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Abstract

When a real-life problem is mathematically modeled by differential equations or
another type of equation, there are always intrinsic phenomena that are not taken
into account and can affect the behavior of such a model. For example, external
forces can abruptly change the model; impulses and delay can cause a breakdown
of it. Considering these intrinsic phenomena in the mathematical model makes the
difference between a simple differential equation and a differential equation with
impulses, delay, and nonlocal conditions. So, in this work, we consider a semilinear
nonautonomous neutral differential equation under the influence of impulses, delay,
and nonlocal conditions. In this paper we study the controllability of these semilin-
ear neutral differential equations with some of these intrinsic phenomena taking into
consideration. Our aim is to prove that the controllability of the associated ordinary
linear differential equation is preserved under certain conditions imposed on these
new disturbances. In order to achieve our objective, we apply Rothe’s fixed point
Theorem to prove the exact controllability of the system. Finally, our method can be
extended to the evolution equation in Hilbert spaces with applications to control sys-
tems governed by PDE’s equations.
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1 INTRODUCTION

This work is devoted to prove that, under certain conditions on the nonlinear terms, the controllability of the associated ordinary
differential equation to a semilinear neutral differential equations with impulses, delay and nonlocal conditions is robust. To
be more specific, in this paper we give a sufficient condition for the exact controllability of the following neutral differential
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equation with impulses, delay and nonlocal conditions
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡

[

𝑧(𝑡) − 𝑓−1(𝑡, 𝑧𝑡)
]

= 𝐴0(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓1(𝑡, 𝑧𝑡, 𝑢(𝑡)), 𝑡 ≠ 𝑡𝑘, 𝑡 ∈ [0, 𝜏]

𝑧(𝜃) + ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝜃) = 𝜂(𝜃), 𝜃 ∈ [−𝑟, 0],

𝑧(𝑡+𝑘 ) = 𝑧(𝑡−𝑘 ) + 𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)), 𝑘 = 1,… , 𝑝,

(1)

where 𝑧(𝑡+𝑘 ) = lim𝑡→𝑡+𝑘
𝑧(𝑡), 𝑧(𝑡−𝑘 ) = lim𝑡→𝑡−𝑘

𝑧(𝑡),𝐴0(𝑡), and𝐵(𝑡) are continuous matrices of dimension 𝑛×𝑛 and 𝑛×𝑚, respectively;
the functions 𝑓−1, 𝑓1, and ℎ are smooth enough; 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝 < 𝜏, 0 < 𝜏1 < 𝜏2,⋯ < 𝜏𝑞 < 𝑟 < 𝜏, and the control
function 𝑢 belongs to the space 𝐶([0, 𝜏];ℝ𝑚). Here, 𝑧𝑡 stands as the function 𝑧𝑡 ∶ [−𝑟, 0] ←→ ℝ𝑛, 𝑧𝑡(𝜃) = 𝑧(𝑡+ 𝜃), and 𝜂 ∈  𝑟,
where  𝑟 is a natural Banach space defined as

 𝑟 =
{

𝜂 ∶ [−𝑟, 0] ←→ ℝ𝑛 |
|

|

𝜂 is continuous except at the points 𝜃𝑘, 𝑘 = 1,… , 𝑝,

where the one-sided limits 𝜂(𝜃−𝑘 ), 𝜂(𝜃+𝑘 ) exist and 𝜂(𝜃+𝑘 ) = 𝜂(𝜃𝑘)
}

,

and endowed with the norm
‖𝜂‖𝑟 = sup

𝜃∈[−𝑟,0]
‖𝜂(𝜃)‖.

This work has been motivated by the fact that neutral equations can be seen as a perturbation on the derivative of an ordinary
differential equation. It will confirm the conjecture that impulses or abrupt changes, delays, and nonlocal conditions on a system
are intrinsic phenomena. This means that under certain conditions, they do not destroy some properties of the original system,
such as controllability,1,2,3 which is the objective of this work.

2 PRELIMINARIES

In this section, we present some notations to be used through this work and define the Banach space where the solutions of
problem (1) will take place. After that, we characterize the exact controllability for the associated ordinary linear system to the
system (1).

We begin with the definition of a natural Banach spaces where this type of problems can be set.

 𝑡1..𝑡𝑝 =
{

𝑧 ∶ [0, 𝜏] → ℝ𝑛 |
|

|

𝑧 is continuous except at the points 𝑡𝑘, 𝑘 = 1,… , 𝑝,

where the one-sided limits 𝑧(𝑡−𝑘 ), 𝑧(𝑡+𝑘 ) exist and 𝑧(𝑡+𝑘 ) = 𝑧(𝑡𝑘)
}
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equipped with the supremum norm, and

𝜏 =
{

𝜂 ∶ [−𝑟, 𝜏] ←→ ℝ𝑛 |
|

|

𝜂|[−𝑟,0] ∈  𝑟 and 𝜂|[0,𝜏] ∈  𝑡1..𝑡𝑝

}

equipped with the norm
‖𝜂‖𝜏 = sup

𝜃∈[−𝑟,𝜏]
‖𝜂(𝜃)‖ℝ𝑛 .

We will also consider
ℝ𝑞𝑛 = ℝ𝑛 ×ℝ𝑛 ×⋯ ×ℝ𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞−times

endowed with the norm
‖𝑦‖𝑞 =

𝑞
∑

𝑖=1

‖

‖

𝑦𝑖‖‖ℝ𝑛 .

Analogously, we define the Banach space

 𝑟𝑞 =
{

𝜂 ∶ [−𝑟, 0] ←→ ℝ𝑞𝑛 |
|

|

𝜂 is continuous except at the points 𝜃𝑘, 𝑘 = 1,… , 𝑝,

where the one-sided limits 𝜂(𝜃−𝑘 ), 𝜂(𝜃+𝑘 ) exist and 𝜂(𝜃+𝑘 ) = 𝜂(𝜃𝑘)
}

endowed with the norm
‖𝜂‖𝑟𝑞 = sup

𝜃∈[−𝑟,0]
‖𝜂(𝜃)‖𝑞 = sup

𝜃∈[−𝑟,0]

( 𝑞
∑

𝑖=1

‖

‖

𝜂𝑖(𝜃)‖‖ℝ𝑛

)

.

The functions involving system (1) are considered in the following spaces:

𝑓−1 ∶ [0, 𝜏] ×  𝑟 ←→ ℝ𝑛, 𝑓1 ∶ [0, 𝜏] ×  𝑟 ×ℝ𝑚 ←→ ℝ𝑛,

ℎ ∶  𝑟𝑞 ←→  𝑟, 𝐽𝑘 ∶ [0, 𝜏] ×ℝ𝑛 ←→ ℝ𝑛.

