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	Abstract
To predict the remaining useful life for the key structures of heavy-duty railway wagons using condition monitoring data, methods for the coupler body with and without visible cracks were proposed. First, a method based on the delay time and hypothesis testing was proposed, considering the case without visible cracks in the coupler body. Then, for the case of visible cracks, methods based on a hypothetical distribution and support vector regression with the Kalman filter were proposed. Finally, by taking the coupler body monitoring data as an example, the prediction accuracies of the proposed methods were compared. The results indicated that the prediction method that only considers the common characteristics of the research objects had an average relative error of 57.56% for the coupler structure with a long lifespan. Considering the delay time of the current state of the structure and the assumed distribution prediction method, the relative error was reduced to 34.52%, and the remaining useful life prediction value fluctuated sharply with respect to the service mileage. On this basis, considering the performance degradation process of the structure, the change in the remaining useful life prediction value was smoother, and the relative error was 43.67%. The methods for predicting the remaining useful life of railway heavy-duty coupler bodies using condition monitoring data have important theoretical and practical value for improving vehicle safety, reducing maintenance costs, and accurately evaluating the remaining useful life.
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Highlights: 
· Proposing a method system for predicting the remaining useful life of key structures that considers the common characteristics, the current state, and the degradation process.
· The remaining useful life prediction models under different factors are obtained for visible cracks and invisible cracks.
· providing an important reference for the condition maintenance and life prediction of heavy-duty railway wagon key structures.


[在此处键入]

