On the Fractional Dunkl Laplacian

Fethi Bouzeffour * T, Wissem Jedidi ¥ 5.

Abstract In this paper, we present an approach to the fractional Dunkl Laplacian in a framework emerging from certain
reflection symmetries in Euclidean spaces. Our main result is pointwise formulas, Bochner subordination, and an extension
problem for the fractional Dunkl Laplacian as well.
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1 Introduction

In [7], Dunkl introduced a family of first-order differential-difference operators related to some finite reflection groups in
the Euclidian space. Recently, these operators have gained considerable interest in various fields of mathematics and also in
physical applications. For more details about these operators see [2, 3, 4, 7, &, 11, 14, 17, 19, 20, 28] and references therein.
The Dunkl-Laplacian operators are k—deformations of the standard Laplacian operator A = 92/dx? + ... + 9*/dx5 and they
are fundamental tools for generalization of several classical known results and so, it is a convenient setting for developing
fractional Dunkl-Laplacian operators. Recall that for a function f in the space of Schwartz functions S (Rd), the fractional
Laplacian (-A)*?, 0 < a <2, is defined by means of the Fourier transform

(-A)*Pf=F(EI*FF(E)), feS(RY),
and can be expressed by the pointwise formula [16]

nIr(-9)|

N P f)-fx=y) = Hr (-3

h =
109, £ms0 /Rd\B(o,s) |y[d+a where (o)

ey

and B(0, &) denotes the ball of radius & centered at the origin, see [24]. The operator (-A)*/? is connected to PDE’s through
the Caffarelli-Silvestre extension theorem [5] which establishes the following: if U = U (x,y) is the solution to
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Note that the fractional Laplacian can be defined in many equivalent ways on the whole R”, see for instance [12]. The frac-
tional rational Dunkl-Laplacian is then a natural object to consider, since it is a k-deformation of the standard Laplacian.
Moreover, it is the simplest example of a large class of differential-difference operators associated with root systems. For
more, we the refer to Opdam’s lecture notes [ 7] for the trigonometric Dunkl theory, and to the books of Cherednik [6] and
of Macdonald [14] for the generalized quantum theories.

(-4)"u(x) -

In this work, we present several descriptions of the fractional Dunkl-Laplacian on the Eucldian space. Our principal
tools is the spherical mean-value type operator and Pizzetti’s type formula related to the Dunkl operator. We are mainly
interested in describing an analogue of pointwise formula (1) and the extension problem (2) in the setting of Dunkl theory. In
Section 2 we give a brief review of some elements of harmonic analysis related to the Dunkl operator. In Section 3 we derive
several pointwise formulas for the fractional Dunkl-Laplacian. In Section 4 we use the spherical mean-value type operator
and Pezzitti’s formula to give a Bochner type representation and we give several illustrative examples of fractional Dunkl
Laplacian associated to root system A,_; and radial functions. In the last Section 5, we give the fundamental solution and we
study the fractional Dirichlet-to-Neumann map for Dunkl-Laplacian.

2 Preliminary

In order to introduce our setting, we first collect some facts about the Dunkl operators. General references are [7, 8] and

[19, 20]. Let R be a reduced root system in R?. For a vector v € R, define the reflection G, by
o,(x)=x-2 <|x,|\21) v, xeRY, 3)
v

where (., .) is the standard Euclidean inner product and |x| = \/{x,x) is the Euclidean norm on R“. Let x: R - [0,+00) be a
G-invariant function , where G is the group of finite reflections related to root system R (the function £ is called multiplicity
function). The Dunkl operators 7}, 1 < j <d are the following k—deformations of partial derivatives d; by difference operators:

1 x) - f(oy(x
Tif(x) = 9if (x) + = 3 k(v) Wj)M @)
2R (v, x)
S0, f(0)+ 3 k(v) (ve;) M7 i=1.2,....d.
veR + <v7 x)
Here, R, is any fixed positive subsystem of R and ey, ..., ey, are the standard unit vectors of R?. Note that the Dunkl

operators 7; commute pairwise and are skew-symmetric with respect to the G-invariant measure w(x)dx, where the weight

function wy is given, for x € ]Rd, by
wie(x) = [T Ko ) = TT [, v) <.
veR veR 4+

The latter is a positive homogeneous function of degree 2y, where ¥ = ¥,cx, k(v). For fixed x € R¢, the Dunkl kernel
y = Ex(x,y) is the unique solution to the system

Tif=x;f, 1<jsd,

f0)=1.

