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Figure	S1.	Radiative	forcing.	Changes	in	the	net	radiative	forcing	at	the	top	of	the	atmosphere	
for	 each	 ensemble	 experiment	 relative	 to	 the	 no-volcano	 case.	 Shading	 represents	 twice	 the	
standard	error	of	the	mean	(approximate	95%	confidence	intervals).		

	
	
	

	
Figure	S2.	Volcanic	 forcing	 in	extreme	experiments.	Anomalies	in	aerosol	optical	depth	(at	
550	nm)	in	the	extreme	Maritime	Continent	–	MC	experiment	(A)	and	the	extreme	Equatorial	
Pacific	–	EqPAC	experiment	(B)	for	the	summer	(June	to	August	–	JJA)	following	the	imposed	
changes	in	AOD	relative	to	the	no-volcano	simulations.	
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Figure	S3.	Walker	Circulation	response	in	the	first	post-eruption	year.	Changes	in	the		zonal	
stream	function	(1011	kg/s)	and	vertical	winds	(m/s)	averaged	over	the	Equatorial	Pacific	 (5°S	–	
5°N)	 for	the	 first	summer	(June	to	August	–	 JJA;	 left)	and	winter	 (December	to	February	–	DJF;	
right)	 following	 the	 AOD	 imposed	 anomalies	 above	 the	Maritime	 Continent	 –	MC	 (A	 -	B),	 the	
equatorial	Pacific	–	EqPAC	(C	–	D)	and	the	tropical	and	northern	Africa	–	NAFR	(E	–	F)	relative	to	
the	no-volcano	simulations.		
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Figure	 S4.	Walker	 Circulation	 response	 in	 the	 second	 post-eruption	 year.	Changes	 in	 the		
zonal	 stream	 function	 (1011	kg/s)	and	vertical	winds	 (m/s)	averaged	over	 the	Equatorial	Pacific	
(5°S	–	5°N)	for	the	second	summer	(June	to	August	–	JJA;	left)	and	winter	(December	to	February	
–	DJF;	right)	following	the	AOD	imposed	anomalies	above	the	Maritime	Continent	–	MC	(A	and	
B),	the	equatorial	Pacific	–	EqPAC	(C	and	D)	and	the	tropical	and	northern	Africa	–	NAFR	(E	and	
F)	relative	to	the	no-volcano	simulations.	
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Figure	 S5.	 Thermocline	 response	 in	 the	 first	 and	 second	 post-eruption	 winter.	 Ocean	
temperature	 (°C)	 anomalies	 in	 the	 Equatorial	 Pacific	 (5°S	 –	 5°N)	 for	 the	 first	 (left)	 and	 second	
(right)	 winter	 (December	 to	 February	 –	 DJF)	 following	 the	 AOD	 imposed	 anomalies	 over	 the	
Maritime	Continent	–	MC	(A	and	B),	the	equatorial	Pacific	–	EqPAC	(C	and	D)	and	the	tropical	and	
northern	Africa	 –	NAFR	 (E	 and	 F)	 relative	 to	 the	 no-volcano	 simulations.	Only	 values	 that	 are	
significantly	different	at	the	5%	level	using	a	t	test	are	shaded.	The	contours	follow	the	color	bar	
intervals	(solid	for	positive	and	dashed	for	negative	anomalies;	the	zero	line	is	omitted).	The	bold	
grey	 line	 shows	 the	 climatological	 thermocline	 depth	 for	 the	 no-volcano	members	 (as	 defined	
using	the	20°C	isotherm).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	 S6.	 Surface	 air	 temperature	 and	 wind	 response	 for	 the	 extreme	 experiments.	
Changes	 in	 surface	 temperature	 (°C,	 contours	 and	 shadings)	 and	 wind	 (m/s,	 arrows)	 in	 the	
summer	(June	to	August	–	JJA;	left)	and	winter	(December	to	February	–	DJF;	right)	following	the	
AOD	imposed	anomalies	for	extreme	experiments	(MC	extreme	–	A	and	B;	and	EqPAC	extreme	–	
C	and	D)	relative	to	the	no-volcano	case.	Only	temperature	values	that	are	significantly	different	
at	 the	 5%	 level	 using	 a	 local	 (grid-point)	 t	 test	 are	 shaded.	 The	 contours	 follow	 the	 colorbar	
intervals	(solid	for	positive	and	dashed	for	negative	anomalies;	the	zero	line	is	omitted).	
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Figure	S7.	Rainfall	response	for	the	extreme	experiments.	Changes	in	precipitation	(mm/day,	
contours	and	shadings)	in	the	summer	(June	to	August	–	JJA)	and	winter	(December	to	February	–	
DJF)	following	the	AOD	imposed	anomalies	for	extreme	experiments	(MC	extreme	–	A	and	B;	and	
EqPAC	 extreme	 –	 C	 and	 D)	 relative	 to	 the	 no-volcano	 case.	 Only	 temperature	 values	 that	 are	
significantly	 different	 at	 the	 5%	 level	 using	 a	 local	 (grid-point)	 t	 test	 are	 shaded.	 The	 contours	
follow	the	colorbar	intervals	(solid	for	positive	and	dashed	for	negative	anomalies;	the	zero	line	is	
omitted).	
	

Figure	S8.	Surface	air	temperature	and	wind	response	in	the	second	post-eruption	year.	
Changes	 in	 surface	 temperature	 (°C,	 contours	 and	 shadings)	 and	 wind	 (m/s,	 arrows)	 in	 the	
summer	 (June	 to	 August	 –	 JJA)	 and	 winter	 (December	 to	 February	 –	 DJF)	 following	 the	 AOD	
imposed	anomalies	above	the	Maritime	Continent	–	MC	(A	and	B),	the	equatorial	Pacific	–	EqPAC	
(C	and	D)	and	the	tropical	and	northern	Africa	–	NAFR	(E	and	F).	Only	temperature	values	that	
are	significantly	different	at	the	5%	level	using	a	local	(grid-point)	t	test	are	shaded.	The	contours	
follow	the	colorbar	intervals	(solid	for	positive	and	dashed	for	negative	anomalies;	the	zero	line	is	
omitted).	
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