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Abstract—Building on the work in [1], this paper
shows how Conformal Geometric Algebra (CGA) can
be used to model an arbitrary two-port scattering
matrix as a rotation in four dimensional Minkowski
space, known as a spinor. This spinor model plays
the role of the wave-cascading matrix in conventional
microwave network theory. Techniques to translate
two-port scattering matrix in and out of spinor form
are given. Once the translation is laid out, geometric
interpretations are given to the physical properties
of reciprocity, loss, and symmetry and some mathe-
matical groups are identified. Methods to decompose
a network into various sub-networks, are given. An
example application of interpolating a 2-port network
is provided demonstrating an advantage of the spinor
model. Since rotations in four dimensional Minkowski
space are Lorentz transformations, this model opens up
the field of network theory to physicists familiar with
relativity, and vice versa.

Contents

I Introduction 1

II Reciprocal Networks 2

III Non-reciprocal Networks 4

IV Special Cases and Groups 5

V Decomposition Methods 6

VI Application: Interpolation 7

VII Conclusion 9

VIII Appendix 9

References 9

I. Introduction
Two-port networks play an important role in microwave

engineering, control theory, quantum mechanics, and sev-
eral other disciplines. From a modeling standpoint, two-
port networks can be thought of as operators or as quan-
tities of interest. Microwave networks are traditionally
represented by various matrix formats, such as the scat-
tering (S), impedance (Z), and admittance (Y) matrices.
Choosing a given format is equivalent to choosing a basis
in which to frame a transformation. Because the different

bases have different physical interpretations, one may be
more natural for a given problem than another. For exam-
ple, at high frequencies power is more easily measured than
impedance so scattering matrices are generally used. When
several two-port networks are cascaded together, matrices
such as the wave-cascading (T) and (ABCD) matrix are
used, which implements network cascading through matrix
multiplication. The cascading matrix algebra has been
very successful in impedance matching, filter theory [2],
and calibration problems [3], [4].
An alternative to matrices is to use Geometric Algebra

(GA) to model two-port networks as spinors. As shown in
[1], the fundamental relations of transmission line theory
become linearized by using a tool known as Conformal
Geometric Algebra (CGA). This construction allows op-
erations such as adding impedance and admittance, or
changing line impedance to be implemented with rotations
in a four dimensional minkowski space, otherwise known
as Lorentz transformations. (The deeper physical reason
for this we have not yet determined.) While the work
in [1], gave some spinor representations for fundamental
circuit elements, this paper presents a method to trans-
late an arbitrary two-port s-matrix into a spinor. While
essentially equivalent to the wave-cascading matrix, the
CGA spinor approach provides unique geometric insight
and basis invariance, neither of which are possible with
linear algebra. Using spinors opens up the field of network
theory to physicists familiar with Lorentz transformations,
and allows techniques to be translated between the two
disciplines.

A. Outline
The paper is divided into two main parts. Sections

II and III deal with translating scattering matrix rep-
resentation of two-port networks in and out of CGA
spinor representation. This ability is required in order
to interface existing infrastructure, and also provides a
way to migrate one’s understanding into the new CGA
formalism. Section IV-B describes the geometry of some
special cases of networks, while section V, demonstrates
how to decompose two-port networks into sub-networks
based on the physical properties of reciprocity, loss, and
symmetry. Finally an example application of interpolation
is given. In contrast with the conventional characterization
based on matrix conditions, each decomposition is given
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Figure 1: Circuit diagram of an arbitrary two-port high-
lighting the reflection a and b as seen looking into port 1.
The symbol V is used to denote the spinor representation.

a concrete geometric interpretation. This paper does not
present a direct geometric interpretation of the S, Z, or
Y-matrix itself, nor show how such a model would be
related to the wave cascading spinor model presented here,
although this is certainly possible.