The following integral formula was obtained by Rosler [19]
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EcE) = [ ¢, xere. 5)

where i, xeR?, is a compactly supported probability measures. Specifically, it is supported in the convex hull O(x) of the
G-orbit of x. For a function f in LL(R?), the Lebesgue space with respect to the measure wy(x)dx, the Dunkl transform is
defined by

= 1
Fef(©)=7&) = — [ F)Ec(=i&we()dx ©
where the normalized constant is given by
XZ
cx = fRde_% wic(x)dx. (7)

In a similar way to the Fourier transform (which is the particular case kx = 0), the Dunkl transform is a topological auto-
morphism of the Schwartz space S(R?) and can be extended to an isometric automorphism of L2(R?). Yet more, for every
feLL(R) such that Fy feL' (R wy), we have

F(&)=Ff(=8), &eRY,

and, for f e S(R?),
Fi(Tif)(E)=i&; Fif(&), éeRd, 1<j<d. 8)

As in the classical case, a generalized translation operator is defined in the Dunkl setting side on L?(wy) (the Lebesgue
space of square integrable functions with respect to wy(x)dx) by Trimeche [28]

TF () = Fe (Ee(in, ) Fef)(y), yeRY ©9)

We also define the Dunkl convolution product for suitable functions f and g by

780 = [T 000y

The Dunkl Laplacian associated with a reduced root system R, and multiplicity function k, is the differential-difference
operator, which acts on C? functions by

A= Z Tl-z, where T;, 1 <i<d are the Dunkl operators defined in (4).

In explicit form, we have

Acf(x)=Af(x)+2 Y k()8 f(x), feC*(RY),

VER +

where A is the usual Laplacian on R9, and

(Vf(x),v)  f(x)-f(ov(x))
(v, x) (v,x)2 '

Similarly to the fractional Laplacian on R?, the fractional powers of (—AK)“/ 2 are defined by using the Dunkl transform
(6). Indeed, the Dunkl Laplacian operator is essentially self-adjoint on LZ(R?), see for instance [I, Theorem 3.1]. It is a
Fourier-Dunkl multiplier with symbol |£|?, since by (8) we have

Fe(=Acf)(&) =[EPFL()(E).-

Therefore, we can define in a natural way the action of (=A, )%/ (et € (0,2)) on the Dunkl transform side by the equation

6vf(x) =

Fe((A) 1) (E) = |E|* Fie(£)(E), forall feS(RY). (10)
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3 Fractional Dunkl Laplacian: Pointwise formulas

Although we have formally introduced the fractional Dunkl-Laplacian by the formula (10), such definition has a major
disadvantage: it is not easy to understand a given function (or a distribution) by prescribing its Fourier Dunk transform. For
this reason, we introduce a different pointwise definition of the fractional Dunkl-Laplacian.

Lemma 3.1 For every ue S(RY), one has

2
) ~2uy) - Tu(-)] < B [ EPIFa()lme(@)dE.
Cx R
Proof. The integral representation for the Dunkl Kernel given by (5), leads to
2-&-in &) -&(-in &)l =2 [ (1-cos(y.m) )auf (m) <bl® [ InPaut(n).

Since the support of the probability measure dug on R¢ is contained in the convex hull O(&) of the orbit of £ under the
action of the reflection group G, then

2-Ec(=iy, &) = Ex(=iv, §) < b8

On the other hand, the integral representation in (9) leads to

200 =P u(0) = Tu(3) = - [ Fen(E) Eulin) 2-Exlin) ~Ex(-ing) welE)dE, . yeRY,

Therefore,
_ _ _ |y|2 2
12u(x) - Tu(y) - T"u( y)léfcK fRdlél |Freu(E)we(§)dS.

o
Recall that the Dunkl heat kernel I'(7,x) is given by [19]

~ 1 P4t d
FK(I,X)~— Wé’ 5 xER,t>0,

and has the following properties:

Felle(t, ) (x) =, fRd Le(t,x)we(y) =1, >0, (11)

Definition 3.2 Ler a € (0,2). The fractional Dunkl-Laplacian operator (-A)*?u of u € S(R?), is the nonlocal operator in
R? defined by

1 2u(x)—tvu(y) - tu(y)

(*AK)O‘/zu(x) = Tea(0) Jrd o2 wi(y)dy. (12)

where Yy 4( Q) is a suitable normalization constant that is given implicitly in Proposition 4.3.

Notice that for u € S(R?), the integral in the right-hand side of (12) is convergent. Indeed, it suffices to write

2u(x) - t'u(y) - t*u(-y) 2u(x) - t'u(y) - t*u(-y)
Ad| |y|a+2%c+d |WK(y)dy - ‘[]Rd\B(O,E)

|y o+2ve+d ‘W"(y)dy
[ eE) ey
B(0,¢€) |y|oc+2y,<+d

WK(y )dy~
From Lemma 3.1, we have

fB(O,e)

2u(x) - T'u(y) - T'u(-y)
|y|(x+2y,c+d

wie(y)
WK(y)dySCL(Qg) Wdy< Q.
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Since wy is a homogeneous function of degree 2y, and o € (0,2), the constant C in the above inequality is given by C =
e |1 PFeu| .- On the other hand, keeping in mind that u € S (R?), which implies in particular that t¥u € L (R¢), then we

have
.[l%d\B(O,e)

Therefore Definition 3.3 provides a well-defined function on R¢.