To our knowledge, the study of the control system governed by non-autonomous semi-linear neutral equations is limited,
unlike the autonomous linear neutral differential equations where there are several works. There is even an algebraic condition for
the controllability of such systems that extends the well-known Kalman’s condition for autonomous systems of linear ordinary
differential equations.4,5,6,7,8 However, for semilinear neutral equations, the literature is not broad. There are few works on the
existence of solutions. Hernández and Pierri9 studied an abstract neutral differential equations with state-dependent delay is ,
and Nieto and Tisdell10 discussed the exact controllability of first-order impulsive differential equations. Recently, Malik and
Kumar3 investigated the controllability of neutral differential equation with impulses on time scales. As far as we know, this is
the first time that the controllability of neutral equations with impulses and nonlocal conditions simultaneously has been studied.
A recently work11 proved the existence of solutions for impulsive time-varying neutral differential equations with impulses and
nonlocal conditions. This reveals the novelty of our paper, which shows that neutral differential equations are just perturbations
of ordinary differential equations from a controllability point of view.
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2.1 Characterization of the Linear System

Corresponding to the neutral semilinear system (1), we consider the linear system of ordinary differential equations

𝑧′(𝑡) = 𝐴0(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡), 𝑡 ∈ (0, 𝜏]. (2)

We suppose that the reader is familiar with the concept of exact controllability, however, for the sake of completeness, we will
recall the adapted definition of exact controllability of (1).

Definition 1 (Exact controllability). The system (1) is said to be exactly controllable on [0, 𝜏] if for every 𝜂 ∈  𝑟 and 𝑧1 ∈ ℝ𝑛,
there exists a control 𝑢 ∈ 𝐶([0, 𝜏];ℝ𝑚) such that the corresponding solution 𝑧 of (1) satisfies

𝑧(0) + ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) = 𝜂(0) and 𝑧(𝜏) = 𝑧1.

In order to state the well known characterizations of the controllability of system (2), we note that for all 𝑧0 ∈ ℝ𝑛 and
𝑢 ∈ 𝐶([0, 𝜏];ℝ𝑚) the initial value problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧′(𝑡) = 𝐴0(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡), 𝑡 ∈ (0, 𝜏],

𝑧(0) = 𝑧0
(3)

admits only one solution given by

𝑧(𝑡) = 𝐸(𝑡, 0)𝑧0 +

𝑡

∫
0

𝐸(𝑡, 𝜃)𝐵(𝜃)𝑑𝜃, 𝑡 ∈ [0, 𝜏],

where 𝐸(𝑡, 𝜃) = Φ(𝑡)Φ−1(𝜃) and Φ is the fundamental matrix of the uncontrolled linear system

𝑧′(𝑡) = 𝐴0(𝑡)𝑧(𝑡). (4)

Since 𝐸 is continuous in both variables, there exists 𝑀 ≥ 1 such that

‖𝐸(𝑡, 𝜃)‖ ≤𝑀, ∀𝑡, 𝜃 ∈ [0, 𝜏]. (5)

Definition 2. Corresponding with the linear system of ordinary differential equation (2), we define the controllability operator
ℭ ∶ 𝐿2([0, 𝜏];ℝ𝑚) ←→ ℝ𝑛 as follows

ℭ𝑢 =

𝜏

∫
0

𝐸(𝜏, 𝜃)𝐵(𝜃)𝑢(𝜃)𝑑𝜃. (6)

The adjoint operator ℭ∗ ∶ ℝ𝑛 ←→ 𝐿2([0, 𝜏];ℝ𝑚) of the operator ℭ is given by

(ℭ∗𝑧)(𝑠) = 𝐵∗(𝑠)𝐸∗(𝜏, 𝑠)𝑧, ∀𝑠 ∈ [0, 𝜏], ∀𝑧 ∈ ℝ𝑛, (7)



OSCAR CAMACHO ET AL 5

Proposition 1. The systems (2) is controllable on [0, 𝜏] if, and only if, Ran(ℭ) = ℝ𝑛.

Also, we define the Gramian operator as follows

𝔚𝑧 = ℭℭ∗𝑧 =

𝜏

∫
0

𝐸(𝜏, 𝑠)𝐵(𝑠)𝐵∗(𝑠)𝐸∗(𝜏, 𝑠)𝑧𝑑𝑠. (8)

Next, we shall use the following result from Curtain and Pritchard,12 and Curtain and Zwart.13

Lemma 1. Let 𝑌 and 𝑍 be Hilbert space,  ∈ 𝐿(𝑌 ,𝑍) and ∗ ∈ 𝐿(𝑍, 𝑌 ) the adjoint operator. Then the following statements
hold.

(i) Ran() = 𝑍 ⇐⇒ ∃𝛾 > 0 ∶ ‖∗𝑧‖𝑊 ≥ 𝛾‖𝑧‖𝑍 , 𝑧 ∈ 𝑍.

(ii) Ran() = 𝑍 ⇐⇒ ker(∗) = {0} ⇐⇒ ∗ is 1 − 1.
Lemma 2. 14 The following statements are equivalent.

a) Ran(ℭ) = ℝ𝑛.

b) ker(ℭ∗) = {0}.

c) ∃𝛾 > 0 ∶ ⟨ℭℭ∗𝑧, 𝑧⟩ > 𝛾‖𝑧‖2, 𝑧 ≠ 0 in ℝ𝑛.

d) ∃𝔚−1 ∈ 𝐿(ℝ𝑛) (𝔚−1 is bounded).

e) 𝐵∗(𝑠)𝐸∗(𝜏, 𝑠)𝑧 = 0, ∀𝑠 ∈ [0, 𝜏] ⇒ 𝑧 = 0.