II. Reciprocal Networks
A. Geometry of Reflectometry

Our network spinors are geometric objects which repre-
sent the wave cascading matrix. The cascading matrix is
useful because it models reciprocal networks as rotations,
while the scattering matrix models lossless networks as
rotations. Additionally, as it’s name implies, cascading
networks is accomplished by multiplication. There are
several ways to setup the matrix-to-spinor translation. The
most direct route is to translate the wave-cascading matrix
directly into a spinor, and replace the matrix product with
the geometric product. However, we choose to take an
engineering approach and assemble our model from the
s-matrix elements using physical arguments from reflec-
tometry. While this may seem archaic to mathematicians,
it was how our model was developed and may be easier
for intuitive thinkers.

The basic problem in reflectometry is that some arbi-
trary two-port network V is located between a load of
interest b and the observable measurement a, as shown
in Figure 1. By measuring a set of known loads the two-
port network can be sufficiently characterized, thereby
allowing unknown loads to be measured. The S-matrix
is a commonly used representation for the intervening
two-port as it’s elements are reflection and transmission
coefficients and these quantities are more easily measured
than impedance at microwave frequencies. Starting with
the conventional formulation [2], the reflection coefficient
a is transformed by a two-port network into b, according
to the formula,

b = s11 + s12s21a

1− s22a
. (1)

Where the sij are the various elements of the S-matrix
for the two-port, and all variables are complex numbers.
This formula can be re-arranged as,

b = s11 + s12s21
(
a−1 − s22

)−1
. (2)

Writing the equation in this form illustrates how the
relation can be broken up into a series of simpler functions,

each of which is geometrically interpretable. In sequence:
the function

(
a−1 − s22

)−1 is known as a transversion,
the s12s21 term affects a rotation/dilation, and finally,
s11 performs a translation. Writing this as a sequence of
operators,

V = Ts11D|s21s21|R∠s12s21K−s22 . (3)

Where V is the total transformation, and the elemen-
tary transformations are represented by a transversion K,
rotation R, dilation D, and translation T . The subscripts
of each operator correspond to the matrix element, or
component thereof, which parameterizes it. For reciprocal
networks the transmission coefficients are equal s21 = s12
and so the dilation factor can be written as |s21|2 with a
rotation angle is of 2∠s21. The advantage of casting this re-
lationship in operator form is that group theory can be put
to use. The decomposition of eq 3 is identical to that of a
general conformal transformation as given in [5]. Once this
is recognized, much of network theory can be abstracted
to group theory. In CGA, each operator is represented by
a multivector which enacts a rotation, known as a rotor.
An un-normalized rotor (meaning squares to something
other than 1) is called a spinor. By finding the rotors for
the elementary transformations in eq (3), any S-matrix
can be converted into a CGA rotor, allowing two-port
networks to be analyzed with the CGA framework. Since
the rotors for all of the operations in eq (3) are well known
and given in the literature, we could just write down the
total rotor immediately. However, first we must we give
an introduction to CGA to make the notation clear. More
information can be found in [1].

B. CGA
This section provides a brief introduction to the CGA

and notation employed in this paper. Start by representing
reflection coefficient as a vector within a plane spanned by
two orthonormal vectors e1 and e2 of positive signature.
These can be thought of as the real and imaginary axes of
the complex plane. Next, add a third dimension of positive
signature (e3) and a fourth of negative signature (e4). The
orthonormal vector basis for the conformal space is given
by

e2
1 = e2

2 = e2
3 = −e2

4 = 1. (4)

The basis generates a geometric algebra containing the
following blades:

α︸︷︷︸
1−scalar

, ei︸︷︷︸
4-vectors

, eij︸︷︷︸
6−bivectors

, eijk︸︷︷︸
4-trivectors

, i︸︷︷︸
1-pseudoscalar

(5)
Here the e12-plane is identified as the original 2D space,
and e34-plane contains the added dimensions. Due to the
signature of the added space, the e34-plane is known as
the Minkowski plane, which is commonly labeled E0,

E0 ≡ e3 ∧ e4. (6)
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It is convenient to further define a null basis.

eo = 1
2 (e4 − e3) (7)

e∞ = e4 + e3 (8)

These two vectors represent the points of infinity and
zero, as their subscripts suggest. They have the properties,

e2
o = e2

∞ = 0 (9)
e∞eo = −1 + E0. (10)

In terms of the null basis, a vector x in the original space
of e12 is mapped upwards to a conformal vector X, by the
following.

