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ABSTRACT. In the present article, we define a new kind of the modified Bernstein-Kantorovich operators
defined by Ozarslan (https://doi.org/10.1080,/01630563.2015.1079219) i.e. we introduce a new function
¢ in the modified Bernstein-Kantorovich operators defined by Ozarslan with the property ¢ (%) is an
infinitely differentiable function on [0,1], ¢(0) =0, ¢(1) =1 and ¢’(») > 0V s € [0, 1]. We substantiate
an approximation theorem by using of the Bohman-Korovkins type theorem and scrutinize the rate of
convergence with the aid of modulus of continuity, Lipschitz type functions for the our operators and
the rate of convergence of functions by means of derivatives of bounded variation are also studied. We
study an approximation theorem with the help of Bohman-Korovkins type theorem in .A—Statistical
convergence.

Lastly, by means of a numerical example, we illustrate the convergence of these operators to certain
functions through graphs with the help of MATHEMATICA and show that a careful choice of the func-
tion ((s) leads to a better approximation results as compared to the modified Bernstein-Kantorovich
operators defined by Ozarslan (https://doi.org/10.1080/01630563.2015.1079219).
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1. INTRODUCTION

Let J := [0,1] and C(J) be the space of all continuous functions on the interval J. In 1966, George [10]
introduced classical Bernstein operators By, (¢; ») as follows:

Bun(032) = > P () w(i), x €7, (1.1)
k=0

where pm i (3¢) = () #"(1 — )™ F.

Also, for R = [0,00) and ¢ : J — R is an integrable function, the classical Bernstein-Kantorovich
operators are defined by:

s D) N
Knli) =+ 1) Y pmaC) [ (0 dt, €3, meN. (12)
k=0 [CEsy)

The above operators Ky, (; ») can be also written as follows:

L . . Ykt
Fnlgi ) = D) Yo [ (177 ) (1)

For e > 0, it very interesting to see that if we write t with t¢ in (L.3)), then it does not effect the positivity
or linearity of the operator K, (¢; ), it does originate a new sequence of non negative linear operators
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i.e. modified Bernstein-Kantorovich operators given by Ozarslan and Duman [12] as follows:

Pkt
m(x ) m, ] N- 14
(15 2 Zp k( / (m—i—l)dt xeld (1.4)

We can notice that, if we take the value of a equal to 1 in the above equation 7 then we obtained
the classical Bernstein-Kantotrovich operators Ky, := Ky,1 defined as in . Furthermore, the author
showed that the order of approximation to a function by these operators is at least as good as that of
ones classically used. They proved two direct approximation result with the help of usual second-order
modulus of continuity and the second order modulus of continuity, respectively.

Motivated by the work of Ozarslan and Duman [12], for ¢ € C(J), we introduce a variant of the operator
(L.4) by means of an differentiable function ¢(s¢) on J satisfying the properties ¢(0) = 0, ¢(1) = 1 and
¢'(5) > 0, for 5 € T as follows:

! k + to
-1
L), (3 3¢ E P,k (C /(woc )(mH)dt, x e, (1.5)

where pm i(¢(3)) = () (C(30)*(1 — ((3))™ " and we study some direct approximation theorems with
the aid of the modulus of continuity and the Lipschitz type maximal function. A Voronovskaya type
asymptotic theorem and the approximation of functions with derivatives of bounded variation are also
investigated. In lastly, by drawing the graph with the help of MATHEMATICA software, we observed
that by a suitable choice of the function ((sr) a better order of convergence can be achieved by the our
operators , than the operators . We show, by the suitable choice of {(s) operators gives
the better convergence and error estimate also.
2. MOMENTS AND CENTRAL MOMENTS

Let ¢;(t) = t', i = 0,1,2,3,4 is the basis function for the operator Ky o (p; 5).