Therefore, the operator Υ ∶ ℝ𝑛 → 𝐿2([0, 𝜏];ℝ𝑚) defined by

Υ𝑧 = 𝐵∗(⋅)𝐸∗(𝜏, ⋅)𝔚−1𝑧 = ℭ∗(ℭℭ∗)−1𝑧, (9)

is called the steering operator and it is a right inverse of ℭ, in the sense that

ℭΥ = 𝐼. (10)

Moreover,
‖𝔚−1𝑧‖ = ‖(ℭℭ∗)−1𝑧‖ ≤ 𝛾−1‖𝑧‖, 𝑧 ∈ ℝ𝑛, (11)

and a control steering system (2) from initial state 𝑧0 to a final state 𝑧1 at time 𝜏 > 0 is given by

𝑢(𝑡) = 𝐵∗(𝑡)𝐸∗(𝜏, 𝑡)𝔚−1(𝑧1 − 𝐸(𝜏, 0)𝑧0) = Υ(𝑧1 − 𝐸(𝜏, 0)𝑧0)(𝑡), 𝑡 ∈ [0, 𝜏]. (12)
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Lemma 3. 1 Let 𝑆 be any dense subspace of 𝐿2([0, 𝜏];ℝ𝑚). Then, system (2) is controllable with control 𝑢 ∈ 𝐿2([0, 𝜏];ℝ𝑚) if,
and only if, it is controllable with control 𝑢 ∈ 𝑆. i.e.,

Ran(ℭ) = ℝ𝑛 ⇐⇒ Ran(ℭ|𝑆) = ℝ𝑛,

where ℭ|𝑆 is the restriction of ℭ to 𝑆.

Remark 1. According to the previous Lemma, if the system is controllable, it is controllable with control functions in the
following dense spaces of 𝐿2(0, 𝜏;ℝ𝑚):

𝑆 = 𝐶([0, 𝜏];ℝ𝑚), and 𝑆 = 𝐶∞([0, 𝜏];ℝ𝑚).

Moreover, the operators ℭ, 𝔚 and Υ are well defined in the space of continuous functions: ℭ ∶ 𝐶([0, 𝜏];ℝ𝑚) ←→ ℝ𝑛 by

ℭ𝑢 =

𝜏

∫
0

𝐸(𝜏, 𝑠)𝐵(𝑠)𝑢(𝑠)𝑑𝑠, (13)

and ℭ∗ ∶ ℝ𝑛 ←→ 𝐶([0, 𝜏];ℝ𝑚) by

(ℭ∗𝑧)(𝑠) = 𝐵∗(𝑠)𝐸∗(𝜏, 𝑠)𝑧, ∀𝑠 ∈ [0, 𝜏]. ∀𝑧 ∈ ℝ𝑛. (14)

Also, the Controllability Gramian operator still the same 𝔚 ∶ ℝ𝑛 → ℝ𝑛

𝔚𝑧 = ℭℭ∗𝑧 =

𝜏

∫
0

𝐸(𝜏, 𝑠)𝐵(𝑠)𝐵∗(𝑠)𝐸∗(𝜏, 𝑠)𝑧𝑑𝑠. (15)

Finally, the operators Υ ∶ ℝ𝑛 → 𝐶([0, 𝜏];ℝ𝑚) defined by

Υ𝑧 = 𝐵∗(⋅)𝐸∗(𝜏, ⋅)𝔚−1𝑧 = ℭ∗(ℭℭ∗)−1𝑧, (16)

is a right inverse of ℭ, in the sense that
ℭΥ = 𝐼. (17)

To conclude this section, we shall state the Rothe’s Fixed Point Theorem, which we will use to prove our main theorem

Theorem 1 (Rothe’s Fixed Point Theorem1,2,3,15,16). Let 𝐸 be a Banach space, and consider 𝐵 ⊂ 𝐸 a convex closed subset
containing the zero of 𝐸 in its interior. Let Ψ ∶ 𝐵 ←→ 𝐸 be a continuous function with Ψ(𝐵) relatively compact in 𝐸 and
Ψ(𝜕𝐵) ⊂ 𝐵. Then there exists 𝑥∗ ∈ 𝐵 such that

Ψ(𝑥∗) = 𝑥∗.
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3 MAIN HYPOTHESES

In this section, we will formulate our main hypotheses to be used in the proof of our principle result. The assumption that
the linear control system of ordinary differential equations (2) is exactly controllable on [0, 𝜏] will be required. We shall also
consider the following hypotheses on the nonlinear terms that involve the semilinear system of time dependent neutral differential
equations with impulses, delay and nonlocal conditions simultaneously:
(H𝟏) The nonlinear terms are globally Lipschitz. i.e.,

‖ℎ(𝑧) − ℎ(𝑤)‖𝑟 ≤ 𝐿𝑔‖𝑧 −𝑤‖𝑟𝑞 , 𝑧, 𝑤 ∈  𝑟𝑞 ,

‖

‖

𝑓−1(𝑡, 𝜂) − 𝑓−1(𝑡, 𝜓)‖‖ℝ𝑛 ≤ 𝐿−1‖𝜂 − 𝜓‖𝑟, 𝜂, 𝜓 ∈  𝑟, 𝑡 ∈ [0, 𝜏],

‖

‖

𝑓1(𝑡, 𝜂, 𝑢) − 𝑓1(𝑡, 𝜓, 𝑣)‖‖ℝ𝑛 ≤ 𝐿1
{

‖𝜂 − 𝜓‖𝑟 + ‖𝑢 − 𝑣‖ℝ𝑚

}

, 𝜂, 𝜓 ∈  𝑟, 𝑢, 𝑣 ∈ ℝ𝕞, 𝑡 ∈ [0, 𝜏],

‖

‖

𝐽𝑘(𝑡, 𝑧) − 𝐽𝑘(𝑡, 𝑤)‖‖ℝ𝑛 ≤ 𝑑𝑘‖𝑧 −𝑤‖ℝ𝑛 , 𝑧, 𝑤 ∈ ℝ𝕟, 𝑡 ∈ [0, 𝜏].

For all bounded set 𝔅 in 𝜏 there exists a continuous function 𝜌 ∶ [0, 𝜏] ←→ ℝ+ depending on 𝔅 such that 𝜌(0) = 0, and for
all 𝑧 ∈ 𝔅, and 𝑡2, 𝑡1 ∈ [0, 𝜏] we have that

‖

‖

‖

𝑓−1(𝑡2, 𝑧𝑡2) − 𝑓−1(𝑡1, 𝑧𝑡1)
‖

‖

‖ℝ𝑛
≤ 𝜌

(

|𝑡2 − 𝑡1|
)

‖𝑧‖𝜏

‖

‖

ℎ(𝑧)(𝑡2) − ℎ(𝑧)(𝑡1)‖‖ℝ𝑛 ≤ 𝜌
(

|𝑡2 − 𝑡1|
)

‖𝑧‖𝑟𝑞 .