X = ↑(x) = x+ 1
2x

2e∞ + eo (11)

The inverse, downwards map, is the made by normal-
izing the conformal vector then rejecting it from the
Minkowski plane.

x = ↓ (X) = X ∧ E0

−X · e∞
E−1

0 (12)

In the above formula and all others, we adhere to
the convention that the inner and outer products take
precedence over the geometric product. Now that the CGA
has been laid out, rotors representations for the operations
in eq (3) can be expressed.

C. S-Matrix to Rotor
Derived in [5], the CGA rotors for the operators in eq

(3) as expressed in the basis defined above are,

Tx ≡ e
1
2 e∞x (13)

Kx ≡ e2e
1
2 eoxe2 = e23Txe23 (14)

Dρ ≡ e− ln ρ
2E0 (15)

Rθ ≡ e−
θ
2 e12 . (16)

Where the subscripts are either vectors in e12 or scalars
which parameterize the rotor. The transversion rotor K
is slightly different than that given in [5] because the
complex inversions in eq (2) add additional reflections, so
the K in eq (14) could be called a complex transversion.
By defining these rotors, we have an explicit formula
for translating a S-matrix into a CGA rotor, through
eq (3). For implementation it is important to avoid any
unnecessary multiplying or division of complex numbers.
For example, the rotation operator

R∠s12s21 = e
∠s12s21

2 e12 , (17)

is better implemented as,

R∠s12s21 = e(∠s12+∠s21)e12 . (18)

The reverse procedure of translating a rotor into a S-
matrix is discussed next.

D. Rotor to S-matrix
Translating a CGA rotor into a S-matrix is equivalent

to finding the reflection and transmission coefficients for
the two-port network when the network is terminated in
matched impedances. A procedure to accomplish this for
reciprocal networks can be developed by employing some
concepts from microwave reflectometry. First, we express
the relation in Figure (1) in the language of CGA,

b = V aṼ . (19)

Where a and b are the up-projected null vectors of the
reflection coefficients, and V is the rotor representing two-
port network. In microwave terminology, we say that a
load a is embedded in the twoport V . By definition, s11 is
the reflection coefficient at port 1 when port 2 is matched,
so this quantity is found by letting V act on a match, ie
a = eo.

s11 =↓
(
V eoṼ

)
(20)

This determines T in (3). Geometrically this corre-
sponds to determining how the origin is translated (also
known as the directivity). From an operator perspective,
determining T is possible because the origin is invariant to
operations of K,D and R. It is also obvious by inspecting
eq (2). Next, we can determine s22 in an identical way
by flipping the network, and then terminating it with a
match. The operation of physically flipping a network,
which will exchange port indices’s is denoted with an
underbar and can be defined,

V ≡ e14V
−1e14. (21)

A proof that this operator does permutes port 1 and 2
is given in Appendix (VIII-A). By using this flip operator,
s22 is found in a similar way as s11,

s22 =↓
(
VeoṼ

)
(22)

Which determines K in (3). Once T and K are found,
they can be removed from V to leave only the rotation
and dilation operators.

T̃ V K̃ = T̃ TDRKK̃ = DR (23)

The parameters of DR can be found by taking the
logarithm as described in [?]. Which completes the de-
termination of the S-matrix.

E. Other Bases and Conversions
To convert the wave-cascading matrix to another for-

mat, such as ABCD-matrix, a basis transform must take
place at some point. With the conventional treatment,
two-port networks in different bases are related through
a bilinear matrix equation such as ,

S = (Z − I) (Z + I)−1 (24)
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Where S and Z are complex NxN matrices containing
the scattering and impedance parameters, and I is the
identity matrix. While concise, this equation has no ge-
ometric interpretation. In contrast, CGA allows different
basis representations to be related through simple, geo-
metrically interpretable rotations as demonstrated in [1].
The basis rotors work in the same way for the cascading
matrices, such as ABCD or T-matrices. For example, a
rotor can be transformed from the reflection and wave-
cascading spinor V into the ABCD spinor (A) with a
simple π

2 -rotation in the e13 plane.

