Data availability statement
The data used to draw graphs in the study is available on Dryad
https://datadryad.org/stash/share/xURDH3d1npo2cOZhJ0oOr3EIF5Lxc2p1u2d0Zf1YE0w
.
References
Ahlgren, G.,
Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and
food quality of some freshwater phytoplankton for cladoceran
zooplankters. Journal of Plankton Research, 12(4),
809–818. https://doi.org/10.1093/plankt/12.4.809
Arbačiauskas, K.,
Lesutienė, J., & Gasiūnaitė, Z. R. (2013). Feeding strategies and
elemental composition in Ponto-Caspian peracaridans from contrasting
environments: Can stoichiometric plasticity promote invasion success?Freshwater Biology, 58(5), 1052–1068.
https://doi.org/10.1111/fwb.12108
Arrhenius, F., &
Hansson, S. (1993). Food consumption of larval, young and adult herring
and sprat in the Baltic Sea. Marine Ecology Progress Series,96(2), 125–137.
Audzijonyte, A.,
Wittmann, K. J., Ovcarenko, I., & Väinölä, R. (2009). Invasion
phylogeography of the Ponto-Caspian crustacean Limnomysis benedeni
dispersing across Europe. Diversity and Distributions,15(2), 346–355.
https://doi.org/10.1111/j.1472-4642.2008.00541.x
Audzijonyte, A.,
Wittmann, K. J., & Väinölä, R. (2008). Tracing recent invasions of the
Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North
America with mitochondrial DNA. Diversity and Distributions,14(2), 179–186.
https://doi.org/10.1111/j.1472-4642.2007.00434.x
Bergström, U., &
Englund, G. (2004). Spatial scale, heterogeneity and functional
responses. Journal of Animal Ecology, 73(3), 487–493.
https://doi.org/10.1111/j.0021-8790.2004.00823.x
Bij de Vaate, A.,
Jazdzewski, K., Ketelaars, H. A. M., Gollasch, S., & Van der Velde, G.
(2002). Geographical patterns in range extension of Ponto-Caspian
macroinvertebrate species in Europe. Canadian Journal of Fisheries
and Aquatic Sciences, 59(7), 1159–1174.
https://doi.org/10.1139/f02-098
Borza, P. (2014). Life
history of invasive Ponto-Caspian mysids (Crustacea: Mysida): A
comparative study. Limnologica, 44, 9–17.
https://doi.org/10.1016/j.limno.2013.06.001
Borza, P., Czirok, A.,
Deák, C., Ficsór, M., Horvai, V., Horváth, Z., Juhász, P., Kovács, K.,
Szabó, T., & Vad, C. F. (2011). Invasive mysids (Crustacea:
Malacostraca: Mysida) in Hungary: distributions and dispersal
mechanisms. North-Western Journal of Zoology, 7(2).
Borza, P., Huber, T.,
Leitner, P., Remund, N., & Graf, W. (2017). Success factors and future
prospects of Ponto–Caspian peracarid (Crustacea: Malacostraca)
invasions: Is ‘the worst over’? Biological Invasions,19(5), 1517–1532. https://doi.org/10.1007/s10530-017-1375-7
Borza, P., Kovács, K.,
György, A., Török, J. K., & Egri, Á. (2019). The Ponto-Caspian mysid
Paramysis lacustris (Czerniavsky, 1882) has colonized the Middle Danube.Knowledge & Management of Aquatic Ecosystems, 420,
Article 420. https://doi.org/10.1051/kmae/2018039
Borza, P., Rani, V.,
& Vad, C. F. (2023). Niche differentiation among facultative filter
feeders: Insights from invasive Ponto-Caspian mysids. Current
Zoology, zoad030. https://doi.org/10.1093/cz/zoad030
Bottrell, H. H.,
Duncan, A., Gliwicz, Z., Grygierek, E., Herzig, A., Hilbricht-Ilkowska,
A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). Review of some
problems in zooplankton production studies. Norwegian Journal of
Zoology, 21, 477–483.
Brett, M., &
Müller-Navarra, D. (1997). The role of highly unsaturated fatty acids in
aquatic foodweb processes. Freshwater Biology, 38(3),
483–499. https://doi.org/10.1046/j.1365-2427.1997.00220.x
Burnham, K. P., &
Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC
in Model Selection. Sociological Methods & Research,33(2), 261–304. https://doi.org/10.1177/0049124104268644
Cotonnec, G., Brunet,
C., Sautour, B., & Thoumelin, G. (2001). Nutritive Value and Selection
of Food Particles by Copepods During a Spring Bloom of Phaeocystis sp.