1 ∣ INTRODUCTION
The accurate prediction of the remaining useful life of a structure or system can ensure that it operates with high reliability and avoid resource wastage caused by excessive preventive maintenance [1]. The widely used remaining useful life prediction methods can be classified as mechanism or data-driven methods according to the basic theories [2]. Mechanism methods are based on the physical, chemical, or empirical system mechanism of the detected object [3-5]. In data-driven methods, models are constructed entirely on the basis of historical feature data, e.g., statistical models [6], neural networks [7], Gaussian regression processes [8], support vector regression (SVR) [9], and fuzzy reasoning [10]. Additionally, some methods combine mechanism models and data-driven models [11], and there are various data model fusion-driven methods [12]. The remaining useful life prediction method based on mechanism models has a high accuracy if the mechanism is clear. However, for complex structures and systems, the mechanism model can be difficult to establish. Data-driven remaining useful life prediction methods are more effective for complex structures and systems.
[bookmark: _Hlk88341983]Cong et al. [13] employed the mechanism model to predict the remaining useful life. They simulated the fatigue-crack growth mechanism of a wheel and analyzed the crack growth. An et al. [14] developed an empirical exponential growth model of lithium-ion battery resistance degradation, whereby standard particle filtering and resampling were used to predict the system health degradation data at different time intervals. Regarding data-driven remaining useful life prediction, Xie et al. [15] used the unscented Kalman filter, which has a good filtering effect on nonlinear systems, and estimated the state of charge through the Kalman filter and a support vector machine. Peel [16] and Heimes [17] used artificial neural networks and cyclic neural networks to establish the mapping relationship between sensor measurement data and the engine remaining useful life. Regarding remaining useful life prediction based on mixed models, Dong et al. [18] combined the degradation model of Brownian motion and a particle filter to predict the remaining useful life of lithium batteries, which provided good performance and robust prediction results. Goebel et al. [19] predicted bearing crack growth according to the fatigue mechanism and the Gaussian process. Using the Damper–Shafer evidence theory, the results of the two methods were hierarchically fused. Hu et al. [20] used a variety of data-driven methods to establish predictive sub-models and proposed a model weight distribution method based on accuracy, diversity, and optimization. In general, mechanism-based models and data-based remaining useful life prediction methods have unique requirements, usage scenarios, advantages, and disadvantages. For specific research objects, it is necessary to identify a suitable remaining useful life prediction model by comparing factors such as the prediction accuracies of various models, amount of data required, calculation efficiency, and prediction stability. 
At present, condition monitoring is increasingly used for the maintenance of the key structural components of heavy-duty railway vehicles. As a key component of vehicle traction, couplers in service require regular maintenance inspections for cracks. Xue et al. [21] used the Monte Carlo method based on Latin hypercube sampling to analyze the reliability of heavy-duty wagon couplers marshalled in various forms with respect to the service mileage, which has not been considered with the specific service status. Tian et al. [22] studied the safety service mileage under different reliability and confidence levels using the bootstrap small-sample analysis method. T. L. M. [23] calculated the surface crack growth threshold via crack-growth simulation and obtained the safety limit for prolonging the life and avoiding early retirement. 
[bookmark: _Hlk87534515]The remaining useful life prediction methods for heavy-duty railway wagon couplers are not sufficiently deep; most of them focus on the application of fracture mechanics theory, combined with the Monte Carlo method and other numerical simulation methods, to construct fatigue fracture reliability models, analyze the crack growth, and calculate the remaining useful life. Thus, considering the status quo of the operation and maintenance of heavy-duty railway wagon coupler bodies, methods for predicting the remaining useful life of the coupler body using condition monitoring data are proposed to evaluate the service status of heavy-duty railway wagon coupler bodies. The two characteristic states of invisible and visible cracks in the coupler body are considered. The proposed methods provide a basis for maintenance-strategy formulation and application safety.
2 ∣ REMAINING USEFUL LIFE PREDICTION WITHOUT VISIBLE CRACKS
The crack data of the coupler were obtained through nondestructive testing. When there are no visible fatigue cracks in the coupler, the structure is considered to be in the pre-crack initiation stage. Although there is damage relative to a new coupler, existing detection methods cannot quantify it. Evidently, the service life of the new coupler is theoretically reduced. The remaining useful life of the coupler can be calculated via the delay-time model, as shown in Figure 1.
[image: ]
FIGURE 1 Life prediction method based on delay time
According to the characteristics of the damage- tolerance design of the coupler, the fatigue-crack failure of the coupler has a time delay. In general, the structure has a potential failure first, and a functional failure occurs after a period of time. The time from the potential failure point to the functional failure point is called the delay time [24-27]. Because the freight coupler is a cast structure, there are many surface defects caused by the fabrication process. Usually, the surface lengths of the cracks observed via the first flaw detection are >5 mm. Additionally, the hook tongue is prone to fracture failure because of the middle crack of the inner wrist surface and the root crack of the lower traction platform extending to the critical size, whereas the coupler body is prone to failure because of the root crack of the lower traction platform penetrating the outer surface. Therefore, the time required for the coupler to produce a detectable crack (5 mm in length) is defined as a potential failure point. The failure time of the coupler (broken coupler tongue, root crack of the traction platform under the penetration of the outer surface by the coupler) is defined as a functional failure point, at which the coupler has lost its traction function. The life point at which the crack propagates to failure is regarded as the point of failure (this value must not appear in service).
2.1 ∣ Obtaining crack evolution data of coupler
To construct a model for predicting the remaining useful life of the coupler according to the delay time, a fatigue bench test was conducted, and the failure mode, failure life, and crack evolution data of the coupler were obtained. The test procedure was described in previous works [28,29]. The failure mode of the coupler is shown in Figure 2.
[image: ]
FIGURE 2 Failure form of the coupler and fatigue test bench
The existing maintenance method of the coupler body is to visually inspect the cracks every 400000 km. When the operating mileage reaches 1.6 million km, the coupler body is disassembled and analyzed. Once a long crack is detected, it is scrapped. To improve the efficiency of train operations, conditional inspection has extended the inspection period to 800000 km. Therefore, an 800000 km coupler without cracks was used to study the remaining useful life prediction method for couplers without visible cracks.
According to the crack evolution data of the coupler body, the number of load cycles (crack initiation life) when the length of the crack surface is 5 mm was obtained via linear interpolation. The relationship between the number of cycles and the life has been reported in literature [28]. The sample data of the crack evolution under the coupler body are presented in Table 1 and Figure 3.
The Grubbs criterion was used to evaluate the data and eliminate abnormal data. According to the residuals, the suspicious data for the crack initiation life and propagation life were 95.52 and 264.82, respectively. The G values calculated using Eq. (1) were 2.269 and 1.481, which were smaller than the critical coefficients of their Grubbs values, i.e., 2.409 and 2.032, respectively (95% confidence coefficient; sample sizes of 15 and 8). Therefore, the coupler-body crack initiation life data and extensive life data contained no abnormal data.