2u(x) - T'u(y) - T'u(-y)
|y|a+2y,<+d

wie(y)
——="—dy < co. 13
Rd\B(O,E) |y|0!+2%<+d y ( )

| wie(y)dy <2max([ul s, | 7] o)

Remark 3.3 The following alternative expression for (-Ax)*!? is quite useful in the computations: For every u € S(R?), one
has

(~40)u(x) =

py [ THO)  )ay. (14)

|y|oc+2y,<+d

2
Yx.d ( OC)
where PV [pav(y)dy = limg_g fRd\B(O,E) v(y)dy (Cauchy’s principal value sense). Indeed,

2u(x) = T'u(y) = T'u(-y) o 2u(x) = T'u(y) = T'u(-y)
.[Rd |y|o+2¥e+d wie(y)dy = EILI(I)L /]Rd\B(O €) |y|o+2¥e+d wic(y)dy
, u(x) - u(y) u(x) - *u(=y)
=1 f d / d
gf(?+ RINB(0,e)  |y|@+2¥e+d wie(y) y+8_)0+ RINB(0,e)  |y|@*2n+d wic(y)dy

u(x) - *u(y)

-2 lim f dy.
=0+ JRINB(0,e) |y|@+2n+d wie(y)dy

Note that it is necessary to take the principal value of the last integral since we have eliminated the cancellation of the
linear terms in the symmetric difference of order two, and |u(x) - t°u(y)| is only O(|y|) (see [26, Theorem 3.14]). Thus, the
smoothness of the function u no longer guarantees the local integrability.

4 Representation via spherical mean-value operator

In this section, we provide a useful expression of (—AK)“/ 2u in terms of an integral involving the spherical mean-value
operator associated to Dunkl operator. According to [15], the spherical mean-value operator associated to Dunkl operator
MF¥u(x) is defined by

Miu(x) = L Tu(ro)we(ow)do(w), xeR? r>0,

1
o (d)
where S?~! is the unit sphere in RY , do denotes the Lebesgue surface measure and

Cx

i )
2% IF(VK"' %)

o (d) = fS | we(w)do(o) =

From Mejjaoli-Trimeche [15] one can extract the following proposition, that gives an extended Pizzetti’s formula associated
with the Dunkl operators.

Proposition 4.1 Let f e C™ (Rd) and a € R?. The following asymptotic expansion is valid

1 a o “ = E 2n Agf(a) 50t
(@) Jorni T feo)wi(w)do(w) ~I (% + 2);:2)(2) AT (e dem) ase 0", (15)
Lemma 4.2 Let u ¢ S(R?) one has
a2 N u(x) - MKM(X) d _ Yea(@)
(—A)* u(x) = ﬂxd(a) f — dr, xeR?,  where m4(t): 20e(d)’ (16)

Proof. From Proposition 4.1 (see also [15, Theorem 4.17 ], one has

2(2yK+d) u(x)—Mfu(x).

AKM(x) - K((x) r—>0 r?
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Therefore, the integrand in the right-hand side of (16) behaves like

_ K
M(X) ':\fru(x) =0(r1—0t)7 r—0.
pl+r

Since u € S(RY) and o € (0,2), we conclude that the integral in the right-hand side of (16) is convergent. On the other hand,
the use of the polar coordinates x = r®, allows us to rewrite (14), in the following forms

. 2 e
(=A¢) /2u(x)_mm f pr fs d_l(u(x)—Txu(ra)))wK(a))dG(a))dr
_ 20%(d) . < u(x)- MK u(x) © u(x) - MKu(x)
B i L nkd(a) ‘[

YK,d(a) e—0+ rl+a r]-HX

4.1 Computation of the constant vy ;( @)

The reason behind the introduction of the constant yx,d(a) in (12), is to insure the validity of identity (10). Its exact form is
given here.

Proposition 4.3 The constant Y 4(et) in (12) is given by

, el (=5)]
ea(2) = 20+ etd /2 (4 244 a7
Then, for every u €S (]Rd), we have
Fe(-A0)*Pu(€) = |&]" Feu(§), &eR. (18)

Proof. From [21, formula 4.4], we have

K 1 .
Miu(x) = o /Rd Tyerafp-1(rlG]) Feu(8) Ex(iG,x) wi(8) d€,
where, the normalized Bessel functions Ji(x) is defined by
Te(x) =T (x+1)(2/x)* Jc(x).
Here, Ji(x) is the Bessel Function of the first kind [30]. Then
u() = MFu(x) = [ (1= Tyerap (1E]) Fuan(@) Ex(E.2) wel(€) d&.