In the English Channel, as Determined by Pigment and Fatty Acid
Analyses. Journal of Plankton Research, 23(7), 693–703.
https://doi.org/10.1093/plankt/23.7.693
Cuthbert, R. N.,
Dickey, J. W. E., McMorrow, C., Laverty, C., & Dick, J. T. A. (2018).
Resistance is futile: Lack of predator switching and a preference for
native prey predict the success of an invasive prey species. Royal
Society Open Science, 5(8), 180339.
https://doi.org/10.1098/rsos.180339
Dick, J. T., &
Platvoet, D. (2000). Invading predatory crustacean Dikerogammarus
villosus eliminates both native and exotic species. Proceedings.
Biological Sciences, 267(1447), 977–983.
https://doi.org/10.1098/rspb.2000.1099
Divoky, G. J., Brown,
E., & Elliott, K. H. (2021). Reduced seasonal sea ice and increased sea
surface temperature change prey and foraging behaviour in an
ice-obligate Arctic seabird, Mandt’s black guillemot (Cepphus grylle
mandtii). Polar Biology, 44(4), 701–715.
https://doi.org/10.1007/s00300-021-02826-3
Elser, J. J., Fagan,
W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A.,
Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E.
H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and
freshwater food webs. Nature, 408(6812), Article 6812.
https://doi.org/10.1038/35046058
Evans, T. M., Naddafi,
R., Weidel, B. C., Lantry, B. F., Walsh, M. G., Boscarino, B. T.,
Johannsson, O. E., & Rudstam, L. G. (2018). Stomach contents and stable
isotopes analysis indicate Hemimysis anomala in Lake Ontario are broadly
omnivorous. Journal of Great Lakes Research, 44(3),
467–475. https://doi.org/10.1016/j.jglr.2018.03.003
Fink, P., & Harrod,
C. (2013). Carbon and nitrogen stable isotopes reveal the use of pelagic
resources by the invasive Ponto-Caspian mysid Limnomysis benedeni.Isotopes in Environmental and Health Studies, 49(3),
312–317. https://doi.org/10.1080/10256016.2013.808197
Fink, P., Kottsieper,
A., Heynen, M., & Borcherding, J. (2012). Selective zooplanktivory of
an invasive Ponto-Caspian mysid and possible consequences for the
zooplankton community structure of invaded habitats. Aquatic
Sciences, 74(1), 191–202.
https://doi.org/10.1007/s00027-011-0210-y
Fridolfsson, E.,
Bunse, C., Legrand, C., Lindehoff, E., Majaneva, S., & Hylander, S.
(2019). Seasonal variation and species-specific concentrations of the
essential vitamin B1 (thiamin) in zooplankton and seston. Marine
Biology, 166(6), 70. https://doi.org/10.1007/s00227-019-3520-6
Fridolfsson, E.,
Lindehoff, E., Legrand, C., & Hylander, S. (2018). Thiamin (vitamin B1)
content in phytoplankton and zooplankton in the presence of filamentous
cyanobacteria. Limnology and Oceanography, 63(6),
2423–2435. https://doi.org/10.1002/lno.10949
Frost, B. W. (1972).
Effects of Size and Concentration of Food Particles on the Feeding
Behavior of the Marine Planktonic Copepod Calanus Pacificus1.Limnology and Oceanography, 17(6), 805–815.
https://doi.org/10.4319/lo.1972.17.6.0805
Graeb, B. D. S.,
Mangan, M. T., Jolley, J. C., Wahl, D. H., & Dettmers, J. M. (2006).
Ontogenetic Changes in Prey Preference and Foraging Ability of Yellow
Perch: Insights Based on Relative Energetic Return of Prey.Transactions of the American Fisheries Society, 135(6),
1493–1498. https://doi.org/10.1577/T05-063.1
Greene, C. H. (1983).
Selective Predation in Freshwater Zooplankton Communities.Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie,68(3), 297–315. https://doi.org/10.1002/iroh.19830680302
Greene, C. H. (1986).
Patterns of Prey Selection: Implications of Predator Foraging Tactics.The American Naturalist, 128(6), 824–839.
Guillard, R. R. L.
(1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In W.