Lemma 1. For the operators Ku o(p; ) defined by , for each » € 3, we have
(i) Kma(l;5) =1;

.. . _ 2 1 .
(1) Km,a(t; ) = 1:17“ + (a+1)(m+1)°

mae(1—2sc)

. o 22 2me 1 .
(i) Kun,a(t;) = @iy + @i T @iemdn? T @i e

. 3. _ mm=1)(m=2)>° | 3m(m—1)(a+2)sx? m(20%+12047) 3¢ 1 .
(iv) Kmao(th; ) = (m+1)3 T e T D @ad D+ T BaF D@D

4, _ mm=1)(m=2)(m—3)sx* | 2m(m—1)(3a+5)>° | m(m—1)(14a>+51a425)s> me(60°4+61a%+620+15)
(U) K (l(t %) - (111-‘,-1)4 + (a+1)(m+1)%) + (a+1)(2a+1)(m+1)4 +(a+1)(2a+1)(3a+1)(m+1)4
+ G D@

Let ¢; ¢(t) = ¢'(t), i = 0,1,2,3. is the basis function for the moments of operator Er(,fﬁ)a(g x).
As a consequence of the above lemma, we have

Lemma 2. For the operators El(f,)a(go; ) given by , for each 3 € 3, we have
(i) Lit(eoc(): ) = 13

(i1) L3 (e1,¢(8);20) = 2o 4 — Ly

©)  m¢ (s C(3)(1—=¢ (5 2m( (s .
(iti) Lo (e2,c(t);5) = ](1:71—‘,-(1)) += ((n)1(+1)2( Dy (a+$(1§1—21)2 + (2a+1)1(m+1)2a

(z'v) E\%}a(%,g(f); %) m(m—1)(m—2)¢>(5) + 3m(m—1)(a+2)¢? () + (0(204 +12a+7)¢(x) 1

m+1)7 (at1)(m+1)3 Dot Dm+D? T BatD(@F1®’




(1) Eaialenc(5) = B e 4 e & G G D
m(6a>+61a+62a+15)¢ ()
T et DBat ) mr DT T (4a+1)(m+1)4

Lemma 3. For the operators Ky o(p; ) defined by , for each » € 3, we have
(’L) Km,a(C(%) - C(t); %) = (ml.:,.1)< »x+ a+1>

() Ko a((C69) = €0 2) = s (2 = 225 4 2 el =) ).
As a consequence of the above lemma, we have

Lemma 4. For the operators E,(f,)a(go; ), we have

(i) £RC0) = €6 2) = by | = €60 + s |

(i1) L8 ((C(t) = C(3))%20) = Gkpye [@(x) — 5 ()1 - <(z>>]

Let C(J) be the space of all continuous functions defined on the interval J and ¢ € C(J). The norm of
function ¢ is defined by

lloll = sup |o(s2)].
»€J
Lemma 5. For ¢ € C(J), we have

L0359 < el
Proof. Applying the definition (L.5) and Lemma [2| we have

a ! BNAERS
£ (9] = ‘m+ Zp“ /(WC H(5ET) o

m
a k4t

< e pine| e (5 )

< Jeleih; )

< lell, forall 5 € 7.
Hence sup| L3 2) < Il

P4S

which completes the proof. |

Now, we discuss the bound for second order central moments of the operators Et(noa (¢; 52).

Lemma 6. For o > 1 and m € N, we have

LA = €)% 2] € —— (1 (50))2,

where
(@) 12 _ 2 1

(Ve (39))” = P ¢ (30) + m+D2at1) and 80:211,4(%) = ((3)(1 = ((5)).

Proof. By using Lemma ] we have

© 2.y _ 1 2 2¢(>) 1
CER(C0 ~ 02 = s | = 24 i1 - 669)|
B 1 2¢(52) 1
ECESE [m{(%)(l AT Cz(”)} T at Dmr 1)



= <) = 0 (<) |+
S PO - ) = 6 = 60| +
< G (S0 - D) + e
< e (0 - D+ D) + G
€ A=) + G T
= (m1+ ) {C(}‘)(l —CN T G 1;(111 T 1)]
S G0 e
S LR
we obtained the desired result. O

In the following lemma we gives the limiting value for the central moments of the operators E](n(,)a (3 5¢).