(H𝟐)

‖

‖

𝑓1(𝑡, 𝜂, 𝑢)‖‖ℝ𝑛 ≤ 𝑎0‖𝜂(−𝑟)‖
𝛼0
ℝ𝑛 + ‖𝑢‖𝛽0ℝ𝑚 + 𝑐0, 𝜂 ∈  𝑟, 𝑡 ∈ [0, 𝜏]

(H𝟑)

‖

‖

𝐽𝑘(𝑡, 𝑧)‖‖ℝ𝑛 ≤ 𝑎𝑘‖𝑧‖
𝛼𝑘
ℝ𝑛 + 𝑐𝑘, 𝑘 = 1, 2,… , 𝑝, 𝑧 ∈ ℝ𝑛, 𝑡 ∈ [0, 𝜏]

(H𝟒)

‖ℎ(𝑧)‖𝑟 ≤ 𝑒‖𝑧‖𝜂1𝑟𝑞 , 𝑧 ∈  𝑟𝑞 ,

‖𝑓−1(𝑡, 𝜂)‖ℝ𝑛 ≤ ‖𝜂(−𝑟)‖𝜔1
ℝ𝑛 , 𝜂 ∈  𝑟, 𝑡 ∈ [0, 𝜏],

where 0 ≤ 𝛼𝑘 < 1, 𝑘 = 0, 1, 2, 3,… , 𝑝, 0 ≤ 𝛽0 < 1, 0 ≤ 𝜂1 < 1, and 0 ≤ 𝜔1 < 1.

Remark 2. Obviously, every bounded and globally Lipschitz function chosen conveniently, satisfies the hypotheses (H1)-(H4).
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4 MAIN THEOREM

In this section, we shall prove that the neutral differential equation with impulses and nonlocal conditions is exactly controllable
if the system of ordinary differential equations (2) is controllable and the hypotheses (H1)-(H4) are satisfied.

Under the above hypotheses, for all 𝜂 ∈  𝑟 and 𝑢 ∈ 𝐶([0, 𝜏];ℝ𝑚) the system (1) admits one solution 𝑧(𝑡) = 𝑧(𝑡, 𝜂, 𝑢) given
by3,11

𝑧(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐸(𝑡, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

+𝑓−1(𝑡, 𝑧𝑡) +

𝑡

∫
0

𝐸(𝑡, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃

+

𝑡

∫
0

𝐸(𝑡, 𝜃)𝐵(𝜃)𝑢(𝜃)𝑑𝜃 +
∑

0<𝑡𝑘<𝑡
𝐸(𝑡, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)), 𝑡 ∈ [0, 𝜏],

𝜂(𝑡) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝑡), 𝑡 ∈ [−𝑟, 0].

(18)

Now, let us suppose for a moment that system (1) is exactly controllable. That is to say, for all 𝜂 ∈  𝑟 and 𝑧1 ∈ ℝ𝑛 there
exists 𝑢 ∈ 𝐶([0, 𝜏];ℝ𝑚) such that the corresponding solution of (1), 𝑧(𝑡) = 𝑧(𝑡, 𝜂, 𝑢) satisfies

𝑧(0) + ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) = 𝜂(0), 𝑧(𝜏) = 𝑧1,

i.e.,

𝑧1 = 𝐸(𝜏, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

+ 𝑓−1(𝜏, 𝑧𝜏) +

𝜏

∫
0

𝐸(𝜏, 𝑠)
[

𝐴0(𝑠)𝑓−1(𝑠, 𝑧𝑠) + 𝑓1(𝑠, 𝑧𝑠, 𝑢(𝑠))
]

𝑑𝑠

+

𝜏

∫
0

𝐸(𝜏, 𝑠)𝐵(𝑠)𝑢(𝑠)𝑑𝑠 +
𝑞
∑

𝑘=1
𝐸(𝜏, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)).

Hence

ℭ𝑢 =𝑧1 − 𝐸(𝜏, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

− 𝑓−1(𝜏, 𝑧𝜏) −

𝜏

∫
0

𝐸(𝜏, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃

−
𝑞
∑

𝑘=1
𝐸(𝜏, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)).

Then
𝑢(𝑡) = 𝐵∗(𝑡)𝐸∗(𝜏, 𝑡)𝔚−1ℒ (𝑧, 𝑢),
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where ℒ ∶ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) ←→ ℝ𝑛 is given by the following formula

ℒ (𝑧, 𝑢) = 𝑧1 − 𝑓−1(𝜏, 𝑧𝜏) −

𝜏

∫
0

𝐸(𝜏, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃 −

𝐸(𝜏, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

−
𝑞
∑

𝑘=1
𝐸(𝜏, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)).

Next, we consider the operator Ω ∶ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) ←→ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) defined as follows

Ω(𝑧, 𝑢) =
(

Ω1(𝑧, 𝑢),Ω2(𝑧, 𝑢)
)

= (𝑦, 𝑣),

where Ω1 ∶ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) ←→ 𝜏 and Ω2 ∶ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) ←→ 𝐶([0, 𝜏];ℝ𝑚) are operators defined by:

Ω1(𝑧, 𝑢)(𝑡) = 𝑦(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐸(𝑡, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0)

−𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

+

𝑡

∫
0

𝐸(𝑡, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃

+

𝑡

∫
0

𝐸(𝑡, 𝜃)𝐵(𝜃)𝑢(𝜃)𝑑𝜃 + 𝑓−1(𝑡, 𝑧𝑡)

+
∑

0<𝑡𝑘<𝑡
𝐸(𝑡, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)), 𝑡 ∈ [0, 𝜏],

𝜂(𝑡) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝑡), 𝑡 ∈ [−𝑟, 0].

and
Ω2(𝑧, 𝑢)(𝑡) = 𝑣(𝑡) = 𝐵∗(𝑡)𝐸∗(𝜏, 𝑡)𝔚−1ℒ (𝑧, 𝑢), 𝑡 ∈ [0, 𝜏],

respectively.
Taking into account the above discussion, the following proposition is now obvious.

Proposition 2. System (1) is controllable if, and only if, the operator Ω has a fixed point, i.e.,

∃(𝑧, 𝑢) ∈ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) ∶ Ω(𝑧, 𝑢) = (𝑧, 𝑢).

Now we are in position to present the main theorem of this paper.