          (1)
TABLE 1 Failure life of the lower traction platform of the coupler body
	Number
	Crack initiation life/104 km
	Failure life
/104 km
	Crack propagation life/104 km

	[bookmark: OLE_LINK1]1
	38.92
	–
	–

	2
	31.85
	188.58
	156.73

	3
	53.46
	–
	–

	4
	95.52
	225.22
	129.7

	5
	13.51
	–
	–

	6
	64.86
	145.92
	81.06

	7
	58.69
	–
	–

	8
	27.03
	–
	–

	9
	66.51
	212.43
	145.92

	10
	40.54
	–
	–

	11
	63.08
	–
	–

	12
	20.32
	105.63
	85.31

	13
	35.13
	299.95
	264.82

	14
	52.69
	299.95
	247.26

	15
	24.02
	220.95
	196.93

	16
	–
	184.75
	–


“–” indicates that the coupler body did not fail in the bench test; thus, thus, there was no failure life data or crack propagation life data.
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FIGURE 3 Failure sample data
2.2 ∣ Remaining useful life prediction based on delay time
The normal distribution, lognormal distribution, and two-parameter Weibull distribution were utilized to fit the coupler-body life data. Tables 2–4 present the fitting parameters of the life data.
TABLE 2 Fitting parameters of the normal distribution for the life data of the lower traction platform of the coupler body
	Life type
	Location parameter
	Scale parameter
	Fitting relation coefficient

	Crack initiation life
	45.7420
	23.9962
	0.9775

	Crack propagation life
	163.4663
	77.7659
	0.9765


TABLE 3 Fitting parameters of the lognormal distribution for the life data of the lower traction platform of the coupler body
	Life type
	Location parameter
	Scale parameter
	Fitting relation coefficient

	Crack initiation life
	3.7042
	0.5721
	0.9840

	Crack propagation life
	5.0146
	0.5014
	0.9780


TABLE 4 Two-parameter Weibull distribution fitting parameters for the life data of the traction platform of the coupler body
	Life type
	Location parameter
	Scale parameter
	Fitting relation coefficient

	Crack initiation life
	2.1697
	52.0198
	0.9929

	Crack propagation life
	2.4036
	186.5044
	0.9276



As shown in Tables 2–4, comprehensive fitting of the correlation coefficient indicated that compared to other distributions, the two-parameter Weibull distribution can better fit the crack initiation life and propagation life data of the traction platform under the coupler body, and it can reflect the physical fact that the fatigue life has a lower limit ≥0. Therefore, the probability density function of the crack initiation life  of the lower traction platform under the coupler body is

.
(2)
The cumulative distribution function is

	.	(3)
The probability density function of the crack propagation life of the traction platform under the coupler is

.(4)
The cumulative distribution function is

	.	(5)


It is assumed that the failure mileage of the coupler body is t × 10000 km (t > 80). Event A is defined as follows: the coupler body does not detect cracks at 800000 km, and the crack initiation life of the traction platform under the coupler body is . Event B is defined as follows: the coupler fails before time t, and the crack propagation life of the traction platform under the coupler is . Here, µ and ν are independent random variables.

