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Abstract

The solutions of weakly singular fractional integro-differential equations involving

the Caputo derivative have singularity at the lower bound of the domain of integra-

tion. In this paper, we design an algorithm to prevail on this non-smooth behaviour of

solutions of the nonlinear fractional integro-differential equations with a weakly sin-

gular kernel. The convergence of the proposed method is investigated. The proposed

scheme is employed to solve four numerical examples in order to test its efficiency and

accuracy.
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1 Introduction

The fractional calculus is a natural generalization of calculus that studies integral and

derivative operators (the differential operator may be of a fractional order) [8, 16]. Frac-

tional calculus can be used for modeling many phenomena in science and engineering. The

field of viscoelasticity looks to be the most pervasive utilization of fractional differential

and integral operators [21]. In recent years, due to the many applications of fractional

calculus in modeling natural phenomena, much attentions have been paid to the numerical

solution of fractional equations (see e.g. [1, 5, 6, 9, 14, 20, 23–25]). There are phenomena

in the theory of relaxation of dynamical systems [21], polymer physics and rheology and

biophysics [8], the radiative equilibrium [11] and heat conduction problem [22] that are

formulated as fractional order integro-differential equations with weakly singular kernels.

For further applications of fractional order integro-differential equations with weakly sin-

gular kernels in physical problems, refer to [10]. In this study, we consider the following

nonlinear weakly singular fractional integro-differential equation

C
0 D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

1

(t− s)β
un(s)ds, 0 ≤ β < 1, α > 0, t ∈ I(T ), (1.1)
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with boundary value conditions

u(i)(0) = u
(i)
0 , i = 0(1)⌈α⌉ − 1,

where u(t) is a solution which should be determined, g(t) and p(t) are known and con-

tinuous on I(T ) := [0, T ], C
0 D

α
t is the Caputo fractional differential operator, n > 0 is a

integer number as power of u, ui0(i = 0(1)⌈α⌉−1) are given real numbers where ⌈α⌉ is the
ceiling function of α.

Uniqueness and existence of solution of fractional integro-differential equations inves-

tigated in [18] and [17], respectively. The Eq.(1.1) has been solved in [4, 19] by a stable

least residue method and a modification of hat functions(MHFs), respectively.

As we already know, the solutions of (1.1) have singularity at the lower bound of the

domain of integration. This non-smooth behaviour of solutions has rarely been considered

in the previous researches and filling this gap is the motivation for our work.

One of the most powerful ways to deal with poorly behaved integrands is product

integration [13]. Here, we will rewrite Eq.(1.1) into another form by using some properties

of fractional operators and design an algorithm based on the product integration and

Nyström methods and the first kind of Chebyshev polynomials for solving the rewritten

equation. We will observe that the proposed method, without need to smoothing, can

overcome the non-smooth behaviour of solutions.

Since the Caputo fractional derivative is non-local, so it means that nearly all numerical

methods for solving the Eq.(1.1) will be very time-consuming and the low computing time

of methods for solving these equations is very important, so we have reported computing

time of method in the numerical examples.

In Section 2, we recall some basic contents that are used in the numerical and the-

oretical parts. In Section 3, we explain how to implement the method. In Section 4,

we investigate the convergence of the proposed method. In Section 5, to reveal that the

numerical results verify the validity of convergence analysis, four numerical examples with

smooth and non-smooth solutions are prepared.

2 Preliminaries

In this section, firstly, in the sub section 2.1 (Part 1), we recall some properties and

definitions from [21], which, are used to rewrite the Eq.(1.1) to another form. Next, in the

sub section 2.2 (Part 2), we recall some basic concepts, useful inequalities, and lemmas

from [2,3, 12], which, are used in convergence analysis.

2.1 Part 1

Definition 1. For α > 0, the Riemann-Liouville integral operator Iαt is given as [21]

Iαt u(t) =
1

Γ(α)

∫ t

0
(t− s)(α−1)u(s)ds. (2.1)

Definition 2. Let α ∈ R, n − 1 < α < n, n ∈ M and u(t) be a real valued continuous

function defined on [0,∞), then the Caputo fractional derivative of order α > 0 is defined

by [21]

c
aD

α
t u(t) =

1

Γ(n− α)

∫ t

a
(t− τ)n−α−1 dn

dτn
u(τ)dτ. (2.2)
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solving the fractional integro-differential equations

The operators Iαt and C
0 D

α
t are satisfy in the following properties

Iαt (I
β
t u(t)) = Iβt (I

α
t u(t)) = Iα+β

t u(t), (2.3)

Iαt (
C
0 D

α
t u(t)) = u(t)−

m−1∑
i=0

u(i)(0)
ti

t!
, m− 1 < α ≤ m, t > 0. (2.4)

where α, β > 0 and α, β /∈ M.