Theorem 2. Suppose conditions (H1)-(H4) hold and the linear system (2) is controllable on [0, 𝜏]. Then, the semilinear neutral
differential equation (1) is also controllable on [0, 𝜏]. Moreover, for 𝜂 ∈  𝑟 and 𝑧1 ∈ ℝ𝑛 there exists 𝑢 ∈ 𝐶([0, 𝜏];ℝ𝑚) such
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that the corresponding solution 𝑧(𝑡) = 𝑧(𝑡, 𝜂, 𝑢) of (1) satisfies

𝑧1 = 𝑧(𝜏) =𝐸(𝜏, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

+ 𝑓−1(𝜏, 𝑧𝜏) +

𝜏

∫
0

𝐸(𝜏, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃

+

𝜏

∫
0

𝐸(𝜏, 𝜃)𝐵(𝜃)𝑢(𝜃)𝑑𝜃 +
𝑞
∑

𝑘=1
𝐸(𝜏, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘))

and
𝑢(𝑡) = 𝐵∗(𝑡)𝐸∗(𝜏, 𝑡)𝔚−1ℒ (𝑧, 𝑢), 𝑡 ∈ [0, 𝜏].

Proof. The proof of this Theorem will be given by asseverations. After that, we will confirm our main statement.

Asseveration 1. The operator Ω is continuous.

It is enough to prove that the operators Ω1 and Ω2 are continuous. On the one hand, we prove the continuity of Ω1. To this
end, we proceed as follows:

For 𝑡 ∈ [0, 𝜏], we get that
‖

‖

Ω1(𝑧, 𝑢)(𝑡) − Ω1(𝑤, 𝑣)(𝑡)‖‖ ≤ 𝐾1‖𝑧 −𝑤‖ +𝐾2‖𝑢 − 𝑣‖,

where

𝐾1 =𝑀
[

𝐿𝑔 + 𝐿−1𝐿𝑔 + 𝐿−1 + 𝜏𝐿−1
‖

‖

𝐴0
‖

‖

+ 𝐿1𝜏 + 𝑑
]

𝐾2 =𝑀𝜏
[

𝐿1 + ‖𝐵‖
]

with 𝑑 =
𝑞
∑

𝑘=1
𝑑𝑘, ‖𝐵‖ = sup

𝜃∈[0,𝜏]
‖𝐵(𝜃)‖, and ‖

‖

𝐴0
‖

‖

= sup
𝜃∈[0,𝜏]

‖

‖

𝐴0(𝜃)‖‖.

For 𝑡 ∈ [−𝑟, 0] we have that
‖

‖

Ω1(𝑧, 𝑢)(𝑡) − Ω1(𝑤, 𝑣)(𝑡)‖‖ ≤ 𝐿𝑔‖𝑧 −𝑤‖.

These two inequalities imply the continuity of Ω1.
On the other hand the continuity of Ω2 follows from the continuity of 𝐵, 𝐸, and ℒ .

Asseveration 2. The operator Ω maps bounded sets of 𝜏 ×𝐶([0, 𝜏];ℝ𝑚) into equicontinuous sets of 𝜏 ×𝐶([0, 𝜏];ℝ𝑚).
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In fact, let 𝐷 be a bounded set of 𝜏 × 𝐶([0, 𝜏];ℝ𝑚), and consider the following inequalities:
For 0 < 𝑡1 < 𝑡2 < 𝜏 and (𝑧, 𝑢) ∈ 𝐷, we have that

‖

‖

Ω1(𝑧, 𝑢)(𝑡2) − Ω1(𝑧, 𝑢)(𝑡1)‖‖ ≤‖
‖

𝐸(𝑡2, 0) − 𝐸(𝑡1, 0)‖‖
[

‖𝜂(0)‖+‖‖
‖

ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )
‖

‖

‖

+ ‖

‖

‖

𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
‖

‖

‖

]

+

𝑡1

∫
0

‖

‖

𝐸(𝑡2, 𝜃) − 𝐸(𝑡1, 𝜃)‖‖‖𝐵(𝜃)‖‖𝑢(𝜃)‖𝑑𝜃

+

𝑡2

∫
𝑡1

‖

‖

𝐸(𝑡2, 𝜃)‖‖‖𝐵(𝜃)‖‖𝑢(𝜃)‖𝑑𝜃

+𝜌
(

|𝑡2 − 𝑡1|
)

‖𝑧‖ +

𝑡1

∫
0

‖

‖

𝐸(𝑡2, 𝜃) − 𝐸(𝑡1, 𝜃)‖‖

×
(

‖

‖

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))‖‖𝑑𝜃
)

+

𝑡2

∫
𝑡1

‖

‖

𝐸(𝑡2, 𝜃)‖‖‖‖𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃)+𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))‖‖𝑑𝜃

+
∑

0<𝑡𝑘<𝑡1

‖

‖

𝐸(𝑡2, 𝑡𝑘) − 𝐸(𝑡1, 𝑡𝑘)‖‖‖‖𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘))‖‖

+
∑

𝑡1<𝑡𝑘<𝑡2

‖

‖

𝐸(𝑡2, 𝑡𝑘)‖‖‖‖𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘))‖‖.

For −𝑟 < 𝑡1 < 𝑡2 < 0, we have that

‖

‖

Ω1(𝑧, 𝑢)(𝑡2) − Ω1(𝑧, 𝑢)(𝑡1)‖‖ ≤ ‖

‖

𝜂(𝑡2) − 𝜂(𝑡1)‖‖ +

‖

‖

‖

ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝑡2) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝑡1)
‖

‖

‖

≤ ‖

‖

𝜂(𝑡2) − 𝜂(𝑡1)‖‖ + 𝜌
(

|𝑡2 − 𝑡1|
)

‖𝑧‖𝑝
.

Since ‖
‖

𝐸(𝑡2, 𝜃) − 𝐸(𝑡1, 𝜃)‖‖ → 0, 𝜌 (|𝑡2 − 𝑡1|
)

→ 0 as 𝑡1 → 𝑡2 and the above inequalities, we obtain thatΩ1(𝐷) is equicontinuous.
On the other hand, for 0 < 𝑡1 < 𝑡2 < 𝜏 and (𝑧, 𝑢) ∈ 𝐷, the following estimate holds

‖

‖

Ω2(𝑧, 𝑢)(𝑡2) − Ω2(𝑧, 𝑢)(𝑡1)‖‖ ≤ ‖

‖

‖

𝔚−1ℒ (𝑧, 𝑢)‖‖
‖

‖

‖

𝐵∗(𝑡2)𝐸∗(𝜏, 𝑡2)−𝐵∗(𝑡1)𝐸∗(𝜏, 𝑡1)‖‖

Analogously, since ‖

‖

𝐵∗(𝑡2)𝐸∗(𝜏, 𝑡2) − 𝐵∗(𝑡1)𝐸∗(𝜏, 𝑡1)‖‖ → 0 as 𝑡2 → 𝑡1 and ℒ (𝑧, 𝑢) is bounded in 𝐷, we get that Ω2(𝐷) is
equicontinuous.

