journal.pone.0157012
  67. Zhang YY, Tang PM, Tang PC, Xiao J, Huang XR, Yu C, Ma RC, Lan HY. LRNA9884, a novel smad3-dependent long noncoding RNA, promotes diabetic kidney injury in db/db mice via enhancing MCP-1–dependent renal inflammation. Diabetes. 2019 Jul 1;68(7):1485-98. https://doi.org/10.2337/db18-1075
  68. Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-induced podocyte injury is protease-activated receptor dependent. Journal of the American Society of Nephrology. 2017 Sep 1; 28(9):2618-30. DOI: https://doi.org/10.1681/ASN.2016070789
  69. Orth SR, Ritz E. The nephrotic syndrome. New England Journal of Medicine. 1998 Apr 23;338(17):1202-11. doi: 10.1056/NEJM199804233381707.
  70. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. The Journal of clinical investigation. 2011 Nov 1; 121(11):4210-21.doi: 10.1172/JCI45161.
  71. Thuillier R, Favreau F, Celhay O, Macchi L, Milin S, Hauet T. Thrombin inhibition during kidney ischemia-reperfusion reduces chronic graft inflammation and tubular atrophy. Transplantation. 2010 Sep 27; 90(6):612-21. doi: 10.1097/tp.0b013e3181d72117 .
  72. Kerlin BA, Ayoob R, Smoyer WE. Epidemiology and pathophysiology of nephrotic syndrome–associated thromboembolic disease. Clinical Journal of the American Society of Nephrology. 2012 Mar 1; 7(3):513-20doi: 10.2215/CJN.10131011.
  73. Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney International.  2005; 67(2):458–466.doi: 10.1111/j.1523-1755.2005.67102.x.
  74. Madhusudhan T, Wang H, Straub BK, Gröne E, Zhou Q, Shahzad K, Müller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, Griffin JH. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood, The Journal of the American Society of Hematology. 2012 Jan 19;119(3):874-83. DOI: 10.1182/blood-2011-07-365973
  75. Harris JJ, McCarthy HJ, Ni L, Wherlock M, Kang H, Wetzels JF, Welsh GI, Saleem MA. Active proteases in nephrotic plasma lead to a podocin‐dependent phosphorylation of VASP in podocytes via protease activated receptor‐1. The Journal of pathology. 2013 Apr;229(5):660-71. doi: 10.1002/path.4149.
  76. Vergnolle N Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther  2009;123(3):292–309.doi: 10.1016/j.pharmthera.2009.05.004
  77. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME. Protease-activated receptor 2 mediates eosinophil infiltration and hyper reactivity in allergic inflammation of the airway. The Journal of Immunology. 2002 Nov 1; 169(9):5315-21. doi: 10.4049/jimmunol.169.9.5315.
  78. Yuan Z, Cao A, Liu H, Guo H, Zang Y, Wang Y, Wang Y, Wang H, Yin P, Peng W. Calcium uptake via mitochondrial uniporter contributes to palmitic acid‐induced apoptosis in mouse podocytes. Journal of cellular biochemistry. 2017 Sep; 118(9):2809-18. doi: 10.1002/jcb.25930. Epub 2017 Apr 27.
  79. Burford JL, Villanueva K, Lam L, Riquier-Brison A, Hackl MJ, Pippin J, Shankland SJ, Peti-Peterdi J. Intravital imaging of podocyte calcium in glomerular injury and disease. The Journal of clinical investigation. 2014 May 1; 124(5):2050-8. doi: 10.1172/JCI71702
  80. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. The Journal of clinical investigation. 2011 Nov 1; 121(11):4210-21 doi: 10.1172/JCI45161.
  81. Oe Y, Fushima T, Sato E, Sekimoto A, Kisu K, Sato H, Sugawara J, Ito S, Takahashi N. Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Scientific reports. 2019 Feb 27; 9(1):1-1. doi: 10.1038/s41598-019-39914-8
  82. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP. VEGF inhibition and renal thrombotic microangiopathy. New England Journal of Medicine. 2008 Mar 13; 358(11):1129-36. doi: 10.1056/NEJMoa0707330.