Substituting this expression in the integrand of (16), one has

(_Ak)aﬂu(x): ‘/(;oo‘[l%d l_jYK-;cfﬁi;l(rﬁD Fku(é)gk(lé,x) W;c(g)dé

T d ( Ot)

Applying Fubini-Tonelli’s theorem and taking into account of integral representation of the function |A|?, provided by [2,
Lemma 3.2],

Jv(lx)) 0<y<2,

s

2 (v+l+1)
- roeren b G

we obtain
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() Pty —— [ ([T CED ) p etz e a

nx,d(a) R4

T HINC9)
T.a () 29T (e + (HTOC)

fRd |E|* Feu(E)E(iE ,x)wic(E) dE.

Therefore,
I(re+IC-9)|
nx,d(a)zar(%(+d+7a)

In order to fulfill the equation (18), we impose that the normalized constant, in the above equation, satisfies

I HINEH
ﬂx,d(a)zar(%( + lHTa)

Fie(=Ae)*Pu(&) = |E|* Feu(E), & eRY.

For this to happen, we necessarily have
el (=9))
2a+y,<+d/2r(,y 4 otd Ot+d

Ya,K,d
O

Lemma 4.4 For o € (0,2), we have

f 2-Ec(i€.)) - Ex(-iE) )y = el (=5)IIE]*
R4

|y|a+271c+d K( ) D0+ +d/21‘~(,y 4+ o+d Ot+d

Proof. From the above property (11) one has,

[T (2-Eu(-i8.9) - E(i8.9) ) we () dy =2 (1-¢7KF). (19)

t1+a/2

Multiplying the members of (19) by and integrating over (0, oo) with respect to the variable ¢, we get

2
Li(t,y) , , oo 1 —¢~l6l
] fRd ;+a/2 2 EK(—lé,Y)—gx(léa)’)) wi(y) dy dt = 2[() a2
From the integral representation of the Dunkl Kernel given in (5), we deduce that

2 Exin &)~ E(-i9.6) =2 [ (1-cos((xn)))uf(m) 20. (20)

Taking into account (20) and applying Fubini-Tonelli’s theorem, we obtain

oo | _ p-tlER
/H;d/ 1:;5;/);) dr(2-E(-i&,y) - Ex(éy))w;c(y)dy 2[ 1t1+a/2 dt.

A straightforward computation shows that

o _bi2
/- (s, y) - Jo - Oerraf2ear) -l dr_za”ﬁd/zl“(y,ﬁ‘%d)
0

1+ 4 2%c+d[2¢ - Crly|@+2retrd :
Therefore,
2_87((1.57)))_51((_1.65)}) _ CK|F( g)|
a+2Yx+d WK(y)dy OC+d
R4 |y|&+27e D0+ +d/2F(’}/ 4 oxd
O

Example 4.5 (The rank one case) In the case d = 1, the root system R equalt to {+\/2}, G = Z and wi(x) = |x|**. Accord-
ingly, the Dunkl operator Ty, associated with the multiplicity parameter x > 0, is given by
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K
T =0+ —(1-5), (seealso[S, Definition 4.4.2]),
X
and the corresponding Dunkl Laplacian operator Ay, is given by
2K K
ae=12= 0 o K1),
X X

where s is the reflection operator, which acts on a function f(x) of real variable as:
(s£)(x) = f(=).

Now, consider the so-called nonsymmetric Bessel function, also called Dunkl-type Bessel function, in the rank one case (see
[8, §41):
Ex(x) =T 1/2(UC) jx+1/2(lx)

Then, we have the eigenvalue equations
Tie(Ex(iAx)) = id E(idx), Ax(Ex(idx)) = —A%E(ilx),
and the Dunkl transform is given by

1
Fef)(A)=u(A):= ———— u(x) E(=irx) |x[*¥dx.
(FH)A) =72) HF(”/ () Ex(=iRx)

In [18], Rosler introduced the following generalized translation T* defined by
2_
Tu(y) := 2f u(v/x2+y 2xyt)(l+\/ﬁ

u(—/x2+y?=2xyt)(1- 7) hy () dt,
2] X2 +y2 —2xyt

Yy (¢)dt 1)

where,
I'(k+1/2)

W(l +1)(1-2)% 1,

hie(t) =

Theorem 4.6 Let u € S(R). Then we have

(-A0)*Pulx) = ——— 27— ciihse f f 2(0) =T ()42 B (1))l P 20)
K F(K‘+2)|F( g)| £—>0 |x|2€ [jorr1/2

where

I'(x+1/2)
22% /7l (k)