Asseveration 3. The set Ω(𝐷) is relatively compact on 𝜏 × 𝐶([0, 𝜏];ℝ𝑚).
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Indeed, since the functions 𝑓−1, 𝑓1, ℎ, and 𝐽𝑘 are smooth enough, there exist positive constants 𝑀1,𝑀2,𝑀3,𝑀4, and 𝑀−1

such that for all (𝑧, 𝑢) ∈ 𝐷 and all 𝑡 ∈ [−𝑟, 𝜏] we have that

‖

‖

𝑓−1(𝑡, 𝑧𝑡)‖‖ ≤ 𝑀−1

‖

‖

𝑓1(𝑡, 𝑧𝑡, 𝑢(𝑡))‖‖ ≤ 𝑀1

‖

‖

‖

𝔚−1ℒ (𝑧, 𝑢)‖‖
‖

≤ 𝑀2

‖ℎ(𝑧)‖ ≤ 𝑀3

‖

‖

𝐽𝑘(𝑡, 𝑧(𝑡))‖‖ ≤ 𝑀4.

Hence Ω(𝐷) is bounded.
Now, let {

𝜑𝑖 = (𝜑𝑖1, 𝜑𝑖2) ∶ 𝑖 ∈ ℕ
} be a sequence in Ω(𝐷) ⊂ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚). Since {

𝜑𝑖2
}

𝑖∈ℕ is a sequence in
Ω2(𝐷) ⊂ 𝐶([0, 𝜏];ℝ𝑚), which is uniformly bounded and equicontinuous, we can apply the Arzelà-Ascoli theorem directly to
ensure the existence of a convergent subsequence of {𝜑𝑖2

}

𝑖∈ℕ that, without loss of generality, we can keep calling {

𝜑𝑖2
}

𝑖∈ℕ.
On the other hand, we consider the sequence {𝜑𝑖1

}

𝑖∈ℕ, which is in Ω1(𝐷) ⊂ 𝜏 . Since Ω1(𝐷) is a uniformly bounded and
equicontinuous family, on [−𝑟, 𝑡1], there exists a convergent subsequence {

𝜑1
𝑖1

}

𝑖∈ℕ ⊂
{

𝜑𝑖1
}

𝑖∈ℕ by applying the Arzelà-Ascoli
theorem again. Now, consider {𝜑1

𝑖1

}

𝑖∈ℕ on [𝑡1, 𝑡2]. Then {

𝜑1
𝑖1

}

𝑖∈ℕ has a convergent subsequence {

𝜑2
𝑖1

}

𝑖∈ℕ on [𝑡1, 𝑡2]. Contin-
uing with this process the subsequence

{

𝜑𝑝+1𝑖1

}

𝑖∈ℕ
converges uniformly on each interval [−𝑟, 𝑡1], [𝑡1, 𝑡2],… , [𝑡𝑝, 𝜏]. Therefore,

the subsequence
{

𝜑𝑝+1𝑖 = (𝜑𝑝+1𝑖1 , 𝜑𝑝+1𝑖2 ) ∶ 𝑖 ∈ ℕ
}

of {𝜑𝑖
}

𝑖∈ℕ is uniformly convergent. Hence Ω(𝐷) is compact, i.e., Ω(𝐷) is
relatively compact.

Asseveration 4. The operator Ω satisfies the following condition.

lim
‖(𝑧,𝑢)‖→∞

|||Ω(𝑧, 𝑢)|||
|||(𝑧, 𝑢)|||

= 0,

where
|||(𝑧, 𝑢)||| = ‖𝑧‖ + ‖𝑢‖ = ‖𝑧‖𝜏

+ ‖𝑢‖0,

is the norm in the Banach space 𝜏 × 𝐶([0, 𝜏];ℝ𝑚), with

‖𝑢‖0 = sup
𝑡∈[0,𝜏]

‖𝑢(𝑡)‖ℝ𝑚 .
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From the definition of ℒ , we have that

‖ℒ (𝑧, 𝑢)‖ ≤‖𝑧1‖ + ‖𝐸(𝜏, 0)‖‖𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0)

− 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))‖ + ‖𝑓−1(𝜏, 𝑧𝜏)‖

+

𝜏

∫
0

‖𝐸(𝜏, 𝜃)‖‖𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))‖𝑑𝜃

+
𝑞
∑

𝑘=1
‖𝐸(𝜏, 𝑡𝑘)‖‖𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘))‖.

Hypotheses (H1)-(H4) imply that

‖ℒ (𝑧, 𝑢)‖ ≤‖𝑧1‖ +𝑀‖𝜂(0)‖ +𝑀
[

𝑒‖𝑧‖𝜂1 + 2𝜔1
‖𝜂‖𝜔1 + 𝑒𝜔1

‖𝑧‖𝜔1𝜂1
]

+ ‖𝑧‖𝜔1 +𝑀𝜏
[

‖𝐴0‖‖𝑧‖
𝜔1 + 𝑎0‖𝑧‖𝛼0 + ‖𝑢‖𝛽0 + 𝑐0

]

+𝑀
𝑞
∑

𝑘=1

[

𝑎𝑘‖𝑧‖
𝛼𝑘 + 𝑐𝑘

]

≤𝐾 +𝑀
[

𝑒‖𝑧‖𝜂1 + 2𝜔1𝑒𝜔1
‖𝑧‖𝜔1𝜂1

]

+ ‖𝑧‖𝜔1

+𝑀𝜏
[

‖𝐴0‖‖𝑧‖
𝜔1 + 𝑎0‖𝑧‖𝛼0 + ‖𝑢‖𝛽0

]

+𝑀
𝑞
∑

𝑘=1

[

𝑎𝑘‖𝑧‖
𝛼𝑘
]

,

where 𝐾 = ‖𝑧1‖ +𝑀
[

‖𝜂(0)‖ + 2𝜔1
‖𝜂‖𝜔1 + 𝜏𝑐0 +

∑𝑞
𝑘=1 𝑐𝑘

]. Now, as consequence of (11), we obtain that

‖

‖

Ω2(𝑧, 𝑢)‖‖ ≤ ‖𝐵∗(𝑡)‖‖𝐸∗(𝜏, 𝑡)‖𝔚−1ℒ (𝑧, 𝑢)‖ ≤ ‖𝐵(𝑡)‖‖𝐸(𝜏, 𝑡)‖𝛾−1‖ℒ (𝑧, 𝑢)‖.