     (6)

		(7)
The reliability of the coupler, which has been in service for 800000 km without cracks, was calculated, as shown in Figure 4 and Table 5.
[image: ]
FIGURE 4 Reliability curve of the coupler with no cracks detected for 800000 km in service
TABLE 5 Remaining useful life of the coupler body with no cracks detected for 800000 km in service
	Reliability
	Remaining useful life/104 km
	Entire life 
/104 km
	Life span of new coupler
/104 km

	50%
	173
	253
	211

	60%
	153
	233
	199

	70%
	134
	214
	186

	80%
	112
	192
	171

	90%
	84
	164
	150

	95%
	65
	145
	131

	99%
	36
	116
	102

	99.9%
	15
	95
	91


It can be concluded that the remaining useful life of the 800,000-km uncracked coupler under different reliability values is shorter than that of a new coupler (the entire life) [28]. Thus, the proposed remaining useful life prediction method without visible cracks can reflect the difference in service performance between the old and new couplers. Additionally, the entire life of the coupler that has served 800000 km without cracks under different reliability values was longer than that of the new coupler, indicating that the service performance of the new coupler was at the upper and middle levels.
3 ∣ REMAINING USEFUL LIFE PREDICTION WITH VISILE CRACKS
The crack data of the coupler were obtained through nondestructive testing. When the coupler has visible fatigue cracks, it is considered that the structure is in the expansion stage after crack initiation. At this time, parameters such as the serviced mileage, crack location, crack size, and reliability are used as inputs to construct the remaining useful life prediction model. When new detection data are available, the remaining useful life results are updated in real time.
3.1 ∣ Remaining useful life prediction based on assumption distribution
· Test and data analysis
The hypothesis distribution test can comprehensively consider the overall fitting effect, fatigue failure mechanism, and algorithm security and determine the appropriate statistical distribution for the data [30]. On this basis, a method for predicting the remaining useful life of a heavy-duty railway wagon coupler is proposed. To obtain a small amount of degradation data from the service history of the structure, the degradation data of the coupler were fitted according to the assumed distribution, a reasonable remaining useful life prediction model for the structure was constructed, and the remaining useful life of the coupler in the current state was predicted. Thus, the method of predicting the remaining useful life of the coupler via the hypothetical distribution was analyzed by considering the crack in the traction platform under the coupler body as an example.
First, to obtain the crack evolution data of the test coupler body, the surface length of the crack at the root of the traction platform under the coupler for different life fractions (the ratio of the current service life to the total life) was calculated via linear interpolation. The Grubbs criterion method was used to evaluate the data and eliminate abnormal data, as shown in Table 6 (the calculated outliers under each life fraction are shown in red).


TABLE 6 Evolution data of the crack length for the traction platform of the lower coupler body with respect to the life fraction
	
Life fraction
	Crack length/mm

	
	#1
	#2
	#3
	#4
	#5
	#6
	#7
	#8

	0.1
	0
	0
	0
	0
	0
	0
	0
	0

	0.2
	0
	0
	0
	0
	0
	0
	0
	0

	0.3
	0
	0
	0
	0
	0
	0
	0
	8

	0.4
	0
	0
	4
	0
	32
	15
	13
	18

	0.5
	0
	15
	15
	13
	41
	32
	29
	22

	0.6
	0
	40
	30
	29
	45
	43
	49
	42

	0.7
	15
	45
	49
	42
	49
	47
	55
	54

	0.8
	20
	54
	58
	47
	53
	52
	57
	60

	0.9
	37
	69
	72
	62
	56
	66
	62
	63

	1
	64
	80
	95
	80
	62
	77
	68
	70
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FIGURE 5 Cumulative failure probability curve for the minimum-value distribution of crack-length data