L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate
Animals: Proceedings—1st Conference on Culture of Marine Invertebrate
Animals Greenport (pp. 29–60). Springer US.
https://doi.org/10.1007/978-1-4615-8714-9_3
Gulati, R., & Demott,
W. (1997). The role of food quality for zooplankton: Remarks on the
state-of-the-art, perspectives and priorities. Freshwater
Biology, 38(3), 753–768.
https://doi.org/10.1046/j.1365-2427.1997.00275.x
Hanselmann, A. J.,
Hodapp, B., & Rothhaupt, K.-O. (2013). Nutritional ecology of the
invasive freshwater mysid Limnomysis benedeni: Field data and laboratory
experiments on food choice and juvenile growth. Hydrobiologia,705(1), 75–86. https://doi.org/10.1007/s10750-012-1382-8
Hessen, D. O. (1992).
Nutrient Element Limitation of Zooplankton Production. The
American Naturalist, 140(5), 799–814.
Hillebrand, H.,
Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999).
Biovolume Calculation for Pelagic and Benthic Microalgae. Journal
of Phycology, 35(2), 403–424.
https://doi.org/10.1046/j.1529-8817.1999.3520403.x
Holling, C. S. (1959).
The Components of Predation as Revealed by a Study of Small-Mammal
Predation of the European Pine Sawfly. The Canadian Entomologist,91(5), 293–320. https://doi.org/10.4039/Ent91293-5
Hughes, R. N., &
Croy, M. I. (1993). An Experimental Analysis of Frequency-Dependent
Predation (Switching) in the 15-Spined Stickleback, Spinachia spinachia.Journal of Animal Ecology, 62(2), 341–352.
https://doi.org/10.2307/5365
Ioannou, C. C.,
Morrell, L. J., Ruxton, G. D., & Krause, J. (2009). The Effect of Prey
Density on Predators: Conspicuousness and Attack Success Are Sensitive
to Spatial Scale. The American Naturalist, 173(4),
499–506. https://doi.org/10.1086/597219
Ivlev, V. S. (1961).Experimental ecology of the feeding of fishes. Yale University
Press, New Haven.
Jacobs, J. (1974).
Quantitative measurement of food selection. Oecologia,14(4), 413–417. https://doi.org/10.1007/BF00384581
Jażdżewski, K. (1980).
Range Extensions of Some Gammaridean Species in European Inland Waters
Caused by Human Activity. Crustaceana. Supplement, 6,
84–107.
Jazdzewski, K.,
Konopacka, A., & Grabowski, M. (2004). Recent drastic changes in the
gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic
system in Poland caused by alien invaders. Diversity and
Distributions, 10(2), 81–87.
https://doi.org/10.1111/j.1366-9516.2004.00062.x
Jensen, T. C., &
Verschoor, A. M. (2004). Effects of food quality on life history of the
rotifer Brachionus calyciflorus Pallas. Freshwater Biology,49(9), 1138–1151.
https://doi.org/10.1111/j.1365-2427.2004.01255.x
José Pinheiro, R Core
Team, Johannes Ranke, Bert Van Willigen, Siem Heisterkamp, Deepayan
Sarkar, Saikat DebRoy, & Douglas Bates. (2022). nlme: Linear and
Nonlinear Mixed Effects Models version 3.1-162 from CRAN.
https://rdrr.io/cran/nlme/
Karpevich, A. F.
(1975). Theory and practice of aquatic organisms acclimatization.
432.
Ketelaars, H. A. M.,
Lambregts-van de Clundert, F. E., Carpentier, C. J., Wagenvoort, A. J.,
& Hoogenboezem, W. (1999). Ecological effects of the mass occurrence of
the Ponto–Caspian invader, Hemimysis anomala G.O. Sars, 1907
(Crustacea: Mysidacea), in a freshwater storage reservoir in the
Netherlands, with notes on its autecology and new records.Hydrobiologia, 394(0), 233–248.
https://doi.org/10.1023/A:1003619631920
Kiljunen, M.,
Peltonen, H., Lehtiniemi, M., Uusitalo, L., Sinisalo, T., Norkko, J.,
Kunnasranta, M., Torniainen, J., Rissanen, A. J., & Karjalainen, J.