Hence,

‖

‖

Ω2(𝑧, 𝑢)‖‖ ≤‖𝐵‖𝑀𝛾−1𝐾 + ‖𝐵‖𝑀2𝛾−1
[

𝑒‖𝑧‖𝜂1 + 2𝜔1𝑒𝜔1
‖𝑧‖𝜔1𝜂1

]

+ ‖𝐵‖𝑀𝛾−1‖𝑧‖𝜔1

+ ‖𝐵‖𝑀2𝛾−1𝜏
[

‖𝐴0‖‖𝑧‖
𝜔1 + 𝑎0‖𝑧‖𝛼0 + ‖𝑢‖𝛽0

]

+ ‖𝐵‖𝑀2𝛾−1
𝑞
∑

𝑘=1
𝑎𝑘‖𝑧‖

𝛼𝑘 . (19)

Likewise,

‖

‖

Ω1(𝑧, 𝑢)‖‖ ≤𝑀‖𝜂(0)‖ +𝑀
[

𝑒‖𝑧‖𝜂1 + 2𝜔1
‖𝜂‖𝜔1 + 2𝜔1𝑒𝜔1

‖𝑧‖𝜔1𝜂1
]

+ ‖𝑧‖𝜔1 +𝑀𝜏
[

‖𝐴0‖‖𝑧‖
𝜔1 + 𝑎0‖𝑧‖𝛼0 + ‖𝑢‖𝛽0 + 𝑐0

]

+𝑀2𝜏‖𝐵‖2𝛾−1‖ℒ (𝑧, 𝑢)‖ +𝑀
𝑞
∑

𝑘=1

[

𝑎𝑘‖𝑧‖
𝛼𝑘 + 𝑐𝑘

]

≤𝐾0 +𝐾1
(

𝑀‖𝜂(0)‖ +𝑀
[

𝑒‖𝑧‖𝜂1 + 2𝜔1
‖𝜂‖𝜔1 + 2𝜔1𝑒𝜔1

‖𝑧‖𝜔1𝜂1
]

+ ‖𝑧‖𝜔1

+𝑀𝜏
[

‖𝐴0‖‖𝑧‖
𝜔1 + 𝑎0‖𝑧‖𝛼0 + ‖𝑢‖𝛽0 + 𝑐0

]

+𝑀
𝑞
∑

𝑘=1

[

𝑎𝑘‖𝑧‖
𝛼𝑘 + 𝑐𝑘

] )

, (20)
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where 𝐾0 =𝑀2𝜏‖𝐵‖2𝛾−1‖𝑧1‖ and 𝐾1 =𝑀2𝜏‖𝐵‖2𝛾−1 + 1. Let 𝐾2 = 𝐾1 + ‖𝐵‖𝑀𝛾−1. Then, by (19) and (20),

|||Ω(𝑧, 𝑢)||| =‖
‖

Ω1(𝑧, 𝑢)‖‖ + ‖

‖

Ω2(𝑧, 𝑢)‖‖

≤𝐾3 +𝐾4‖𝑧‖
𝜔1 +𝐾5‖𝑧‖

𝜔1𝜂1 +𝐾6‖𝑧‖
𝜂1+

𝐾7‖𝑧‖
𝛼0 +𝐾8‖𝑢‖

𝛽0 +𝐾9

𝑞
∑

𝑘=1
𝑎𝑘‖𝑧‖

𝛼𝑘 ,

where

𝐾3 = 𝐾0 +𝑀
[

𝐾1
(

‖𝜂(0)‖ + 𝜏𝑐0 +
𝑞
∑

𝑘=1
𝑐𝑘 + 2𝜔1

‖𝜂‖𝜔1
)

+ ‖𝐵‖𝛾−1𝐾
]

,

𝐾4 = 𝐾1 + ‖𝐵‖𝑀𝛾−1 +𝐾1𝑀𝜏‖𝐴0‖ + ‖𝐵‖𝑀2𝛾−1𝜏‖𝐴0‖, 𝐾5 =𝑀2𝜔1𝑒𝜔1𝐾2,

and

𝐾6 =𝑀𝑒𝐾2, 𝐾7 =𝑀𝜏𝑎0𝐾2, 𝐾8 =𝑀𝜏𝐾2, 𝐾9 =𝑀𝐾2.

Consequently,
|||Ω(𝑧, 𝑢)|||
|||(𝑧, 𝑢)|||

=
‖

‖

Ω1(𝑧, 𝑢)‖‖ + ‖

‖

Ω2(𝑧, 𝑢)‖‖
‖𝑧‖ + ‖𝑢‖

≤
𝐾3

‖𝑧‖ + ‖𝑢‖
+𝐾4‖𝑧‖

𝜔1−1 +𝐾5‖𝑧‖
𝜔1𝜂1−1 +𝐾6‖𝑧‖

𝜂1−1+

𝐾7‖𝑧‖
𝛼0−1 +𝐾8‖𝑢‖

𝛽0−1 +𝐾9

𝑞
∑

𝑘=1
𝑎𝑘‖𝑧‖

𝛼𝑘−1,

whence
lim

|||(𝑧,𝑢)|||→∞

|||Ω(𝑧, 𝑢)|||
|||(𝑧, 𝑢)|||

= 0.

Asseveration 5. The operator Ω has at least one fixed point.

Actually, by the previous lemma we have that for 0 < 𝜌 < 1 there exists 𝑅 > 0 such that
|||Ω(𝑧, 𝑢)|||
|||(𝑧, 𝑢)|||

< 𝜌 if |||(𝑧, 𝑢)||| ≥ 𝑅.