· Remaining useful life prediction



Considering the degree of fit and the safety of the tail prediction, the minimum-value distribution can be used as a good statistical distribution. According to the given crack surface length and reliability (or cumulative failure probability) of the traction platform root under the coupler body in Figure 5, the remaining useful life of the coupler body can be predicted. The specific methods are as follows. Assuming that a coupler has been in service for  kilometers, the root crack length of the lower traction platform was detected via flaw detection to be 30 mm (corresponding to the transverse coordinates in Figure 5); when the cumulative failure probability is 0.05 (corresponding to the ordinate in Fig. 5), an evaluation point can be determined in Figure5, which falls in the middle of the curve with a life fraction of 0.6–0.7. Through linear interpolation, the service life was estimated to be 67% of the total life; thus, the total life should be, and the remaining mileage of this coupler is  km. This conclusion has 95% reliability.
3.2 ∣ Remaining useful life prediction based on SVR with Kalman filter
The remaining useful life prediction method based on the hypothetical distribution considers the common characteristics and current state of the research object but cannot reflect the performance degradation process. Therefore, a nonlinear model for the relationship between the remaining useful life of the coupler and the crack size was established via the SVR method. The regression model was trained with the coupler bench test data to obtain the remaining useful life prediction model. When new condition monitoring data are available, the remaining useful life prediction results obtained by the SVR model are corrected in real time according to the Kalman filtering theory to reduce the variance of the remaining useful life prediction value and improve the prediction accuracy. The method of predicting the remaining useful life of the coupler via SVR with the Kalman filter was evaluated by taking the crack of the traction platform under the coupler as an example.
(1) Initial remaining useful life prediction model based on SVR
· Test and data analysis








SVR is a regression algorithm based on a support vector machine. A set of data  is considered, where  represents the sample size,( represents the dimension) for input vectors, and is the output target value. In linear-regression problems, the objective is to find a model  that makes the model output  as close as possible to the target output :

	,	(8)








where  is the weight vector, and  represents the offset. The ideal goal of SVR is to make all the model outputs  within the interval band of function interval  ( represents the deviation between  and ). On this premise, the slopeof the hyperplane can be adjusted to maximize the geometric interval for improving the generalization ability of SVR. Therefore, finding an optimal decision hyperplane to maximize the distance from the farthest sample point to the hyperplane is the core idea of SVR.






Crack evolution data of the traction platform root under the coupler (103 groups) [28] were obtained via the coupler bench test, as listed in Table 7. SVR was used for the regression analysis of the data. First, 72 and 31 groups of data were randomly selected as the training and test sets of the model. The original data were normalized to the interval , and the loss-function parameter  was 0.01. Then, using cross-validation, the optimal values of the penalty factor  (representing the penalty for outliers) and the radial basis kernel function parameter  (a large  indicates that the two points are judged to be similar only when they are very close) were determined. The model parameters are presented in Table 8. Finally, the SVR model  was constructed using the model parameters and training set, and the model accuracy was measured using the test set. The results are shown in Figure 6 and Figure 7.


TABLE 7 Crack evolution data for the root of the traction platform of the lower coupler body
	Label
	Crack size
/mm
	Residual
life
/km
	Label
	Crack  size
/mm
	Residual
life
/km
	Label
	Crack  size
/mm
	Residual
life
/km