2.2 Part 2

Lemma 1. [3, 12] Let

Wz =

∫ η

−1
(η − ζ)−αK(η, ζ)z(ζ)dζ,

then, for any function z ∈ C([−1, 1]), there exists a constant C > 0, so that

∥Wz∥0,h ≤ C∥z∥∞, 0 < h < 1− α,

where

∥Wz∥s,h = max
0≤h≤s

max
x∈[−1,1]

|∂h
x(Wz(x))|+ max

0≤h≤s
sup

x,y∈[−1,1],
x̸=y

|∂h
x(Wz(x))| − |∂h

x(Wz(y))|
|x− y|h

.

The following norm is known as the Sobolev norm [2]

∥z∥Hm
ωC (−1,1) =

 m∑
j=0

∥z(j)∥2L2
ωC (−1,1)

 1
2

, for m ≥ 0, (2.5)

where the Hilbert space (Hm
ωC (−1, 1)) is defined as follows

Hm
ωC (−1, 1) = { v ∈ L2

ωC (−1, 1) : for 0 ≤ j ≤ m, z(j) ∈ L2
ωC (−1, 1) },

with the following inner product:

(z, v)m,ωC =

m∑
j=0

∫ 1

−1

1√
1− x2

z(j)v(j)dx.

Notice that, in the continuation, we use the notation PM , which denotes the space of all

polynomials of degree not exceeding M .

Lemma 2. [2] If z ∈ Hm
ωC (−1, 1) for some m ≥ 1, then

∥ICMz − z∥L2
ωC (−1,1) ≤ CM−m|z|

Hm;M

ωC (−1,1)
, (2.6)

where ICMz ∈ PM represent the interpolant of z at Chebyshev Gauss points and

|z|
Hm,M

wC (−1,1)
=

 m∑
j=min(m,M+1)

∥z(j)∥2L2
wC (−1,1)

 1
2

, (2.7)

for m ≥ 0.
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Lemma 3. [2] If z ∈ Hm
ωC (−1, 1) for some m ≥ 1 and ICMz ∈ PM represent the interpolant

of z at Chebyshev Gauss points, then

∥ICMz − z∥L∞(−1,1) ≤ CM−m+ 1
2 |z|

Hm;M

ωC (−1,1)
. (2.8)

Lemma 4. [2] Let {lj(x)}Mj=0 be the M -th Lagrange interpolation polynomials associated

with the Gauss points of the Chebyshev polynomials. Then

∥ICM∥L∞ = O(logM)

3 Description of method

This section is dedicated to introduce the first kind of Chebyshev polynomials and the

used trick to rewrite the equation before implementing the method. Then, using the Gauss

quadrature and defining the appropriate weights and ideas from Nyström and product

integration methods, we present an algorithm for solving the Eq.(1.1).

The first kind of Chebyshev polynomials TM (x) defined by [15]

TM (x) = cos(M cos−1(x)).

The interval of orthogonality of these polynomials with respect to the weight function

w(x) = (1− x2)−1/2, is [−1, 1].

We can generates all the polynomials TM (x) by the following recursion relation

TM (x) = 2xTM−1(x)− TM−2(x), M = 2, 3, .....,

with

T0(x) = 1, T1(x) = x.

The Gauss quadrature formula [7]∫ 1

−1
f(x)w(x)dx ≈ f(x0)w0 + f(x1)w1 + . . .+ f(xM )wM ,

is exact for any polynomial of degree ≤ 2M + 1.