Proof. In dimension one, the formula (14) reads

e (1,y) = (1+ )(1+:)(1 12)<1,

\/)62+y2 2xy

2a+1F(K+ aT-i-l) limf u(x)—’rxu(y)

“A) Pu(x) = S
( K‘) ( ) F(K+%)|r(_%)| £-0 Jaze |y|a+K+l/2

dy,
and the result follows after substituting the expression (21) in the above formula. ]

Example 4.7 (Radial functions) Recall that a function u defined on R? is radial, if there exists a function uy defined on
[0, 0o such that u(x) = ug(|x|), x € R%. In polar coordinates x = r®, the Dunkl Laplacian Ay is expressed as follows

d> 2yc+d-14d
Ag=—+ — —— A 22
K dr2 + r dr KA,Sa ( )
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where Ay s is the analogue of the Laplace-Beltrami operator on the sphere S We refer the reader to [31] for more details
concerning Ay s. From (22), we see that the operator Ay acts on the radial function u(x) = uo(|x|) as follows:

Au(x) = Ey,c+d/2—1”0(|x|)a

where the Bessel operator is
r d? L 2crd-1d
Verd/2-1 = g a r dr’

The Dunkl transform and the Fourier Bessel transform are deeply connected. In fact the Dunkl transform of a radial function
ue LL(R?) is again radial, i.e.
Fu(x) = x+d/2 o ([x]),

where FB

yotdj2—110 iS the Fourier-Bessel transform of ug € L'((0,00),day), given by

21 }'K—d/2 o0

%<+d/2 uo(r) = m uo(s) ij+d/2_1(rs) G2rerd=1 g0

The fractional Bessel operator (_'Cy,(+d/2—l) was considered in [2] and is defined as a Fourier-Bessel multiplier. Further,
from [2, Theorem 3.5], we have

2 (e + B o £(7)~Truo(p)
>|f e

2
(_’CYK+d/2—1)a/ uo(}") = F('}’K d)|1—~( l+0t

where J
re)
Var(4h)
Theorem 4.8 Ler o € (0,2). For every radial function u(x) = ug(|x|) € S(R?), the fractional Laplace operator (—A)*/*u(x)

is a radial function. Furthermore,

T
T"uo(p) = fo uo(v/r2 + p2 £2rpcos 8) sin’ 2 646 (23)

Sm2yk +d-1 0

(=A) u(x) = ce(ax) f f o () = o (/P + 17 £ 2rfafcos 0) | 21— abdr (24)

where the normalized constant () is given by

2a+11—~(yx+d+a
VAL (he+ DIC(-9)]

Proof. From (4.7), the functions Fyu(&) and Fg'(|&|*Feu(&))(x) are radial. Then,

< (81" Feu(€)) () = F (181 Fopajom10 (€D ) () = Fop o (7 Fopeagomyao(r)) (),

se(a) = (25)

and
(a0 ) = ST 5 = 1D -THuo)
Ay =
I (re+IN (=51 Jo pire
The result follows after substituting T up(p) in the above formula by its expression in (23). ]

Example 4.9 (Fractional Dunkl operators of type A;_;) Let S; denote the group symmetric in d elements. It acts faithfully
on R? by permuting the standard basis vectors e, ...eq. Each transposition (ij) acts as a reflection o;j sending e;—ej to
ej—ej. A root system of S, is given by

R:={x(ej—ej): 1<i<j<d}.

There is only one conjugacy classe of reflections in S, leading to multiplicity parameter k € Ry. Then the correspondent
Dunkl operators of type A _1 are given by
1-o0j;

T = 9+’<Z ,i=1,2,...
j¢l —Xj
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and the Dunkl Laplacian
A=A +2K

—[o-0- 2]
I<i<j<d Xi ~Xj Xi—Xj

In this case the classical Mehta integral in (7), whose value is given by

I'(1+jx)

cx = (2m)4? 1‘[ [T (26)

According to Definition 3.2 and Proposition 4.3, the fractional Dunkl Laplacian associated to root system Ag_1 is given by

1 2u(x) -t u(y) - t7u(y) 2%
(~A)*Pu(x) = lyi =y, dy. (27)
) Tea(ot) Jrd Iyl o242 1 gggd ’

where
r)P|r(-%) li[ r(1+jx)
et3dip(atdly 5 T(1+K)

nK,d(a) =

4.2 Bochner’s subordination

Our next is to derive a pointwise (integro-differential) formula for the fractional Dunkl-Laplacian opearator (—AK)O‘/ 2 by

using the heat semigroup formalism. We begin with a preliminary observation that connects the heat semigroup {e™"4% },5 to
the spherical mean-value operator M ¥u.
Recall that the heat semigroup e~'4x is given by [19]
2
e u(x) = F' (e Feu(&)) (x), xeR?.
Alternately [19]
eu() = [ u() T Ty we(y)dy. @8)