	#1
	0
	1885769
	#3
	44
	324262
	#6
	15
	1686215

	
	0.5
	1723646
	
	60
	162123
	
	17
	1556507

	
	1
	1561507
	
	80
	0
	
	40
	1426800

	
	1.5
	1399369
	#4
	0
	1847523
	
	44
	1297092

	
	2
	1237231
	
	0.5
	1216831
	
	50
	1167384

	
	2.5
	1092784
	
	5
	1134954
	
	55
	1037677

	
	15
	930646
	
	40
	972815
	
	55
	907954

	
	40
	768507
	
	40
	810677
	
	57
	778246

	
	43
	606369
	
	47
	648538
	
	57
	648538

	
	46
	444246
	
	52
	486415
	
	57
	518830

	
	53
	282107
	
	52
	324277
	
	60
	389123

	
	55
	119 969
	
	56
	162138
	
	60
	259415

	
	88
	0
	
	62
	0
	
	65
	129707

	#2
	0
	2252200
	#5
	0
	2999492
	
	68
	0

	
	0.5
	2090077
	
	0.5
	2205046
	#7
	0
	2209477

	
	1
	1927938
	
	15
	1945630
	
	0.5
	2079769

	
	1.5
	1765800
	
	15
	1815923
	
	1
	1950062

	
	2
	1621354
	
	24
	1686215
	
	1.5
	1869662

	
	4
	1459215
	
	31
	1556507
	
	2
	1739954

	
	5
	1297077
	
	32
	1426800
	
	2.5
	1618739

	
	18
	1134938
	
	42
	1297092
	
	15
	1489031

	
	21
	972800
	
	45
	1167384
	
	18
	1359323

	
	48
	810677
	
	45
	1037677
	
	20
	1229615

	
	52
	648538
	
	45
	907954
	
	22
	1099908

	
	56
	486400
	
	45
	778246
	
	25
	970200

	
	63
	324262
	
	50
	648538
	
	40
	907954

	
	95
	162138
	
	55
	518830
	
	50
	778246

	
	95
	0
	
	62
	389123
	
	55
	648539

	#3
	0
	1459200
	
	73
	259415
	
	58
	518831

	
	0.5
	1297077
	
	73
	129707
	
	61
	389123

	
	1
	1134938
	
	77
	0
	
	62
	259415

	
	1.5
	972800
	#6
	0
	2999492
	
	65
	129708

	
	6
	810662
	
	0.5
	2205046
	
	70
	0

	
	18
	648538
	
	10
	1945630
	–
	–
	–

	
	43
	486400
	
	13
	1815923
	–
	–
	–



TABLE 8 SVR model parameters
	
Penalty factor
	
Radial basis kernel function parameters
	
Loss function parameters

	22.6274
	0.3536
	0.01


[image: ]
FIGURE 6 Regression comparison for the SVR
 model training set 
[image: ]
· FIGURE 7 Comparison of prediction results for the SVR model test set
· Remaining useful life prediction
Figure 6 shows a comparison between the regression and real values for the training set (72 sets of data). The correlation coefficient was 0.8847, and the crack size increased monotonically with a decrease in the remaining useful life, which was consistent with the actual situation. Figure 7 shows a comparison between the predicted and real values for the test set (31 sets of data). The correlation coefficient was 0.8763. The predicted value reflects the tendency of the change. The SVR model can preliminarily predict the crack size of the coupler under a certain remaining useful life.
(2) Remaining useful life prediction update based on Kalman filter
· Test and data analysis
According to the degradation characteristics of the coupler-body crack, the Kalman filter is used to construct the time update equation, and the remaining service-life prediction results obtained by the SVR model are corrected in real time to reduce the variance of the remaining service-life prediction value and improve the prediction accuracy. The variables are presented in Table 9.
TABLE 9 Variables involved in Kalman filtering
	Variable name
	Meaning
	Remark

	

	Real remaining useful life at time i
 (must be estimated)
	Real state quantity

	

	Mean remaining useful life
 predicted at time i 
	Predicted state quantity

	

	Variance of remaining useful life predicted at time i 
	–

	

	Mean crack size predicted at time i 
	Predicted observed values

	

	Variance of crack size predicted at time i 
	–

	

	Actual crack size observed at time i 
	Actual observations

	

	Covariance between remaining useful life and crack size at time i
	–

	

	Kalman gain at time i
	–

	

	Optimal estimation of mean remaining useful life at time i 
	Estimated state

	

	Estimated remaining useful life 
variance at time i
	–

	

	Variance of Gaussian white noise in state-transfer equation
	Modelling error

	

	Variance of Gaussian white noise in observation equation
	Sensor errors

	

	
Time interval from time  to time i
	–


· Remaining useful life prediction













The Kalman filtering theory states that there is an error between the theoretical and observed values (Gaussian white noise). It is necessary to determine the optimal estimation of a real value through an analysis (covariance). The basic idea of utilizing the Kalman filter to update the remaining useful life prediction results is based on the optimal estimation  at time , and the observation value  at time i is predicted via the empirical formula and SVR model. Simultaneously, the state of time  is detected, and the actual observation value  is obtained. Then, the observation value  and the predicted observation value  are analyzed, and the remaining useful life prediction value  is corrected to obtain the optimal estimation  at time. Kalman filtering involves three covariances (variances):  represents the variance of the state value and the uncertainty of the estimated ;  represents the variance of the Gaussian white noise in the state-transfer equation (empirical equation), which is related to the computer rounding error and the degree of model linearization; and R represents the variance of the Gaussian white noise in the observation equation, which is related to the characteristics of the sensor.
For the remaining useful life prediction of the coupler body, the following method is used to update the remaining useful life prediction value via Kalman filtering.
a) Determination of state-transfer equation and observation equation