For α > 0 and α /∈ M, applying the Riemann-Liouville integral operatore Iαt to both

sides of (1.1) and using (2.1),(2.4) and boundary value conditions of (1.1), we get

u(t) =

⌈α⌉−1∑
i=0

u
(i)
0

ti

i!
+

1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1p(s)u(s)ds+ Iαt

(∫ t

0
(t− s)−βun(s)ds

)
. (3.1)

Now, we denote the last term of (3.1) as N(u(t)). Thus, using (2.1) and (2.3), we have

N(u(t)) = Iαt

(
Γ(1− β)

Γ(1− β)

∫ t

0
(t− s)−βun(s)ds

)
= Γ(1− β)Iαt I

1−β
t un(t)

= Γ(1− β)Iα−β+1
t un(t) =

Γ(1− β)

Γ(α− β + 1)

∫ t

0
(t− s)α−βun(s)ds. (3.2)

4



solving the fractional integro-differential equations

Substituting, (3.2) into (3.1), the Eq. (1.1) becomes

u(t) =

⌈α⌉−1∑
i=0

u
(i)
0

ti

i!
+

1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1p(s)u(s)ds

+
Γ(1− β)

Γ(α− β + 1)

∫ t

0
(t− s)α−βun(s)ds. (3.3)

Now, for the sake of applying the theory of orthogonal Chebyshev polynomials, using

the following change of variables{
s = T

2 ζ +
T
2 − 1 ≤ ζ ≤ η,

t = T
2 η + T

2 − 1 ≤ η ≤ 1,

the Eq. (3.3) becomes

ũ(η) = h̃1(η) + h̃2(η) +

∫ η

−1
(η − ζ)α−1p̃(ζ)ũ(ζ)dζ + γ

∫ η

−1
(η − ζ)α−βũn(ζ)dζ, (3.4)

where 

ũ(η) = u(T2 η + T
2 ),

h̃1(η) =
∑⌈α⌉−1

i=0 u
(i)
0

(T
2
η+T

2 )
i

i! ,

h̃2(η) =
∫ η
−1(η − ζ)α−1g̃(ζ)dζ,

g̃(ζ) = 1
Γ(α)(

T
2 )

αg(T2 ζ +
T
2 ),

p̃(ζ) = 1
Γ(α)(

T
2 )

αp(T2 ζ +
T
2 ),

γ = Γ(1−β)
Γ(α−β+1)(

T
2 )

α−β+1,

ũn(ζ) = un(T2 ζ +
T
2 ).

Using the Lagrange interpolating polynomial, we can approximate ũ(ζ) as

ICM (ũ; ζ) =

M∑
j=0

lj(ζ)ũ(xj), (3.5)

where

li(η) =
M∏

j=0,j ̸=i

η − xj
xi − xj

, i = 0(1)M.

and

{
xj = − cos

(
(2j + 1)π

2M + 2

)}M

j=0

are the Chebyshev Gauss quadrature points.

Now, we define

Vij =

∫ xi

−1
(xi − ζ)α−1lj(ζ)dζ, i, j = 0(1)M,

Wij =

∫ xi

−1
(xi − ζ)α−βlj(ζ)dζ, i, j = 0(1)M.

To approximate the integral terms of (3.4), we use

ũ(η) = h̃1(η) + h̃2(η) +
M∑
j=0

Vij p̃(xj)ũ(xj) + γ
M∑
j=0

Wij ũ
n(xj). (3.6)
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Now, similar to the Nyström method on grid points xi, i = 0(1)M , we have

ũ(xi) = h̃1(xi) + h̃2(xi) +

M∑
j=0

Vij p̃(xj)ũ(xj) + γ

M∑
j=0

Wij ũ
n(xj). (3.7)

The above system, is a system of (M + 1) nonlinear equations with (M + 1) number of

unknowns. Now, by solving this system by Newton method, we get the values of ũ(xj).

Substituting these values into the Eq.(3.6), for all η ∈ [−1, 1], the values of ũ(η) are

obtained.

4 Over estimating error for convergence

This section devoted to determine over estimate for ∥e1∥L2
ωC (−1,1) using the considered

contents in the section 2.