A = e−
π
4 e13V e

π
4 e13 . (25)

The rotors are repeated below, and these can be used
to transform a CGA versor to and from the desired basis.

Rzs ≡ e−
π
4 e13 (26)

Rzy ≡ e−
π
2 e23 (27)

Rsy = e
− π

2
√

2
(e23+e21) (28)

However, since CGA provides a basis invariance such
transformations are not as important. Next we extend the
model to include non-reciprocal networks.

III. Non-reciprocal Networks
A. The Model
So far we have shown how reciprocal two-port networks

can be modeled as rotations in Conformal Geometric
Algebra. This sections extends that model to include
non-reciprocal networks using whats known as a duality
spinor [6]. Developing the theory in this way makes sense
because; 1) reciprocal networks are far more common, 2)
areciprocity has a geometrically distinct interpretation,
and 3) because the areciprocity can be easily separated
and removed. Any model for areciprocity must be imper-
ceivable from the perspective of reflectometry because the
transmission coefficients in eq 1 are not individually ob-
servable. As described in part 4 of [6], the transformation
of any vector in the Dirac algebra of G1,3 can be written,

p′ = V pS (29)

A Lorentz transformation preserves the length of vec-
tors.

p′2 = V pSV pS = p2 (30)

This will hold for any vector p only if SV either
commutes or anti-commutes with p. The only grade of
elements in G1,3 which fulfill this property for any vector
are scalars and pseudo-scalars, so we can write,

SV = α+ βi = ρeθi. (31)

Where i is the pseudoscalar. Equation (31) implies

S = ρeθiṼ , (32)

This form cleanly separates the reciprocal from the
areciprocal; the areciprocal part is a duality rotation, while
the reciprocal part is a bivector rotation. Using geometri-
cally distinct objects for physically distinct network prop-
erties provides insight into the physics of 2-port networks
that is difficult to attain with matrix representations.
Reflecting on the proposed duality spinor model, we note
that it has many of the required features of areciproc-
ity; it inverts with the flip operation, it commutes when
several two-ports are cascaded together, and it requires
two-independent parameters. The duality spinor is the
geometric representation of the determinant of the wave
cascading matrix.

B. S-matrix Areciprocity to spinor
To convert a non-reciprocal s-matrix into a spinor, first

compute V by way of equation (3). This requires the
parameters s11, s22, and the product s12s21. Next, the
duality spinor P is determined by the complex ratio of
s12 to s21,

P = √ρe θ2 i. (33)

Where

ρ = |s12

s21
| (34)

θ = ∠
s12

s21
(35)

Once P is found the total non-reciprocal versor is
created by multiplying V with P .

A = PV (36)

The half-angle θ
2 and √ρ are used because we choose to

implement the duality spinor in a double-sided formula.
This way we just keep track of A, instead of P and
V separately (but this would work too). Converting a
duality spinor to a complex number is done by reversing
this procedure. This requires a technique to separate the
duality spinor from the total spinor, which is given in the
next section.

C. Areciprocity spinor to S-matrix
Any versor which represents a non-reciprocal network

can be broken up into reciprocal and areciprocal parts by
separating the duality spinor from the bivector rotor. This
is necessary since a bivector rotation in four dimensions
will have scalar and psuedo-scalar components. A tech-
nique to accomplish this separation can be developed by
exploiting each part’s behavior in regard to reversion [6].
The spinor for a an arbitrary two-port network can be
expressed,

A = PV. (37)

Where P is an areciprocal duality spinor and V is a
reciprocal rotor generated by the bivector U .
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P = √ρe θ2 i V = eU (38)

To separate A into P and V , first determine P and then
remove it. Start by forming,

AÃ = PV ˜V P = P 2 = ρeθi. (39)

Once P is found, the rotor V can be found using,

V = P−1A. (40)

This section has given formulas needed to convert a s-
matrix to and from a spinor representation in a four di-
mensional minkowski space. In the next section reciprocal
networks are further decomposed based on the physical
attributes of loss, symmetry and matched-ness.