Lemma 4.10 Let u e S(RY). For everyt € (0, o), we have

o (d)

e_tA"u(x) =u(x)+ W

°°—r2/t K —xr"+_r
fo & MEu(x) - u(x) |54,
Proof. From (11), we have
eu)-u(x) = [ TR0 a0y = [ T [Fu0) - dy

] Wlﬁdﬂ wae_rZM[ éd—l [T u(ro) - u(x)wi(w)do (o) dr

ok (d o 2 _
o [T M) o

which completes the proof. ]

Proposition 4.11 (Bochner representation) For 0 < « <2 and u € S(R?), the following holds

dt

t1+2

(49Pu() = gy L) )]

Proof. By Lemma 4.8, we have
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2
A dt _ GK‘(d) oo oo T[4 K 2y +d—1
/0 [e u()c)—u()c)][lm/2 = Srerd2 [0 [0 ————dt[Mfu(x) —u(x)]r drdt

t)/k+d+T°‘+l

2
e’ [4t

d i o _
B ;’:-i(—d/)Z 0 (‘/(; d+o 1 dl‘)[Mfu(x)—u(x)]rzy"*'d ldr’

et o+

assuming that we can exchange the order of integration. Finally, since

2
0o, [4
f e’ [ dt = 22yK+d+aF(,},K+ d;a)r—(27K+d+a)7
0

et 2+

then,
1

IC(=9)I

dt
o

(=) () - <
72

_/ODO [e_’AKu(x) - u(x)]

5 Extension problem

5.1 Fundamental solution of (-A)%/?

For o € C, Re(a) >0, we denote by |x|~* the tempered distribution defined by

()= - [ 2L

cx JRE |x|®

wi(x)dx, @ eS(RY).

11

(29)

(30)

For () < d +2Y, the function |x|%, as a distribution, generates a regular functional. However, if R(a@) > d + 27, then
|x|~% is non-regular. In this case, it can be interpreted in the sense of regularization achieved by analytical continuation of
the mapping & — (|x|%, @) from the left half-plane R(a) < d + 27%. In the polar coordinates y = r®, the equation (30) is

expressed by a spherical mean type for the Dunkl operator in the following form

-o _i ® 2Yic+d—o—1
< oh=— [ [, omwn)dot)r dr
1
2021 (e +d)2)

fow/\/lf(p(x)r2y"+d_a_ldr, @ e S(RY).

Proposition 5.1 Let ¢ € S(RY). The function o — (|x|"%, @) has an analytic extension to C— {2y, +2p+d, p € N}, with

simple poles at & =2y, +2p+d and

AZ9(0)

Res((|x|™%, @);2%c+d +2p) =

Proof. Observe that, for R(a) < 29, +2n +d, we have

oo 1 n ZpAP 0
K 2Yc+d—oa—1 _ 2 +d—o—1 K _ r K(P( )
TL Mr (P(O)r dr = A r (Mr (P(O) ;)4’7(’}/,(-‘1-61/2)1(17'

3 Ac(0) !
p:022P(yK+d/2)Pp!2}/,(+2p+d—a 1
From Proposition 4.1 we have
n r2p

MEoO) = 2 ), o

- 204HPT (e +d[2+ p) pl

+f ME@(0)21e+d=0=1 gy,

AL@(0) =o(r"), r—0.

€Y
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The right hand-side of (32) does not depend on the choice of n (n > %(S‘i(a ) —2%c—d) and from (5.1), then the right hand-side
of the formula (32) yields an analytic continuation of the mapping o — {|x|™*, @) on C— {2y +2p+d, p=0,1,2,...}, with
simple poles at & = 2% +2p +d and

0x(d)ALp(0)
2 (p+df2),p!

Res((Ix[7%, @): 2y +2p+d) = -

O
Proposition 5.2 The Dunkl transform of the distribution |x|”% € S’(Rd) is given by
|| *2%=d %2y +d+2p, o % -2p,

=% = die(a)
(_AK‘)péa a:—2p.

Here § is the Dirac delta function, p e NU{0}, the constant d.(@) being given by

I (¥+(d-2)/2)

cao-m-dlr(qn X FZVe+d+2p, a#-2p,

di(a) =
1, a=-2p.