Theorem 1. Consider the weakly singular nonlinear fractional integro-differential equa-

tion (1.1) and (3.4). Let e1(η) = ICM (ũ(η))− ũ(η), then the following estimates are hold:

∥e1∥L2
ωC (−1,1) ≤ CM−m

(
|h̃1|Hm;M

ωC (−1,1)
+ |h̃2|Hm;M

ωC (−1,1)
+ |ũ|

Hm;M

ωC (−1,1)
+ |ũn|

Hm;M

ωC (−1,1)

)
+ CM−k−m+ 1

2 log(M + 1)

(
|ũ|

Hm;M

ωC (−1,1)
+ |ũn|

Hm;M

ωC (−1,1)

)
+ CM−k log(M + 1) (∥ũ∥L∞ + ∥ũn∥L∞)

+ CM
1
2
−m logMHũ. (4.1)

provided that M is sufficiently large and

Hũ = max
0≤i≤M

{
(xi + 1)αB(α, 1)

(
|p̃(ζ)ũ(ζ)|

Hm;M

ωC (−1,1)
+ ∥p̃(ζ)∥L∞ |ũ|

Hm;M

ωC (−1,1)

)}
. (4.2)

Proof. The Eq.(3.7) can be rewritten as follows

ũ(xi) = h̃1(xi) + h̃2(xi) +

∫ xi

−1
(xi − ζ)α−1p̃(ζ)e1(ζ)dζ

+ γ

∫ xi

−1
(xi − ζ)α−βen(ζ)dζ +

∫ xi

−1
(xi − ζ)α−1p̃(ζ)ũ(ζ)dζ

+ γ

∫ xi

−1
(xi − ζ)α−βũn(ζ)dζ +M1(xi) +M2(xi). (4.3)

where

M1(xi) =

M∑
j=0

Vij p̃(xj)ũ(xj)−
∫ xi

−1
(xi − ζ)α−1p̃(ζ)ICM (ũ(ζ))dζ, (4.4)

M2(xi) = γ
M∑
j=0

Wij ũ
n(xj)− γ

∫ xi

−1
(xi − ζ)α−βICM (ũn(ζ))dζ, (4.5)

such that from (3.5), we have M2(xi) = 0.
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solving the fractional integro-differential equations

Multiplying (4.3) by lj(η) and sum up from 0 toM and considering en(η) = ICM (ũn(η))−
ũn(η), we get

ICM (ũ(η)) = ICM

(
h̃1(η)

)
+ ICM

(
h̃2(η)

)
+ ICM

(∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ

)
+ ICM

(
γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ

)
+ ICM

(∫ η

−1
(η − ζ)α−1p̃(ζ)ũ(ζ)dζ

)
+ ICM

(
γ

∫ η

−1
(η − ζ)α−βũn(ζ)dζ

)
+ ICM (M1(η)) . (4.6)

Subtracting (4.6) from the Eq.(3.4), we have

e1(η) = D1 +D2 + ICM

(∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ

)
+ ICM

(
γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ

)
+D3 +D4 + ICM (M1(η)) . (4.7)

where 

D1 = ICM

(
h̃1(η)

)
− h̃1(η),

D2 = ICM

(
h̃2(η)

)
− h̃2(η),

D3 = ICM

(∫ η
−1(η − ζ)α−1p̃(ζ)ũ(ζ)dζ

)
−

∫ η
−1(η − ζ)α−1p̃(ζ)ũ(ζ)dζ,

D4 = ICM

(
γ
∫ η
−1(η − ζ)α−βũn(ζ)dζ

)
− γ

∫ η
−1(η − ζ)α−βũn(ζ)dζ.

(4.8)

The Eq.(4.7) can be rewritten as follows

e1(η) = D1 +D2 +D3 +D4 +D5 +D6 +

∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ

+ γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ + ICM (M1(η)) . (4.9)

where

D5 = ICM

(∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ

)
−

∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ, (4.10)

D6 = ICM

(
γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ

)
− γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ (4.11)

In the following, in order to simplify the expressions, we use ∥.∥ instead of ∥.∥L2
ωC (−1,1).

Now, from the Eq.(4.9), we have

∥e1(η)∥ ≤ ∥D1∥+ ∥D2∥+ ∥D3∥+ ∥D4∥+ ∥D5∥+ ∥D6∥

+ ∥
∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ∥+ ∥γ

∫ η

−1
(η − ζ)α−βen(ζ)dζ∥

+ ∥ICM (M1(η)) ∥. (4.12)

In order to determine over estimate for ∥e1(η)∥, it,s sufficient that we obtain the over

estimate for terms of the right hand side of the inequality (4.12).