IV. Special Cases and Groups
A. Reciprocal Networks

Since cascading any number of reciprocal networks
yields a reciprocal network it is clear that they form a
mathematical group which is a sub-group of all two-port
networks. With CGA this group structure is represented
geometrically by the fact that reciprocal networks are rota-
tions, and non-reciprocal networks are spinors. Extending
this logic, several other groups can be anticipated. For ex-
ample, lossless networks form a group, as well as reflection-
less or matched networks. Since two-port networks are
modeled as rotations in CGA, we can analyze their group
structure by identifying the planes of their rotations.

B. Lossless Networks
It is well known that lossless networks are represented

by unitary scattering matrices, but there properties in
cascading matrices or spinors is different. A mathematical
representation for lossless networks can be made by con-
sidering the following physical argument. A lossless load
has a reflection coefficient magnitude of unity, which can
be visualized as a vector confined to the unit circle. In
CGA, lines and circles are represented by tri-vectors and
can be defined by taking the outer product of three null
vectors which lay on the line/circle [7]. In this way, lines
and circles become geometric objects in the algebra, as
opposed to equations regarding their coordinates. Using
this construction, the unit circle can be defined by the
tri-vector,

↑ (e1)∧ ↑ (−e1)∧ ↑ (e2) = e124. (41)

Cascading a lossless two-port network in front of a
lossless load preserves the magnitude of the reflection
coefficient, for there is no way for the power to dissipate.
This is only true for lossless loads. Algebraically, this
means that a lossless versor leaves e124 invariant.

V e124Ṽ = e124 (42)

e2

e1-e4

e4

e1

e1+e4

N

B

X

L

Figure 2: Lossless subspace of CGA with relevant vectors
and bivector planes labeled.

Equivalently, we can say that a lossless versor commutes
with e124. The only generators which have this quality are
those contained within the subspace defined by e124, which
can be interpreted as the lossless subspace. As shown in
[1], the generators of the discrete element group which are
contained within this subspace are those for reactance X,
suscpetance B, and an impedance transformer N ,

X ≡ e12 − e24 (43)
B ≡ e12 + e24 (44)
N ≡ e14 (45)

These are by definition lossless elements. A figure illus-
trating the lossless subspace of CGA, with the bivector
rotation planes labeled is shown in Figure 2. By summing
infinitesimal rotations in both X and B equally, a rota-
tion in the e12-plane (labeled L) can be created, which
extends the list of lossless elements to include matched
transmission lines [1]. Mismatched transmission lines can
be modeled as cascading impedance transformers on either
side of a matched line, or by summing infinitesimal rota-
tions in X and B unequally. This exact model for a lossless
subspace was published in the 1950’s by E.F. Bolinder [8],
albeit through a different approach. Next we identify some
special cases of reciprocal networks.

C. Matched Networks
Matched networks are defined by having no reflection

coefficient at either port, meaning the diagonal elements
of their s-matrix are zero ,

s11 = s22 = 0. (46)

This special class of networks also forms a group, from
the same physical argument given above. The matched
condition reduces eq 3 to rotations and dilations, which
are generated by rotations in e12 and e34 respectively, ie

V = e−
θ
2 e12− ln ρ

2 e34 . (47)
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Property Bivectors in Generator

Reciprocal e12, e23, e34, e14, e23, e14

Symmetric e12, e34, e13, e24

Asymmetric e12, e23, e34, e14

Lossless e12, e24, e14

Non-propagating e13, e34, e23

Matched e12, e34

Table I: List of network classifiers and the bivectors
present in their generators. Groups are emboldened.

D. Symmetric Networks
Symmetric networks don’t form a group because cascad-

ing two symmetric networks can produce a non-symmetric
network. By definition, symmetric networks are invariant
to a flip, which we can write,

V = V = e14V
−1e14. (48)

The only rotors which fulfill this property are those
which don’t contain e14 or e23.