Proof. Let ¢ ¢ S(R?), we have

o o~ 1 _ -
(R, 9) 1= (™, @) = — [ Bk w(x)d
Cx R
Using Parseval identity for the Dunkl transform, and taking account of (11), we obtain

R Fu(9) (x)e M wi(x)dx = ()¢ M 1 (x)dx. (32)

1
(2t)1e+dl2 Jes

—1+a/2

Now, multiplying both sides of the equation (32) by ¢ and integrating over (0, co) with respect to the variable ¢, we

obtain, for 0 < & < 2% +d, that

O(x I'(ve+(d- 2 X
r(a/)2) fR ) T);a)w,((x)dx: (72a_(yx_d2)/ ) ; |x|2<¢;f+3_a ).

By analytic continuation for & € C such that & # 2y +d +2p, p=0,1,2,... and @ # -2p, p=0, 1,2, ..., it is obvious that

I'(h+(d-0a)/2)
20K~ (0f2)"

=% = die (o) |x|* 72 where d(t) = (33)

Foro=-2pand p=0,1,..., we have

J— . 1 . 1
<79 >=< i, 5 >= — [ BN wi(dr=— [ (“A)Pp(x)we(x)dx= AL 0).
K K

and finally,
X2 = (~Ax)"5.

m|
Recall I, the modified Bessel function of the first kind and K, the modified Bessel of the third kind, of order v #
0,x1,£2, ..., are given in [30], by

1(z2) = i (z/2)V+2n

7 ly(2) -Iv(2)
T (v+n+1)n!

and  Ky(2) = 2 sinvz

» Jarg(2) <7

‘We will also consider d()
K (04
X)s——— >0,
th-,y( ) (y2+|x|2)7’<+d_Ta y
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and state the following preparatory result.
Lemma 5.3 Ford >2 andy >0, we have

2
g Y K G
]) Cloc,y(x) = sza/Z—l;(a/2)|x|a/2’

” —Yx—d+a
2) (-8 s () = SOOIy (7 4 ?)
Proof. 1) Let ¢ € S(R?), we have
_ P(x) d(a) f Hd=0)[2-1 NI
<Tuy 9>=di(a@) [ —L y (rydx= =L [T yf x dxdi (34
Gay, @ >=di(@) | | RERINEYRTE: 7 Wi(x)dx Fr 8 o € Pwi(x)dxdr (34)

Using Parseval identity for the Dunkl transform and taking into account (11), we obtain

1

-1’ & - -
fRd"’ Px)wie(x)dx (20)e+dl2

/]Rd e_|x|2/4’(p(x)w,<(x)dx. (35)

Substituting (35) in the integrand (34) and using Fubini-Tonelli’s theorem, we obtain

— _ di() a2y | far
<oy, @ >= 27K+d/21"(y,<+d_7“) .[lédfo t e dt (x)wi(x)dx

Now, using formula [ 13, p. 340]

fo T e gg —2(afb) 2K, (23 ab),

we obtain

_ di(0t)y®? _
T 0> = S T o MK O L

2)/,<+(d—oz)/2—11“(7,K + %

ya/z

I A —a/2
AT (a2 e e OB @ w2,

and this proves 1).
2) From 1), we have
2 2
T (6 2 I PRap 01D
Y c2%2710 (au)2)

Applying inversion formula for the Dunkl transform, we find that

ya/2|x| 1-Yc—d/[2

A\ X = el = (N
(k) gy (%) 29271 (a)2)

| Kapp (3 (e 70

Making the substitutions v — ¥ +d/2-1, 4 »> /2, A > —¥c— (d + @) /2, a > y, b — |x| in the integral [8, 10.43.26]

o0 BT (5(v+p-A+ 1)) (5(v- H+7L+1)) (VA=A ), 3 (vop-A+l) a

-2 2 2 .

fo £ Ku(ar) ] (br)de = P+ gv=A+ I (v + 1) ( v+l ’ bz)
where, 0 <a<b, -1 <R(A) <R(u+v+1), we get

. POt [+ 0[2) 2| e
(-0, () = PGy (2 ) 7

O

Theorem 5.4 Let d >2, 0< & <2, and recall the normalized constant d (@) is defined in (33). Then, the function

fa(x) = die (o) x| CTerd=e),
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is a fundamental solution for (~Ag)*?, that is (~A)** fo = &

Proof. Let ¢ € S(R?). Since lim,_,o+ gy (x) = fo(x), by Lebesgue dominated convergence theorem we have

im [ a6, (A0 p@we(x)dx = [ fulx)(~A0) p(x ()
On the other hand, form Lemma (5.3), we can write

Ad(_Ak)a/zqmy(x)(P(X)Wk(x)dx _ F(Yk+(d+a)/2) /1;([ ya(p(x) K(x)dx

cx27 %412 (0 )2) (32 + |x2) e+ 452
_I'(we+(d+a)/2) @(x)

- dx.
2 WP @) S (e
Using again Lebesgue dominated convergence theorem, we get
; I'(ye+(d+a)/2)
! ~A0) gy dx= (0 JA dx.
yi%l Rd( K) e (X)(P(X)Wk(x) * (P( )sz_yk—d/2r((x/2) Rd (1 + |X|2)71<+‘”2'oc WK(x) X

To complete the proof of this Theorem, it suffices to prove that

I'(yc+(d+a)/2) 1
ex 2720 (af2) JRE (] 4 |xf2) e 5

wi(x)dx=1.