Without considering the modeling error  i, the state-transfer equation (empirical formula) and the observation equation can be expressed by Eqs. (9) and (10), respectively:

		(9)

	.	(10)













Here,  represents the real remaining useful life at time;  represents the time interval from moment  to moment ;  represents the actual observed crack size at time ;  is a nonlinear model related to , which is obtained via SVR;  represents the error between the predicted crack size  of the SVR model and the observed crack size ; and  represents the normal-distribution variance.





Eq. (10) is not valid in theory, because the dispersion of the remaining useful life decreases with an increase in the crack size , and  is not independent. However, the probability distribution error of the output variable  calculated using Eq. (10) was within an acceptable range [15]. The maximum likelihood estimation of , i.e., , is calculated as follows:

	,	(11)




Where  is the sum of the numbers of training and test samples. The value of  is calculated as 166.55, and  obeys a normal distribution with a mean of  and variance of 166.55.
b) Calculation of predicted remaining useful life



For a new coupler, the initial estimate and variance of its remaining useful life can be determined using Fig. 4. Because the state-transfer equation does not contain noise (modeling error ), the predicted remaining useful life of the coupler body after a period of service can be expressed as 

	.	(12)
The variance of the predicted remaining useful life of the hook can be expressed as

	.	(13)
c) Observed value of crack-length prediction








The remaining useful life prediction value calculated via Eq. (12) is based only on the empirical formula given by Eq. (9), and the variance is relatively large. According to the SVR model, the crack size  corresponding to  can be predicted, and the covariance ratio between the observation value of the crack size  and the predicted value  can be calculated to determine the gain coefficient . The remaining useful life prediction value  was corrected, and the optimal estimation value  and its corresponding variance  were obtained. After filtering, the variance was smaller, and the estimated value was more stable.









First, the predicted observation , variance, , and covariance  were calculated using the predicted remaining useful life mean  and variance . According to the Monte Carlo method, a random sample with an  distribution of  is generated, and the observed value  of crack-length prediction is calculated as follows:

	.	(14)

The corresponding variance  is calculated as follows:

	.	(15)
d) Calculation of optimal remaining useful life estimates
The covariance between the predicted remaining useful life and the observed crack length is calculated as follows:

	.	(16)




Then, the Kalman gain is introduced to correct the remaining useful life prediction value  and its variance  by using the difference between the actual observation value  of the crack size and the predicted observation value . The Kalman gain is expressed as follows:

	.	(17)
The optimal estimation of the remaining useful life is expressed as follows:

	.	(18)
The variance of the optimal estimated remaining useful life is expressed as follows:

	.	(19)
The remaining useful life after Kalman filtering is expressed as follows:

.