E. The Structure of Two-port Networks
Now that some special cases of networks have been

identified by various means, it starts to become clear that
two-port networks can be systematically classified based
on the planes of rotation. This is most easily done by
inspecting the bivectors present in their generators, as
is done to classify Lie Groups in [9]. A list of different
classifiers and the bivectors present in their generators
is given in Table I. We find a graph more helpful to
visualize this structure. The graph shown in Figure 3
represents vectors as nodes, and bivectors as connecting
edges, with labels to indicate the group and degrees of
freedom. The generators for various physical classifiers is
visualized as subsets of edges. Different classifiers can be
combined through the intersection operator of set-theory.
For example, in reference to Figure 3, a symmetric, lossless
network requires two parameters and it’s generator con-
tains e12 and e24. Visually, this result can be determined
by overlaying the two Cayley graphs and take the union.

V. Decomposition Methods
A. The Projective Split

A fundamental component in the Space Time Alge-
bra (STA) is the concept of a projective split, where it
represents the relationship between the Dirac and Pauli
algebras [5], [6]. Since the geometry of CGA for two-
port networks is identical to STA, we might suspect the
split to be useful in network theory as well. It turns out
that through a series of splits with various directions,
reciprocal two-port networks can be decomposed based on

Matched (2)

Lossless(3) Non-propagating(3)

Symmetric(4) Asymmetric(4)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Reciprocal (6)

1 2

3 4

Figure 3: Graph illustrating bivector generators present in
various network classifications. Combinations of classifica-
tions can be accomplished with the set theory intersection
operation, between the group generators.

their physical properties. Some of these physical properties
form mathematical groups.
The concept is best illustrated with an example, so we

revisit the lossless subgroup to demonstrate. As shown in
section IV-B, lossless two-port networks for a 3-parameter
group which can be identified as bivectors belonging to
the e124-subspace of CGA. This subgroup can also be
generated by employing a projective split with e3, in which
case the bivectors of G1,3 are mapped into vectors and
bivectors in G1,2. The bivectors not containing e3 map
into bivectors and form the group, while the bivectors
containing e3 map into vectors which do not form a group.
The map can be defined as follows,

e3i → ei (49)
eij → eij , i, j 6= 3. (50)

In this way a lossy network can be decomposed into
lossless and phase-less or non-propagating parts. The term
non-propagating, although awkward, seems to be the most
accurate description of the antithesis of lossless. If the non-
propagating vector part is thought of as representing a
translation and the lossless bivector part is thought of as
a rotation, then two-port networks become a hyperbolic
motion in a three-space. This means two-port’s could be
studied with a minkowskian motor algebra, an interesting
idea.
The lossless group can be split once more, this time sep-

arating the group into symmetric and asymmetric parts.
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By choosing e2 as the splitting vector, the bivectors in
G1,2 are mapped into the vectors and bivectors of G1,1
according to,

e2i = ei (51)
e14 = e12. (52)

Here, the vectors in the minkowski plane represent the
symmetric part, and the bivector represents the asym-
metric part. As we have shown, employing the projec-
tive split decomposes networks by mapping bivectors into
different grade objects in a sub-algebra. By choosing dif-
ferent splitting vectors, it is possible to achieve different
decompositions and sub-algebras. An alternative approach
to decomposition which does not leave G1,3 is described
next.

B. Elemental Rotations
Since CGA allows any two-port network to be modeled

as a rotation in four dimensions, decomposing a network
into simpler sub-networks can implemented as decom-
posing a rotation into a series of sub-rotations. Theo-
rems about four dimensional rotations are well developed
thanks to work done to characterize Lorentz transfor-
mations. From this we know that any rotation can be
decomposed into a rotation which leaves a specified vector
invariant, followed by a rotation in a plane containing
that vector [10]. This fact is used in [6] to decompose
a Lorentz transformation into time-like and space-like
rotations. An exact translation of this decomposition in
our basis amounts to choosing e4 as the invariant vector.
While possible, we have yet to find a use in network theory
for such a decomposition. However, as we have shown
in the last section, decomposing a rotation based on e3
allows a network to be separated into lossless and non-
propagating parts, so we revisit this dichotomy here as
well.