(2020). Benthic-pelagic coupling and trophic relationships in northern
Baltic Sea food webs. Limnology and Oceanography, 65(8),
1706–1722. https://doi.org/10.1002/lno.11413
Kiørboe, T., Saiz, E.,
Tiselius, P., & Andersen, K. H. (2018). Adaptive feeding behavior and
functional responses in zooplankton. Limnology and Oceanography,63(1), 308–321. https://doi.org/10.1002/lno.10632
Krebs, J. R.,
Erichsen, J. T., Webber, M. I., & Charnov, E. L. (1977). Optimal prey
selection in the great tit ( Parus major). Animal Behaviour,25, 30–38. https://doi.org/10.1016/0003-3472(77)90064-1
Langerhans, R. B.,
Goins, T. R., Stemp, K. M., Riesch, R., Araújo, M. S., & Layman, C. A.
(2021). Consuming Costly Prey: Optimal Foraging and the Role of
Compensatory Growth. Frontiers in Ecology and Evolution,8. https://www.frontiersin.org/articles/10.3389/fevo.2020.603387
Laspoumaderes, C.,
Modenutti, B., & Balseiro, E. (2010). Herbivory versus omnivory:
Linking homeostasis and elemental imbalance in copepod development.Journal of Plankton Research, 32(11), 1573–1582.
https://doi.org/10.1093/plankt/fbq077
Leppäkoski, E.,
Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., & Panov, V. (2002).
The Baltica sea of invaders. Canadian Journal of Fisheries and
Aquatic Sciences, 59(7), 1175–1188.
https://doi.org/10.1139/f02-089
Leppäkoski, E., &
Olenin, S. (2001). The Meltdown of Biogeographical Peculiarities of the
Baltic Sea: The Interaction of Natural and Man-made Processes.AMBIO: A Journal of the Human Environment, 30(4),
202–209. https://doi.org/10.1579/0044-7447-30.4.202
Lesutienė, J.,
Gorokhova, E., Gasiūnaitė, Z. R., & Razinkovas, A. (2007). Isotopic
evidence for zooplankton as an important food source for the mysid
Paramysis lacustris in the Curonian Lagoon, the South-Eastern Baltic
Sea. Estuarine, Coastal and Shelf Science, 73(1), 73–80.
https://doi.org/10.1016/j.ecss.2006.12.010
MacArthur, R. H., &
Pianka, E. R. (1966). On Optimal Use of a Patchy Environment. The
American Naturalist, 100(916), 603–609.
https://doi.org/10.1086/282454
Marin, V., Huntley, M.
E., & Frost, B. (1986). Measuring feeding rates of pelagic herbivores:
Analysis of experimental design and methods. Marine Biology,93(1), 49–58. https://doi.org/10.1007/BF00428654
Mauchline, J. (1980).The biology of mysids and euphausiids. Academic Press.
Mayntz, D.,
Raubenheimer, D., Salomon, M., Toft, S., & Simpson, S. J. (2005).
Nutrient-Specific Foraging in Invertebrate Predators. Science,307(5706), 111–113. https://doi.org/10.1126/science.1105493
Meunier, C. L.,
Boersma, M., Wiltshire, K. H., & Malzahn, A. M. (2016). Zooplankton eat
what they need: Copepod selective feeding and potential consequences for
marine systems. Oikos, 125(1), 50–58.
https://doi.org/10.1111/oik.02072
Möllmann, C.,
Kornilovs, G., Fetter, M., & Köster, F. W. (2004). Feeding ecology of
central Baltic Sea herring and sprat. Journal of Fish Biology,65(6), 1563–1581.
https://doi.org/10.1111/j.0022-1112.2004.00566.x
Moran, SH., &
Fishelson, L. (1971). Predation of a sand-dwelling mysid crustacean
Gastrosaccus sanctus by plover birds (Charadriidae). Marine
Biology, 9(1), 63–64. https://doi.org/10.1007/BF00348818
Murdoch, W. W., &
Oaten, A. (1975). Predation and Population Stability. In A. MacFadyen
(Ed.), Advances in Ecological Research (Vol. 9, pp. 1–131).
Academic Press. https://doi.org/10.1016/S0065-2504(08)60288-3
Nejstgaard, J.,
Naustvoll, L., & Sazhin, A. (2001). Correcting for underestimation of
microzooplankton grazing in bottle incubation experiments with
mesozooplankton. Marine Ecology Progress Series, 221,
59–75. https://doi.org/10.3354/meps221059
Oaten, A., & Murdoch,
W. W. (1975). Switching, Functional Response, and Stability in
Predator-Prey Systems. The American Naturalist, 109(967),
299–318. https://doi.org/10.1086/282999
Ojaveer, H.,
Leppäkoski, E., Olenin, S., & Ricciardi, A. (2002). Ecological Impact
of Ponto-Caspian Invaders in the Baltic Sea, European Inland Waters and
the Great Lakes: An Inter-Ecosystem Comparison. In E. Leppäkoski, S.