By programming with and as the initial values of the Kalman filter, when there are new observation data of the crack size, the remaining useful life can be gradually updated via cyclic use of Eqs. (12)–(19).
4 ∣ PREDICTION METHODS AND COMPARISON OF COUPLER REMAINING USEFUL LIFE
According to the foregoing results, the following three methods are proposed for predicting the remaining useful life of couplers.
Method one only considers the common characteristics of the research object. According to the reliability curve of the new coupler body shown in Figure 4, the remaining useful life of the current coupler body can be determined by subtracting the total life of the coupler under a certain reliability from the service life.
Method two considers the common characteristics and current state of the research object. According to the remaining useful life prediction method without visible cracks and the remaining useful life prediction model shown in Figure 5, the remaining useful life of the coupler body in the current state is predicted.
Method three considers the common characteristics and current state of the research object, as well as the performance degradation process. According to the remaining useful life prediction method without visible cracks and the SVR model with the Kalman filtering theory between the remaining useful life and the crack size of the coupler, the remaining useful life of the coupler in the current state is predicted.
In the bench test, the crack evolution data of seven coupler bodies were transparent, and relatively accurate actual remaining useful life values were obtained. Figure 8 shows the results for the seven coupler bodies obtained using the three remaining useful life prediction methods. Table 10 presents the accuracies of the three methods.
The comparison results indicate that for method one, the predicted remaining useful life changed linearly with respect to the service mileage. Therefore, for structures with large life dispersions, the prediction accuracy is limited. For the coupler body, the average relative error of the remaining useful life prediction was 57.56%. Although this accuracy was the lowest among the three methods, the operation is convenient and simple, and the method can be easily applied in engineering.
For method two, the average relative error of the remaining useful life prediction was 34.52%. The prediction accuracy was improved compared with that of method one, but the performance degradation process was not considered. Therefore, the predicted remaining useful life of the coupler body fluctuated drastically as the service mileage changed.
The tendency of the predicted crack size for method three based on SVR was consistent with that of the actual crack size, and the observed crack-size data gradually modified the predicted results. Considering the performance degradation process, the change in the predicted remaining useful life was smoother than that for method two. For the coupler sample, the average relative error of the remaining useful life prediction was 43.67%, which was slightly larger than that for method two. This may be because the correlation coefficient of the SVR model (0.8847 for training set, 0.8763 for test set) was smaller than the fitting correlation coefficients (under 0.4–1.0 life fractions of 0.8797, 0.9711, 0.9592, 0.9702, 0.9896, 0.9694, and 0.9225) of the minimum distribution of crack-length data in method two, which is related to the sample size and dispersion.

[image: ][image: ][image: ]
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FIGURE 8 Comparison of the results for seven coupler bodies obtained using three remaining useful life prediction methods


TABLE 10 Accuracy comparison of three prediction methods
	Statistic
	Method one
	Method two
	Method three

	Mean squared error
	244013
	105096
	153872

	Mean relative deviation
	57.56%
	34.52%
	43.67%


5 ∣ CONCLUSIONS AND PROSPECTS
A method based on crack state monitoring data was proposed for predicting the remaining useful life of key structures. The proposed method considers the common characteristics, current state, and degradation process. The crack monitoring data of the traction platform under a heavy-duty railway wagon coupler were taken as an example, and remaining useful life prediction models under different factors were obtained for visible cracks and invisible cracks. The findings of this study provide valuable guidance for the condition maintenance and life prediction of heavy-duty railway wagon couplers. The following conclusions are drawn.
(1) The remaining useful life prediction method for couplers without visible cracks based on the delay time can reflect the difference in service performance between new and old couplers.
(2) Considering the fitting degree and tail prediction safety, the minimum distribution can be used as a good hypothetical distribution for the crack-length data of the coupler. Given the crack surface length and reliability (or cumulative failure probability) at the root of the traction platform under the coupler, the remaining useful life of the coupler can be predicted.
(3) The SVR model can be used to predict the crack size of a coupler body under a certain remaining useful life. Using the Kalman filtering theory, the remaining useful life prediction and real-time update of prediction results for the structure can be obtained.
(4) For a coupler-body structure with a long lifespan, if only the common characteristics of the research object are considered, the prediction error is 57.56%. Considering the delay time of the current state and that the assumed distribution prediction method can significantly improve the prediction accuracy, the relative error is reduced to 34.52%. On this basis, the performance degradation process of the structure is considered. The prediction method based on SVR with Kalman filtering can make the change of the predicted value smoother. Therefore, the analysis method involving combining the three aforementioned characteristics can effectively realize the remaining useful life prediction of the coupler based on the condition monitoring data.
[bookmark: OLE_LINK6]The methods described in this work have a certain universality for the remaining useful life prediction of structures or systems. However, only seven groups of coupler test data were used to compare the methods. The sample size was small, and the data dispersion was considerable. Therefore, for longer-lifespan samples with less dispersion, the three methods may achieve better prediction results.
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