The original derivation repeated here can be found in [6].
Start with a lossy rotor V and assume it can be broken
up into a non-propagating part H and a lossless part U in
cascade.

V = HU (53)

Like V , both H and U are rotations, so

HH̃ = UŨ = 1. (54)

The lossless part will leave e3 invariant,

U = e3Ue3, (55)

and the non-propagating part will contain e3,

H = e3H̃e3. (56)

Great. Next, form the quantity,

V e3Ṽ e3, (57)

Then express this in terms of H and U , and insert
factors of e2

3 strategically to find,

V e3Ṽ e3 = HUe3ŨH̃e3 (58)
= He3 (e3Ue3) Ũe3

(
e3H̃e3

)
(59)

= He3UŨe3H (60)
= H2. (61)

So H can be found from V if the square root of H2 can
be computed. Since H is simple so is H2, and the formula
for the square root of a simple rotor is [10],

√
R = (1 +R)

2 (1 + 〈R〉) . (62)

A direct formula for H in terms of V is thus,

H =
(
1 + V e3Ṽ e3

)
2
(
1 +

〈
V e3Ṽ e3

〉) . (63)

Once H is determined, U can be found from V by
removing H.

U = H̃V (64)

Which completes the determination of H and U from
V . The same procedure can be used to further decompose
the lossless rotation into symmetric and asymmetric parts
by choosing e2 as the invariant vector. Simply use U for
V , and replace all e3’s with e2.

VI. Application: Interpolation
A. Algorithm
As an example application of the spinor model presented

here, we illustrate its use for interpolation. A two-port
network is most commonly represented by an ordered list
of S-matrices, each matrix being a discrete sample point.
The independent variable that is changing across the
samples is irrelevant, but could be frequency, time, tem-
perature, etc. Inferring the network’s response in between
samples is the goal of interpolation. Some applications
for interpolation include reducing the number of sample
points required for simulation software to converge, or al-
lowing for sparsely sampled measurement scenarios. Most
conventional techniques operate on the elements of the
s-matrix independently. One problem with this approach
is that the interpolation between two lossless networks is
not generally lossless. This is analogous to interpolating a
rotation in 2D by acting on the real and imaginary parts
of a complex number; the interpolated points don’t lay on
a circle.
Since the spinor model allows for reciprocal 2-port

network to be represented as rotations, interpolation in
some cases is more natural than for matrices. Recall that
reciprocal networks are normalized spinors, also known as
rotors, and we use the terms interchangeably. Interpolation
of rotors can be done analogously to polar interpolation
of a complex number. With this approach there are still
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several different methods which could be used [11], [12].
We have found that splitting the rotor into simple sub-
rotors, based on a losslessness dichotomy, interpolating
each simple rotor, and then re-assembly results works
well. The results shown below are based on the following
algorithm:

1) Convert the reciprocal S-matrix into a rotor (sec
II-C)

2) Decompose rotor based on losslessness (sec V-B)
3) Interpolate each simple sub-rotor independently
4) Re-assemble sub-rotors back into single rotor
5) Convert rotor into S-matrix (sec II-D)

Step 3 can be done by using the methods described in
[11], [12], but we repeat the idea. Any simple rotor can be
written,

Vi = eGi , (65)

Where Gi is the generating bivector. Given a list of
rotors Vi, we can find a list of generators by taking the
logarithm of Vi which is well defined for a simple rotor,

Gi = log(Vi). (66)

Then, the components of Gi can be interpolated
component-wise, using standard techniques. We note that
only recently has the solution to the general case rotor
logarithm been solved [13], and this could make such
interpolation algorithms work without decomposition in
step 2 above.

