References
Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the
costs and limits of adaptive phenotypic plasticity. Proceedings of
the Royal Society B: Biological Sciences, 277 (1681), 503-511.
Barton, K. (2020). MuMIn: Multi-model inference. R package version
1.43.17. https://CRAN.R-project.org/package=MuMIn
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B.
(2004). Toward a metabolic theory of ecology. Ecology, 85:
1771-1789. https://doi.org/10.1890/03-9000
Burton T., Lakka H.-K., Einum S. (2020). Acclimation capacity and rate
change through life in the zooplankton Daphnia . Proc. R. Soc. B
287: 20200189. http://dx.doi.org/10.1098/rspb.2020.0189
Burton, T., Ratikainen, I. I., Einum, S. (2022). Environmental change
and the rate of phenotypic plasticity. Glob Change Biol, in press.
Preprint: https://doi.org/10.6084/m9.figshare.18741044.v1
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming
benefits the small in aquatic ecosystems. Proc Natl Acad Sci,
106 , 12788-12793. https://doi.org/10.1073/pnas.0902080106
Einum, S., Ratikainen, I., Wright, J., Pélabon, C., Bech, C., Jutfelt,
F., Stawski, C. and Burton, T. (2019), How to quantify thermal
acclimation capacity?. Glob Change Biol, 25:
1893-1894. https://doi.org/10.1111/gcb.14598
Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J. and Moland, E.
(2016), Temperature-associated habitat selection in a cold-water marine
fish. J Anim Ecol, 85:
628-637. https://doi.org/10.1111/1365-2656.12458
Gabriel, W. (2005). How stress selects for reversible phenotypic
plasticity. Journal of Evolutionary Biology, 18 (4), 873-883.
doi:10.1111/j.1420-9101.2005.00959.x
Gabriel, W., Luttbeg, B., Sih, A., & Tollrian, R. (2005). Environmental
tolerance, heterogeneity, and the evolution of reversible plastic
responses. American Naturalist, 166 , 339-353.
Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal
tolerance has limited potential to buffer ectotherms from global
warming. Proceedings of the Royal Society B: Biological Sciences,
282 (1808), 20150401. doi:10.1098/rspb.2015.0401
Harrison PM, Gutowsky LF, Martins EG, Patterson DA, Cooke SJ, Power M.
(2016). Temporal plasticity in thermal-habitat selection of burbot Lota
lota a diel-migrating winter-specialist. J Fish Biol. 2016
Jun;88(6):2111-29. doi: 10.1111/jfb.12990. Epub 2016 Apr 29. PMID:
27125426.
Kelly, M. W., Sanford, E., & Grosberg, R. K. (2012). Limited potential
for adaptation to climate change in a broadly distributed marine
crustacean. Proceedings of the Royal Society B: Biological
Sciences, 279 (1727), 349-356. doi:doi:10.1098/rspb.2011.0542
Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A.,
and Curry, R. A. (2015) Preserving, augmenting, and creating cold-water
thermal refugia in rivers: concepts derived from research on the
Miramichi River, New Brunswick
(Canada). Ecohydrol. , 8: 1095– 1108.
doi: 10.1002/eco.1566.
Lande, R. (2009). Adaptation to an extraordinary environment by
evolution of phenotypic plasticity and genetic assimilation.Journal of Evolutionary Biology, 22 (7), 1435-1446.
Lande, R. (2014). Evolution of phenotypic plasticity and environmental
tolerance of a labile quantitative character in a fluctuating
environment. Journal of Evolutionary Biology, 27 (5), 866-875.
MacLean, H. J., Sørensen, J. G., Kristensen, T. N., Loeschcke, V.,
Beedholm, K., Kellermann, V., & Overgaard, J. (2019). Evolution and
plasticity of thermal performance: an analysis of variation in thermal
tolerance and fitness in 22 Drosophila species.Philosophical Transactions of the Royal Society B: Biological
Sciences, 374 (1778), 20180548. doi:doi:10.1098/rstb.2018.0548
Padfield, D. & Matheson, G. (2020). nls.multstart: robust non-linear
regression using AIC scores. R package version 1.2.0.
https://CRAN.R-project.org/package=nls.multstart
Padilla, D. K., & Adolph, S. C. (1996). Plastic inducible morphologies
are not always adaptive: The importance of time delays in a stochastic
environment. Evolutionary Ecology, 10 (1), 105-117.
doi:10.1007/BF01239351
Pereira, R. J., Sasaki, M. C., & Burton, R. S. (2017). Adaptation to a
latitudinal thermal gradient within a widespread copepod species: the
contributions of genetic divergence and phenotypic plasticity.Proceedings of the Royal Society B: Biological Sciences,
284 (1853), 20170236. doi:doi:10.1098/rspb.2017.0236
Phillips, B. L., Muñoz, M. M., Hatcher, A., Macdonald, S. L., Llewelyn,
J., Lucy, V., & Moritz, C. (2016). Heat hardening in a tropical lizard:
geographic variation explained by the predictability and variance in
environmental temperatures. Functional Ecology, 30 (7), 1161-1168.
doi:10.1111/1365-2435.12609
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2022). nlme:
Linear and Nonlinear Mixed Effects Models . R package version
3.1-155, https://CRAN.R-project.org/package=nlme.
R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rohr, J.R., Civitello, D.J., Cohen, J.M., Roznik, E.A., Sinervo, B. and
Dell, A.I. (2018), The complex drivers of thermal acclimation and
breadth in ectotherms. Ecol Lett, 21:
1425-1439. https://doi.org/10.1111/ele.13107
Sgro, C. M., Overgaard, J., Kristensen, T. N., Mitchelll, K. A.,
Cockerell, F. E., & Hoffmann, A. A. (2010). A comprehensive assessment
of geographic variation in heat tolerance and hardening capacity in
populations of Drosophila melanogaster from eastern Australia.Journal of Evolutionary Biology, 23 (11), 2484-2493.
doi:10.1111/j.1420-9101.2010.02110.x
Siljestam, M., & Östman, Ö. (2017). The combined effects of temporal
autocorrelation and the costs of plasticity on the evolution of
plasticity. Journal of Evolutionary Biology, 30 (7), 1361-1371.
doi:10.1111/jeb.13114
Sultan, S. E., & Spencer, H. G. (2002). Metapopulation structure favors
plasticity over local adaptation. . The American Naturalist,
160 (2), 271-283. doi:10.1086/341015
Van Buskirk, J., & Steiner, U. K. (2009). The fitness costs of
developmental canalization and plasticity. Journal of Evolutionary
Biology, 22 (4), 852-860.
doi:https://doi.org/10.1111/j.1420-9101.2009.01685.x
van Heerwaarden, B., Lee, R. F. H., Overgaard, J., & Sgrò, C. M.
(2014). No patterns in thermal plasticity along a latitudinal gradient
in Drosophila simulans from eastern Australia. Journal of
Evolutionary Biology, 27 (11), 2541-2553. doi:10.1111/jeb.1251022
van Heerwaarden, B., Kellermann, V., & Sgrò, C. M. (2016). Limited
scope for plasticity to increase upper thermal limits. Functional
Ecology, 30 (12), 1947-1956. doi:10.1111/1365-2435.12687