  83. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney international. 2004 Jun 1;65(6):2003-17. doi: 10.1111/j.1523-1755.2004.00621.x.
  84. Hayman SR, Leung N, Grande JP, Garovic VD. VEGF inhibition, hypertension, and renal toxicity. Current oncology reports. 2012 Aug 1; 14(4):285-94. doi: 10.1007/s11912-012-0242-z.
  85. Müller-Deile J, Bröcker V, Grünwald V, Hiss M, Bertram A, Kubicka S, Ganser A, Haller H, Schiffer M. Renal side effects of VEGF-blocking therapy. NDT plus. 2010 Apr 1; 3(2):172-5. https://doi.org/10.1093/ndtplus/sfp175
  86. Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clinical Journal of the American Society of Nephrology. 2017 Mar 7; 12(3):502-17. doi: 10.2215/CJN.05960616. Epub 2017 Feb 27.
  87. Wang Y, He Y, Wang M, Lv P, Wang J, Liu J. Role of protease-activated receptor 2 in regulating focal segmental glomerulosclerosis.Cellular Physiology and Biochemistry. 2017; 41(3):1147-55. doi: 10.1159/000464121
  88. Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL. Protein kinase A-dependent and-independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Molecular and cellular biology. 1999 Sep 1;19(9):5882-91. doi: 10.1128/MCB.19.9.5882.
  89. Li J, Gobe G. Protein kinase C activation and its role in kidney disease. Nephrology. 2006 Oct;11(5):428-34. doi: 10.1111/j.1440-1797.2006.00673.x.
  90. Shi H, Sun X, Kong A, Ma H, Xie Y, Cheng D, Wong CK, Zhou Y, Gu J. Cadmium induces epithelial–mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. Ecotoxicology and Environmental Safety. 2021 Jan 1;207:111480. doi: 10.1016/j.ecoenv.2020.111480.
  91. Xu S, Jiang Y, Wang H, Wang Z, Liu H, Peng L, Fang Q, Deng T, You J, Zhou X, Zhang W. C-peptide ameliorates renal injury in type 2 diabetic rats through protein kinase A-mediated inhibition of fibronectin synthesis. Biochemical and biophysical research communications. 2015 Mar 13;458(3):674-80. doi: 10.1016/j.bbrc.2015.02.022.
  92. Rong S, Hueper K, Kirsch T, Greite R, Klemann C, Mengel M, Meier M, Menne J, Leitges M, Susnik N, Meier M. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation. American Journal of Physiology-Renal Physiology. 2014 Sep 15;307(6):F718-26.doi: 10.1152/ajprenal.00372.2013
  93. Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Experimental cell research. 2004 Nov 15;301(1):1-7. doi: 10.1016/j.yexcr.2004.08.004.
  94. Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, Qu Z, Yamamoto T. Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Archiv. 2006 Apr;448(4):485-92.doi: 10.1007/s00428-005-0134-9.
  95. Maruyama M, Sugiyama H, Sada K, Kobayashi M, Maeshima Y, Yamasaki Y, Makino H. Desmin as a marker of proteinuria in early stages of membranous nephropathy in elderly patients. Clinical nephrology. 2007 Aug 1;68(2):73-80. doi: 10.5414/cnp68073.
  96. Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse role of TGF-β in kidney disease. Frontiers in cell and developmental biology. 2020 Feb 28; 8:123. doi: 10.3389/fcell.2020.00123.
  97. Lee HS, Song CY. Differential role of mesangial cells and podocytes in TGF-ß-induced mesangial matrix synthesis in chronic glomerular disease. Histology and histopathology. 2009. doi: 10.14670/HH-24.901.