Gollasch, & S. Olenin (Eds.), Invasive Aquatic Species of Europe.
Distribution, Impacts and Management (pp. 412–425). Springer
Netherlands. https://doi.org/10.1007/978-94-015-9956-6_41
Pace, M. L., & Orcutt
Jr., J. D. (1981). The relative importance of protozoans, rotifers, and
crustaceans in a freshwater zooplankton community1. Limnology and
Oceanography, 26(5), 822–830.
https://doi.org/10.4319/lo.1981.26.5.0822
Penk, M. R., &
Minchin, D. (2014). Seasonal migration of a glacial relict mysid
(Crustacea) into the littoral zone and its co-occurrence with an
introduced competitor in Lough Derg (Ireland). Hydrobiologia,726(1), 1–11. https://doi.org/10.1007/s10750-013-1744-x
Pimm, S. L., &
Lawton, J. H. (1978). On feeding on more than one trophic level.Nature, 275(5680), Article 5680.
https://doi.org/10.1038/275542a0
Pyke, G. H., Pulliam,
H. R., & Charnov, E. L. (1977). Optimal Foraging: A Selective Review of
Theory and Tests. The Quarterly Review of Biology, 52(2),
137–154. https://doi.org/10.1086/409852
R Core Team. (2021).R: A language and environment for statistical computing.[Computer software]. R Foundation for Statistical Computing,.
http://www.rstudio.com/
Rakauskas, V. (2019).
The impact of introduced Ponto-Caspian mysids (Paramysis lacustris) on
the trophic position of perch (Perca fluviatilis) in European
mesotrophic lakes. Knowledge & Management of Aquatic Ecosystems,420, Article 420. https://doi.org/10.1051/kmae/2019030
Ramlee, A.,
Chembaruthy, M., Gunaseelan, H., Yatim, S. R. M., Taufek, H., & Rasdi,
N. W. (2021). Enhancement of nutritional value on zooplankton by
alteration of algal media composition: A review. IOP Conference
Series: Earth and Environmental Science, 869(1), 012006.
https://doi.org/10.1088/1755-1315/869/1/012006
Reid, D. F., &
Orlova, M. I. (2002). Geological and evolutionary underpinnings for the
success of Ponto-Caspian species invasions in the Baltic Sea and North
American Great Lakes. Canadian Journal of Fisheries and Aquatic
Sciences, 59(7), 1144–1158. https://doi.org/10.1139/f02-099
Ricciardi, A., &
MacIsaac, H. J. (2000). Recent mass invasion of the North American Great
Lakes by Ponto–Caspian species. Trends in Ecology & Evolution,15(2), 62–65. https://doi.org/10.1016/S0169-5347(99)01745-0
Ricciardi, A., &
Rasmussen, J. B. (1998). Predicting the identity and impact of future
biological invaders: A priority for aquatic resource management.Canadian Journal of Fisheries and Aquatic Sciences, 55(7),
1759–1765. https://doi.org/10.1139/f98-066
Sailley, S. F.,
Polimene, L., Mitra, A., Atkinson, A., & Allen, J. I. (2015). Impact of
zooplankton food selectivity on plankton dynamics and nutrient cycling.Journal of Plankton Research, 37(3), 519–529.
https://doi.org/10.1093/plankt/fbv020
Schmidt, J. M.,
Sebastian, P., Wilder, S. M., & Rypstra, A. L. (2012). The Nutritional
Content of Prey Affects the Foraging of a Generalist Arthropod Predator.PLOS ONE, 7(11), e49223.
https://doi.org/10.1371/journal.pone.0049223
Stephens, D. W., &
Krebs, J. R. (1986). Foraging Theory. Princeton University
Press.
Sterner, R. W., &
Hessen, D. O. (1994). Algal Nutrient Limitation and the Nutrition of
Aquatic Herbivores. Annual Review of Ecology and Systematics,25, 1–29.