Using inequality (2.6) for ∥D1∥, we have

∥D1∥ ≤ CM−m|h̃1|Hm;M

ωC (−1,1)
, (4.13)
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and similarly

∥D2∥ ≤ CM−m|h̃2|Hm;M

ωC (−1,1)
. (4.14)

Using generalized Hardy’s inequality (Lemma (5) from [12]) and (2.6), we have

∥
∫ η

−1
(η − ζ)α−1p̃(ζ)e1(ζ)dζ∥ ≤ C∥p̃(ζ)e1(ζ)∥ ≤ C∥p̃(ζ)∥∥e1(ζ)∥ ≤ CM−m|ũ|

Hm;M

ωC (−1,1)
,

(4.15)

and

∥γ
∫ η

−1
(η − ζ)α−βen(ζ)dζ∥ ≤ C∥en(ζ)∥ ≤ CM−m|ũn|

Hm;M

ωC (−1,1)
. (4.16)

In this position, we need to recall and setting some notations. The notation Cr,k([0, T ])

indicate the space of functions whose r-th derivatives are Holder continuous with power

k, possessed with the norm ∥ · ∥r,k (defined in Lemma 1) for r ≥ 0 and k ∈ [0, 1].

We know that ICM is the interpolation operator, so

ICMY(z) = Y(z), (4.17)

where Y(z) ∈ PM .

Considering τM :Cr,k([0, T ]) 7→ PM as a linear operator and setting We1 =
∫ η
−1(η −

ζ)α−1p̃(ζ)e1(ζ)dζ, we have

∥D5∥ = ∥ICMWe1 −We1∥ = ∥ICMWe1 − ICM (τMWe1) + τMWe1 −We1∥
≤ ∥ICM∥∥We1 − τMWe1∥+ ∥τMWe1 −We1∥
≤ (∥ICM∥L∞ + 1)∥We1 − τMWe1∥L∞ , (4.18)

Using Lemma 4 and inequality (16) from [12] for r = 0 and Lemmas 1 and 3, we get

the following bound for (4.18)

∥D5∥ ≤ C0,k(logM + 1)M−k∥We1∥0,k ≤ C log(M + 1)M−k∥e1∥L∞

≤ C log(M + 1)M−k+ 1
2
−m|ũ|

Hm;M

ωC (−1,1)
. (4.19)

Using a similar process to get (4.19), we get

∥D3∥ ≤ C0,k(logM + 1)M−k∥Wũ∥0,k ≤ C log(M + 1)M−k∥ũ∥L∞ . (4.20)

Also, similarly, considering Ven =
∫ η
−1(η−ζ)α−βen(ζ)dζ and Vũn =

∫ η
−1(η−ζ)α−βũn(ζ)dζ,

respectively, we get

∥D6∥ ≤ C0,k(logM + 1)γM−k∥Ven∥0,k
≤ C log(M + 1)M−k∥en∥L∞

≤ C log(M + 1)M−k+ 1
2
−m|ũn|

Hm;M

ωC (−1,1)
, (4.21)

and

∥D4∥ ≤ C0,k log(M + 1)γM−k∥Vũn∥0,k

8



solving the fractional integro-differential equations

C log(M + 1)M−k∥ũn∥L∞ . (4.22)

Now, using Lemma 4, we estimate ICM (M1(η)) as

∥ICM (M1(η))∥ ≤ max
0≤i≤M

|M1(xi))|∥ICM∥L∞ ≤ max
0≤i≤M

|M1(xi))| logM, (4.23)

On the other hand

|M1(xi)| = |
∫ xi

−1
(xi − ζ)α−1ICM (p̃(ζ)ũ(ζ))dζ −

∫ xi

−1
(xi − ζ)α−1p̃(ζ)ICM (ũ(ζ))dζ|

= |
∫ xi

−1
(xi − ζ)α−1

(
ICM (p̃(ζ)ũ(ζ))− p̃(ζ)ũ(ζ) + p̃(ζ)ũ(ζ)− p̃(ζ)ICM (ũ(ζ))

)
dζ|

≤
∫ xi

−1
|(xi − ζ)α−1

(
ICM (p̃(ζ)ũ(ζ))− p̃(ζ)ũ(ζ) + p̃(ζ)ũ(ζ)− p̃(ζ)ICM (ũ(ζ))

)
|dζ

≤ max
0≤ζ≤xi

|ICM (p̃(ζ)ũ(ζ))− p̃(ζ)ũ(ζ) + p̃(ζ)ũ(ζ)− p̃(ζ)ICM (ũ(ζ))| |
∫ xi

−1
(xi − ζ)α−1dζ|,

(4.24)

where ∫ xi

−1
(xi − ζ)α−1dζ = (xi + 1)αB(α, 1), (4.25)

with

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt, Re(a) > 0, Re(b) > 0. (4.26)