  98. Kim TS, Kim JY, Hong HK, Lee HS. mRNA expression of glomerular basement membrane proteins and TGF‐β 1 in human membranous nephropathy. The Journal of pathology. 1999 Nov; 189(3):425-30. doi: 10.1002/(SICI)1096-9896(199911)189:3<425::AID-PATH454>3.0.CO;2-6.
  99. Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000 Oct 13; 103(2):295-309. doi: 10.1016/s0092-8674(00)00121-5.
  100. Troyanov S, Wall CA, Miller JA, Scholey JW, Cattran DC,  Toronto Glomerulonephritis Registry Group: Focal and segmental glomerulosclerosis: Definition and relevance of a partial remission. J Am Soc Nephrol 16 : 1061–1068, 2005pmid:15716334 doi: 10.1681/ASN.2004070593.
  101. Korbet SM: Angiotensin antagonists and steroids in the treatment of focal segmental glomerulosclerosis. Semin Nephrol 23 : 219–228, 2003pmid:12704582 doi:10.1053/snep.2003.50020.
  102. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. Bmj. 2016 May 23;353:i1585. doi: 10.1136/bmj.i1585
  103. Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, Villa G, Fiaccadori E. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. Journal of nephrology. 2018 Jun 1;31(3):351-9. doi: 10.1007/s40620-017-0452-4.
  104. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nature Reviews Immunology. 2008 Oct;8(10):776-87 doi: 10.1038/nri2402.
  105. Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, Bauer M, Riedemann NC. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Critical care. 2011 Aug;15(4):1-8.doi: 10.1186/cc10332.
  106. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. The Journal of clinical investigation. 2009 Oct 1;119(10):2868-78. doi: 10.1172/JCI39421.
  107. Chen M, Todd-Turla KA, Wang WH, Cao XI, Smart A, Brosius FC, Killen PD, Keiser JA, Briggs JP, Schnermann JO. Endothelin-1 mRNA in glomerular and epithelial cells of kidney. American Journal of Physiology- Renal Physiology. 1993 Oct 1;265(4):F542-50. doi: 10.1152/ajprenal.1993.265.4.F542.
  108. De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1 and the kidney: new perspectives and recent findings. Current opinion in nephrology and hypertension. 2016 Jan; 25(1):35. doi: 10.1097/MNH.0000000000000185.
  109. Jesmin S, Shimojo N, Yamaguchi N, Mowa CN, Oki M, Zaedi S, Sultana SN, Rahman A, Islam M, Sawamura A, Gando S. Effects of protease activated receptor (PAR) 2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode. Life sciences. 2014 May 2; 102(2):127-33. doi: 10.1016/j.lfs.2014.03.013
  110. Mayeux PR. Pathobiology of lipopolysaccharide. Journal of toxicology and environmental health. 1997 Aug 1; 51(5):415-35. doi: 10.1080/00984109708984034.
  111. Millar CG, Thiemermann C. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition. British journal of pharmacology. 1997 Aug; 121(8):1824-30.doi: 10.1038/sj.bjp.0701335.
  112. Lu R, MuciAo-Bermejo MJ, Armignacco P, Fang Y, Cai H, Zhang M, Dai H, Zhang W, Ni Z, Qian J, Yan Y. Survey of acute kidney injury and related risk factors of mortality in hospitalized patients in a third-level urban hospital of Shanghai. Blood purification. 2014;38(2):140-8. doi: 10.1159/000366127.
  113. Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nature reviews nephrology. 2016 Feb; 12(2):94. doi: 10.1038/nrneph.2015.177.
  114. Jansen MP, Claessen N, Larsen PW, Butter LM, Florquin S, Roelofs JJ. Dual role of protease activated receptor 4 in acute kidney injury: contributing to renal injury and inflammation, while maintaining the renal filtration barrier upon acute renal ischemia reperfusion injury. BioRxiv. 2019 Jan 1:540427. doi: https://doi.org/10.1101/540427