B. Results

The interpolation method described above has been
implemented in Python and compared to a conventional
technique. The device under test was a lossy dielectric
in halfspace, with uneven segments of air on each side
as shown in figure 4. The s-parameters for this struc-
ture were generated over a frequency range of 1-10 GHz
with 400 points using the Python module scikit-rf (scikit-
rf.org). This ’true’ response was then down-sampled to
10 points, i.e. a ~2% sampling rate, and the same down-
sampled network data was then fed into each interpo-
lation algorithm. The results of each algorithm along
with the the true response are shown below in figure 5.
The conventional interpolation, labeled ’Cartesian’ is an
element-wise, cubic spline interpolation on the real and
imaginary components of the network’s S-matrices. In the
plots below, the spinor method clearly outperforms the
conventional method. While the results may be hard to
believe, we speculate that they are so accurate because
this specific network is a very simple spinor, and it is the
matrix representation which obfuscates this simplicity. A
more exhaustive analysis of the spinor-based interpolation
accuracy would be interesting to present in the future.

air Si air

. 5 cm
1.5cm

.2cm

εair=1
εsi=10-.1j

Figure 4: Physical model for a dielectric plate in half-space.
This air sections on each side were designed to make the
network asymmetric.

Spinor, S11

(a) Comparison of S11 for a dielectric in half-space.

Spinor, S21

(b) Comparison of S21 for a dielectric in half-space.

Figure 5: Comparison of S11 and S21 for a dielectric in
half-space. Traces show true response, sampled response,
Cartesian interpolation of Re/Im components of S-matrix,
and the spinor-based model interpolation. (The spinor in-
terpolation is so close to the true its hard to differentiate.)
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VII. Conclusion

We have presented a spinor version of the wave-
cascading matrix and developed methods for translating
between the matrix and CGA spinor representations. Ge-
ometric approaches to two-port network decomposition
based on the physical characteristics of reciprocity, loss,
and symmetry were presented and associated rotation
groups were identified. An arbitrary network can be de-
composed into specific parts either with the projective
split shown in Section V-A, or the elemental rotational
decomposition given in Section V-B. An example applica-
tion of interpolating a 2-port network is given in Section
VI. The main advantage of using Geometric Algebra for
modeling networks is the geometric meaning given to
various physical attributes, and the ability to unify results
with other fields.

VIII. Appendix

A. Proof of Flip Operator
Flipping a two-port network is defined as interchanging

its ports. In regard to a s-matrix, this has the effect of
swapping the following elements,

s12 ↔ s21 (67)
s11 ↔ s22. (68)

We seek the geometrical equivalent of this operation.
Given that nonreciprocal network can be expressed as the
spinor,

A = PV. (69)

Where P is an areciprocal duality spinor and V is a
reciprocal rotor. The flip operation is

A ≡ e14A
−1e14. (70)

a) Proof: The flip operation will effect the areciprocal
and reciprocal parts of the network differently, so each is
analyzed separately. Since a reciprocal network is a bivec-
tor rotor, inversion is equivalent to reversion, V −1 = Ṽ .
Additionally, the areciprocal part P commutes with the
e14’s, which annihilate each other, so the flip operations
reduces to inversion of P . Combining these facts, allows
us to write,

A = e14 (PV )−1
e14 = P−1e14Ṽ e14. (71)

Given the relation of P to the s-matrix defined in the
III-B, inverting P swaps s12 with s21. Whats left is to swap
the s11 and s22 elements. By inspecting eq (3), it can be
seen that the flip operation exchanges the parameter of
the transversion with that of the translation. The proof
that this can be accomplished by reversion combined with
a reflection in e14 is below,

V = e14 ˜(TtDdRrKk)e14 (72)
= e14K̃kR̃rD̃dT̃te14 (73)
= e14K̃ke14︸ ︷︷ ︸

−T−k

e14R̃re14︸ ︷︷ ︸
Rr

e14D̃de14︸ ︷︷ ︸
Dd

e14T̃te14︸ ︷︷ ︸
−K−t

(74)

= T−kDdRrK−t (75)

Here we have used the fact that e2
14 = 1 to insert pairs of

e14 where convenient, and computed the result of reflecting
each operator in e14.
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