Using inequality (2.8)

|M1(xi)| ≤ (xi + 1)αB(α, 1)
{
∥ICM (p̃(ζ)ũ(ζ))− p̃(ζ)ũ(ζ)∥L∞+

∥p̃(ζ) (ũ(ζ)− IM (ũ(ζ))) ∥L∞

}
≤ (xi + 1)αB(α, 1)

(
CM

1
2
−m

(
|p̃(ζ)ũ(ζ)|

Hm;M

ωC (−1,1)
+ ∥p̃(ζ)∥L∞ |ũ|

Hm;M

ωC (−1,1)

))
.

(4.27)

Thus, we have

∥ICM (M1(η))∥ ≤ CM
1
2
−m logMHũ (4.28)

where

Hũ = max
0≤i≤M

{
(xi+1)αB(α, 1)

(
|p̃(ζ)ũ(ζ)|

Hm;M

ωC (−1,1)
+ ∥p̃(ζ)∥L∞ |ũ|

Hm;M

ωC (−1,1)

)}
. (4.29)

Combining the above estimates and (4.12), the intended error estimate (4.1) is achieved.

5 Numerical examples

We now present some numerical examples to exhibit the validity of the proposed numerical

method. We use the presented method based on the shifted Chebyshev-Gauss quadrature

points as the grid points on [0, 1]. We used Wolfram Mathematica 12.1 software to get the

9
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errors which have been done on a laptop with the following specifications:
Processor : Intel(R) Core(TM)i7− 2640M CPU @ 2.80 GHz,

Installed Memory (RAM) : 8GB,

System Type : 64− bit Operating System, x64− based processor.

(5.1)

In order to test the efficiency and accuracy of the presented method, the following

examples have been prepared.

Example 1. Consider the following equation

C
0 D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

1

(t− s)β
un(s)ds, t ∈ [0, 1],

where 
n = 1,

α = 1
3 ,

β = 1
2 ,

1
4 ,

p(t) = −32
35 t

1
2 ,

with initial value u(0) = 0 and g(t) is chosen such that the exact solution is u(t) =

sinh(t2/3).

Example 2. Consider the following equation

C
0 D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

1

(t− s)β
un(s)ds, t ∈ [0, 1],

where 
n = 2,

α = 1,

β = 1
2 ,

8
10 ,

p(t) = 0,

with initial value u(0) = 0 and g(t) is chosen such that the exact solution is u(t) = t3.

Example 3. Consider the following equation

C
0 D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

1

(t− s)β
un(s)ds, t ∈ [0, 1],

where 
n = 2,

α = 2
3 ,

β = 1
2 ,

p(t) = t,

with initial value u(0) = 0 and g(t) is chosen such that the exact solution is u(t) = tα, tβ.

10
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Example 4. Consider the following equation

C
0 D

α
t u(t) = g(t) + p(t)u(t) +

∫ t

0

1

(t− s)β
un(s)ds, t ∈ [0, 1],

where


n = 1,

α = 3
5 ,

β = 1
2 ,

6
10 ,

p(t) = t4,

with initial value u(0) = 2 and g(t) is chosen such that the exact solution is u(t) =

exp(t) + 1.

Table 1 contains the obtained maximum errors by the presented method and their

computing time (in seconds) in Example 1 with β = 1/2, β = 1/4. Table 2 incorporates the

obtained maximum errors by the proposed method and their computing time in Example

2 with β = 1/2, β = 8/10. Table 3 contains the obtained maximum errors by the presented

method and their computing time in Example 3 for u(t) = t2/3, t1/2. Table 4 involves the

obtained maximum errors by the presented method and their computing time in Example

4 for β = 1/2, 6/10.

Figs. 1(a) and 1(b) have been plotted for Example 1 to show the behavior of errors

for the calculated solutions by the presented method, with β = 1/2, 1/4, respectively, for

M = 10. Figs. 2(a) and 2(b) represent the behavior of errors for the calculated solutions

by the presented method, for Example 2, with β = 1/2, 8/10, respectively, for M = 10.