Thomas, K., E, S., &
M, V. (1996). Prey switching behaviour in the planktonic copepod Acartia
tonsa. Marine Ecology Progress Series, 143, 65–75.
https://doi.org/10.3354/meps143065
Toonen, R. J., &
Fu-Shiang, C. (1993). Limitations of laboratory assessments of
coelenterate predation: Container effects on the prey selection of the
Limnomedusa, Proboscidactyla Flavicirrata (Brandt). Journal of
Experimental Marine Biology and Ecology, 167(2), 215–235.
https://doi.org/10.1016/0022-0981(93)90032-J
Trommer, G., Lorenz,
P., Lentz, A., Fink, P., & Stibor, H. (2019). Nitrogen enrichment leads
to changing fatty acid composition of phytoplankton and negatively
affects zooplankton in a natural lake community. Scientific
Reports, 9(1), Article 1.
https://doi.org/10.1038/s41598-019-53250-x
Vad, C. F., Schneider,
C., Lukić, D., Horváth, Z., Kainz, M. J., Stibor, H., & Ptacnik, R.
(2020). Grazing resistance and poor food quality of a widespread
mixotroph impair zooplankton secondary production. Oecologia,193(2), 489–502. https://doi.org/10.1007/s00442-020-04677-x
Viherluoto, M., Kuosa,
H., Flinkman, J., & Viitasalo, M. (2000). Food utilisation of pelagic
mysids, Mysis mixta and M. relicta, during their growing season in the
northern Baltic Sea. Marine Biology, 136(3), 553–559.
https://doi.org/10.1007/s002270050715
Viitasalo, M., &
Rautio, M. (1998). Zooplanktivory by Praunus flexuosus (Crustacea:
Mysidacea): functional responses and prey selection in relation to prey
escape responses. Marine Ecology Progress Series, 174,
77–87. https://doi.org/10.3354/meps174077
Von Elert, E., &
Stampfl, P. (2000). Food quality for Eudiaptomus gracilis: The
importance of particular highly unsaturated fatty acids.Freshwater Biology, 45(2), 189–200.
https://doi.org/10.1046/j.1365-2427.2000.00671.x
Weers, P., & Gulati,
R. (1997). Effect of the addition of polyunsaturated fatty acids to the
diet on the growth and fecundity ofDaphnia galeata. Freshwater
Biology, 38(3), 721–729.
https://doi.org/10.1046/j.1365-2427.1997.00237.x
Weisse, T., Karstens,
N., Meyer, V., Janke, L., Lettner, S., & Teichgräber, K. (2001). Niche
separation in common prostome freshwater ciliates: The effect of food
and temperature. Aquatic Microbial Ecology, 26, 167–179.
https://doi.org/10.3354/ame026167
Wellenreuther, M., &
Connell, S. D. (2002). Response of predators to prey abundance:
Separating the effects of prey density and patch size. Journal of
Experimental Marine Biology and Ecology, 273(1), 61–71.
https://doi.org/10.1016/S0022-0981(02)00145-4
Wickham H. (2009).ggplot2: Elegant Graphics for Data Analysis. (1st ed.). Springer
New York, NY. https://doi.org/10.1007/978-0-387-98141-3
Wittmann, K. J.
(2007). Continued massive invasion of Mysidae in the Rhine and Danube
river systems, with first records of the order Mysidacea (Crustacea:
Malacostraca: Peracarida) for Switzerland. Revue Suisse de
Zoologie, 114, 65–86. https://doi.org/10.5962/bhl.part.80389
Wittmann, K. J.
(2008). Weitere Ausbreitung der pontokaspischen Schwebgarnele
(Crustacea: Mysida: Mysidae) Katamysis warpachowskyi in der oberen
Donau: Erstnachweis für Deutschland. Lauterbornia, 63,
83–86.
Wittmann, K. J.,
Ariani, A. P., & Lagardère, J.-P. (2014). Orders Lophogastrida Boas,
1883, Stygiomysida Tchindonova, 1981, and Mysida Boas, 1883 (also known
collectively as Mysidacea). In Treatise on Zoology—Anatomy,
Taxonomy, Biology. The Crustacea, Volume 4 Part B (pp. 189–396).
Brill. https://doi.org/10.1163/9789004264939_006
Wood, S. N., Pya, N.,
& Säfken, B. (2016). Smoothing Parameter and Model Selection for
General Smooth Models. Journal of the American Statistical
Association, 111(516), 1548–1563.
https://doi.org/10.1080/01621459.2016.1180986
Work, K., Havens, K.,
Sharfstein, B., & East, T. (2005). How important is bacterial carbon to
planktonic grazers in a turbid, subtropical lake? Journal of
Plankton Research, 27(4), 357–372.
https://doi.org/10.1093/plankt/fbi013