Indeed, using the polar coordinates x = r®, we get

2y+d 1

1
fmd(1+|x|2)%€+d we()dr=o(d) [ TR

From the integral representation for the Beta function (see, [, 5.12.3])

_ (eI (b)
ﬁ(a7b)' F(a+b) f (1+t)a+b

we have

Ji R WP VR B A G2
B (1 )t 5 L(ye+(d+0)[2)

5.2 Extension problem

The extension problem for the fractional Dunkl-Laplacian is a particular case of the general extension problem proved in
[24], see also [25, 10]. In this section, we use the extension problem and the ideas of Caffarelli and Silvestre [5], and we show
that the fractional Dunkl-Laplacian, can be seen as the Dirichlet-Neumann map for a local degenerate elliptic equation. Let
ue S(RY) and consider the following problem

92U (x, U (x,y
AU (x,y) + T3 1 12 2069) _ 0, (x,y) e R x (0, 00),

U(x,0) =u(x), xeR? (36)
U(x,y) >0, y-—oo.

We define the kernel pg (x) on R4 by
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« d T (ye+ 42
Pay(x) = bK(a)y—M y>0, where be(a)=2""2 M

(2 +lap) 5 oI'(%)

The following lemma will be useful in this section.

Lemma 5.5 The kernel pq y has the following properties
(1gD >
cx29271T (e )2)
2) |paylia= Adpa‘y(x)w,((x)dxz 1.

1) Pay(S) = Koy (¥181);

Proof. The kernel pq , being a radial function, then by (4.7), one has

_ ba,xy* oo Jy vajp-1(rE])
Pay(8) = — /0 etd] Yerdl? gy

t+d/2—1 ot 4
|7t / (y2+r2)7+ 2
The result follows from [ 13, formula 6.565.4]. O
Note that for & = 1, the kernel (5.2) takes the form
d I (Y + d%]) y

pry(x)=2""2 y>0.

d+l

CKF(%) (y2+|x|2)%<+T

which is the Poisson-Dunkl kernel for the half-space RTI, see [20, formula (5.3)].

Theorem 5.6 LetuceS (Rd). Then, the solution U to the extension problem (36) is given by

U() = (pay * 1000 = = [ pa(E)Pu(@wel&)dE.

Furthermore, we have
2971 (a/2) 1—o OU

-—— 1 i . 37
F(i=a/2) 20 5y &) &7

(=A6)*u(x) =
Proof. Applying the Dunkl transform to the variable x in (36), we find
YY"+ (1=a)yY' +|E[y*Y =0,
Y(0)=Fu(&), EeR, (38)
Y(y) >0, y-0.

where Y (y) = Yz(y) = FU(&,y). Thus, the general solution of (38) can be written in the form

Ye (y) = Ay* Loy GIE]) + By 2K o (YIE]),

where A and B are constants depending on &. The condition lim_,o Y (y), gives A = 0, and then

FeU(E) =By Kypr (0IE)). (39)

To determine the constant B, we use the initial condition F, U (&,0) = Fu(€), and the following asymptotic behavior of
Ky(z) near zero:
Ky(z)~2"7'(v)™,

which yields
FeU(&.y) ~ B2 (0/2)|E] 7, asy -0,

thus, we impose that
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o P Fwu(E)
202717 (@)2)

Substituting this value of B in (39), we obtain

OlEh”?

UGN = apir ()

Ka/Z(Y|§|)~FK’4(é)~

From Lemma 6.1, we get
k
U(x,y) = pa * u(x),

therefore,

bak [ TU(E)+TU(E) ~2u() .
UG =52 [y o «(8) dE + u().

Differentiating both sides of the above formula with respect to y, we obtain

1—q U box oc+(y,(+d+oc)y2 _x
- (xy) =~ wra LT u(8)+ T u(8) —2u(x) | wi(8) dE,
3y Y 2CK »[Rd (y2+|§|2)yK+T [ ]

and by Lebesgue dominated convergence theorem, we find

_ aba,,(f (@) + () “2ux) |y e aba,xw(_ma.
R4

U
l'm 1—067
1 y ay (-x)y) 2Ck |§ |27K+d+a Cr 2

y—0*

If, in the last equation, we replace the expression (17) of the constant yK,d(a), we reach the conclusion that (37) is valid. O
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