Also, about Example 3, for M = 10 we plotted Figs. 3(a) and 3(b) with u(t) = t2/3, t1/2,

respectively. Figs. 4(a) and 4(b) are correspond to the Example 4 with β = 1/2, 6/10,

respectively, for M = 10.

Table 1: The obtained maximum errors ||u− ICM (u)||∞ by the presented method and their

computing time (in seconds) in Example 1 with β = 1/2, 1/4.

M ||u− ICM (u)||∞ for β = 1/2 CPU time(s) ||u− ICM (u)||∞ for β = 1/4 CPU time(s)

2 7.0e− 03 0.671875 3.4e− 03 0.671875

22 1.7e− 03 1.20313 7.7e− 04 1.20313

23 3.0e− 04 2.60938 1.1e− 04 2.625

24 4.4e− 05 8.89063 1.4e− 05 8.78125

25 6.0e− 06 41.3906 1.6e− 06 41.9531

11
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Table 2: The obtained maximum errors ||u− ICM (u)||∞ by the proposed method and their

computing time (in seconds) in Example 2 with β = 1/2, 8/10.

M ||u− ICM (u)||∞ for β = 1/2 CPU time(s) ||u− ICM (u)||∞ for β = 8/10 CPU time(s)

2 1.6e− 02 0.15625 8.5e− 02 0.125

22 3.5e− 04 0.203125 2.1e− 03 0.296875

23 1.11022e− 16 0.8125 3.33067e− 16 0.96875

24 1.11022e− 16 3.20313 3.33067e− 16 3.625

25 2.22045e− 16 14.9219 3.33067e− 16 15.6875

Table 3: The obtained maximum errors ||u− ICM (u)||∞ by the proposed method and their

computing time (in seconds) in Example 3 for u(t) = t2/3, t1/2.

M ||u− ICM (u)||∞ for u(t) = t2/3 CPU time(s) ||u− ICM (u)||∞ for u(t) = t1/2 CPU time(s)

2 2.3e− 02 0.203125 1.2e− 02 0.203125

22 1.5e− 03 0.40625 8.6e− 04 0.375

23 8.1e− 05 1.35938 3.6e− 05 1.75

24 3.87e− 06 6.79688 1.43e− 06 6.54688

25 1.67e− 07 38.0313 5.2e− 08 38.4219

Table 4: The obtained maximum errors ||u− ICM (u)||∞ by the presented method and their

computing time (in seconds) in Example 4 for β = 1/2, 6/10.

M ||u− ICM (u)||∞ with β = 1/2 CPU time(s) ||u− ICM (u)||∞ with β = 6/10 CPU time(s)

2 1.2e− 01 0.296875 2.1e− 01 0.359375

22 2.6e− 03 0.828125 3.5e− 03 0.46875

23 2.5e− 08 2.40625 3.1e− 08 1.98438

24 3.9e− 15 7.15625 5.3e− 15 5.375

25 5.3e− 15 33.125 5.3e− 15 29.7031
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(a) The associated graph with β = 1/2.
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Error

(b) The associated graph with β = 1/4.

Figure 1: The error behaviors of the presented method for M = 10 in Example 1 with

β = 1/2, 1/4.
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(a) The associated graph with β = 1/2.
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(b) The associated graph with β = 8/10.

Figure 2: The error behaviors of the presented method for M = 10 in Example 2 with

β = 1/2, 8/10.
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(a) The associated graph with u(t) = t2/3.
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(b) The associated graph with u(t) = t1/2.

Figure 3: The error behaviors of the presented method for M = 10 in Example 3 with

u(t) = t2/3, t1/2.
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(a) The associated graph with β = 1/2.
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(b) The associated graph with β = 6/10.

Figure 4: The error behaviors of the presented method for M = 10 in Example 4 with

β = 1/2, 6/10.

6 Conclusion

In this paper, we proposed an algorithm to numerical solution of the nonlinear fractional

integro-differential equation with a weakly singular kernel and studied the non-smooth

behavior of solutions of these equations. Convergence of the method has been investigated

by obtaining the over estimate error and an upper bound of error has been provided. The

reported numerical results as several tables and figures, show the accuracy and good

agreement of the approximate solutions and low CPU time (in seconds) of method. Also,

we observed that the presented method is efficient for solving the weakly singular fractional

non linear integro-differential equations with smooth and non-smooth solutions. Therefore,

the sixth-kind Chebyshev polynomials can be used to numerically solve similar equations.
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