Therefore, if |||(𝑧, 𝑢)||| = 𝑅, then |||Ω(𝑧, 𝑢)||| ≤ 𝜌|||(𝑧, 𝑢)||| ≤ 𝜌𝑅 < 𝑅. This implies that

Ω (𝜕𝐵(0, 𝑅)) ⊂ 𝐵(0, 𝑅),

where𝐵(0, 𝑅) is the closed ball of radius𝑅 centered at zero. The foregoing Asseverations 1, 2, 3, and 4 together with the Rothe’s
fixed theorem 1 allow us to conclude that there exists (𝑧, 𝑢) ∈ 𝜏 × 𝐶([0, 𝜏];ℝ𝑚) such that

Ω(𝑧, 𝑢) = (𝑧, 𝑢).
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By Proposition 2 and Asseveration 5, the system (1) is exactly controllable on [0, 𝜏]. Furthermore,

𝑢(𝑡) = 𝐵∗(𝑡)𝐸∗(𝜏, 𝑡)𝔚−1ℒ (𝑧, 𝑢)

and

𝑧1 =𝐸(𝜏, 0)
[

𝜂(0) − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(0) − 𝑓−1(0, 𝜂 − ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 ))
]

+ 𝑓−1(𝜏, 𝑧𝜏) +

𝜏

∫
0

𝐸(𝜏, 𝜃)
[

𝐴0(𝜃)𝑓−1(𝜃, 𝑧𝜃) + 𝑓1(𝜃, 𝑧𝜃 , 𝑢(𝜃))
]

𝑑𝜃

+

𝜏

∫
0

𝐸(𝜏, 𝜃)𝐵(𝜃)𝑢(𝜃)𝑑𝜃 +
𝑞
∑

𝑘=1
𝐸(𝜏, 𝑡𝑘)𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)).

5 AN EXAMPLE

As an application, in this section we will illustrate our result with an example where Theorem 2 can be applied. In this regard,
we consider the following semilinear time dependent neutral control system with impulses, delay and nonlocal condition

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑
𝑑𝑡

[

𝑧(𝑡) − 𝑓−1(𝑡, 𝑧𝑡)
]

= 𝐴0(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓1(𝑡, 𝑧𝑡, 𝑢(𝑡)), 𝑡 ≠ 𝑡𝑘, 𝑡 ∈ [0, 𝜏]

𝑧(𝜃) + ℎ(𝑧𝜏1 , 𝑧𝜏2 ,… , 𝑧𝜏𝑞 )(𝜃) = 𝜂(𝜃), 𝜃 ∈ [−𝑟, 0],

𝑧(𝑡+𝑘 ) = 𝑧(𝑡−𝑘 ) + 𝐽𝑘(𝑡𝑘, 𝑧(𝑡𝑘)), 𝑘 = 1,… , 𝑝,

(21)

where 𝐴0(𝑡) = 𝑎(𝑡)𝐴 and 𝐵(𝑡) = 𝑏(𝑡)𝐵 with 𝐴0 and 𝐵, 𝑛 × 𝑛 and 𝑛 × 𝑚 constant matrices, respectively. Here, 𝑎 ∈ 𝐿1[0, 𝜏],
𝑏 ∈ 𝐶[0, 𝜏] satisfy

𝜏

∫
0

𝑎(𝑠)𝑑𝑠 ≠ 0, 𝑏(𝑡) ≠ 0, 𝑡 ∈ [0, 𝜏]

From Leiva and Zambrano17, if the following rank condition holds

𝑅𝑎𝑛𝑘[𝐵;𝐴0𝐵;⋯ ;𝐴𝑛−10 𝐵] = 𝑛,

then the time dependent linear system given by

𝑧′(𝑡) = 𝐴0(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡), 𝑡 ∈ [0, 𝜏]

is exactly controllable on [0, 𝜏]. The nonlinear terms and the impulsive functions are given as follows.



16 OSCAR CAMACHO ET AL

•
𝑓1 ∶ [0, 𝜏] ×  𝑟([−𝑟, 0];ℝ𝑛) ×ℝ𝑚 ←→ ℝ𝑛

(𝑡, 𝜙, 𝑢) ←→ 𝑓1(𝑡, 𝜙, 𝑢) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3
√

‖𝑢‖ + 1 + 3
√

𝜙1(−𝑟)

3
√

‖𝑢‖ + 1 + 3
√

𝜙2(−𝑟)

⋮

3
√

‖𝑢‖ + 1 + 3
√

𝜙𝑛(−𝑟)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

•
𝑓−1 ∶ [0, 𝜏] ×  𝑟([−𝑟, 0];ℝ𝑛) ←→ ℝ𝑛

(𝑡, 𝜙) ←→ 𝑓−1(𝑡, 𝜙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3
√

𝜙1(−𝑟)

3
√

𝜙2(−𝑟)

⋮

3
√

𝜙𝑛(−𝑟)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

•
ℎ ∶  𝑟𝑞([−𝑟, 0]; (ℝ𝑛)𝑞) ←→  𝑟([−𝑟, 0];ℝ𝑛)

(𝜙1, 𝜙2,⋯ , 𝜙𝑞) ←→ ℎ(𝜙1, 𝜙2,⋯ , 𝜙𝑞) =
𝑞
∑

𝑖=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sin
(

𝜙𝑖1
)

sin
(

𝜙𝑖2
)

⋮

sin
(

𝜙𝑖𝑛
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

• For 𝑘 = 1,… , 𝑝,
𝐽𝑘 ∶ [0, 𝜏] ×ℝ𝑛 ←→ ℝ𝑛

(𝑧, 𝑢) ←→ 𝐽𝑘(𝑧, 𝑢) = cos
(

√

‖𝑢‖ + 1
)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sin
(

𝑧𝑘1
)

sin
(

𝑧𝑘2
)

⋮

sin
(

𝑧𝑘𝑛
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Then
‖𝑓1(𝑡, 𝜙, 𝑢)‖ ≤

√

𝑛‖𝜙(−𝑟)‖1∕3 +
√

𝑛‖𝑢‖1∕3 +
√

𝑛,

‖𝑓−1(𝑡, 𝜙)‖ ≤
√

𝑛‖𝜙(−𝑟)‖1∕3,

and since ℎ and 𝐽𝑘, 𝑘 = 1, 2,⋯ , 𝑝 are bounded, the conditions of Theorem 2 are satisfied. Hence, the system (21) is exactly
controllable on [0, 𝜏].
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6 CONCLUSION AND FINAL REMARK

In this work, we proved that under certain conditions the semi-linear control system of nonautonomous neutral differential
equations with impulses and nonlocal conditions is exactly controllable if the associated linear control system of nonautonomous
ordinary differential equations is exactly controllable, which was achieved using the uniform continuity of the evolution operator
and Rothe’s fixed point theorem. In fact, the uniform continuity of the evolution operator helped us to prove the equicontinuity and
the uniform boundedness of a family of functions in the cartesian product space of the solutions space and the controls space. By
contrast, in infinite-dimensional Banach spaces, the uniform continuity far away from zero of the evolution operator is achieved
assuming compactness of the evolution family. This implies that the linear control system governed by the ordinary evolution
equation cannot be exactly controllable anymore, only approximately controllable. Hence, only the approximate controllability
can be studied. We believe Rothe’s fixed point theorem could be used in this case as well.
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