Remark 1. By using Lemmalj], we get
(i) Tim mLEL((C() = ()i ) = Fh7 — C();

(i) lim mLih((C(H) = ()% 0) = B () (1 — C(2));

. 3 e ()43 ,2 2 x V
(iii) Tim m2LE((C() = (6% 2) = (24a — 13)* () — 2L iatBat2ladlo) _ SClaBals)

3. BAsic CONVERGENCE THEOREM

The following theorem shows that the operators ET(,E,)Q(.; x) is an approximation process for continuous
functions in s € 7.

Theorem 1. Let ¢ € C(J). Then

lim L8k (5 30) = ¢(32),

m—o0
uniformly in J.
Proof. By Lemma, lim Er(ncv)a(l;%) =1, lim [Z,(,fy)a(g(t);%) = ((5) and lim E‘(‘i)a((p; x%) = (%(x),

m-—o0o m—00 m—o0
uniformly in J. By well-known Bohman-Korovkin theorem it follows that Et(,f,)a(ap; %) = p(3) as m — oo,
uniformly in s € 7. O
4. LOCAL APPROXIMATION
The Peetre’s K— functional is given by:
Ka(p,6) = inf{llo —gll +6llg" | : g € W3}, >0,

where W2 = {g: ¢ € C(3)} endowed with the norm ||g|lu> = llgll + llg || + lg" II.
Following [4], there exists a positive constant M > 0 such that

Ks(p,8) < Mws(ip, V9), (4.1)



where the second order modulus of continuity for ¢ € C(J) is defined as

wa(ip, V) = sup sup |p( 4 2h) = 20(5¢ + h) + ()]
0<h<+/3§ »x+2hel

We define the usual modulus of continuity for ¢ € C(J) as

w(p,0) = sup  sup |+ h) — @(x)].
0<h<§ sc,5c+hel

The following result gives us the relation between error estimate |£,(§,)a(-; ) — @(5)| with second order
modulus of continuity and usual modulus of continuity.

Theorem 2. If ¢ € C(3J), then for the operators E,(f,)a(-; ), there exists a constant M > 0, such that

w6}

LA (p5.52) = L3 (03 30) + p(50) — (¢°Cl)<nnff? ey 1)1(a+ 1)>. (4.2)

o)
© (0030) — wlor ol MmN
£ (g3 50) — p(0)| < M 2(% (m+1))+ (90,

Proof. We consider an auxiliary operators as follows:

Using Lemma it is clear that, Z&f}o&(l; n) =1, Z,(f,)a(g(t); ) = ((x).
Let g € W? and t € [0, 1]. By Taylor’s expansion we have

40

9(t) = (g0 C(C(5) + (C() = C(5)) (g 0 CH(C () + /c( : () =v)(go ™) (v) dv. (4.3)

Operating Es,f)a(, ») on the both sides of the above equation, we obtain
Ehlo(i) = £ (a0 ¢ )€l ) + B (€00 = (g0 000 )

n 5&&( /C :)@(t) —)(go Y (v) dv: %>

¢(t)
= E&f)a —u)(go¢™ ' (w dv; s |.
W( [ € =otge e o)
Following ([10], p.32)

) ) ) w

N () R T O)E

Thus,

L8 (9(0); %) — g(0)| =

¢(t) "ee—1 fr—1 9 (—1
. (W) S ),
E“‘"“(/c e ){(<'<<—1<u>>>2 CC I @)P }d’ )‘
)

Zﬁf?a( /C e - v)Mdv; %)

¢(t) "r—1 » (=1
o S W),
‘C""“Ug(%)““) T wyE )‘

R
—
3
—
o
—
—

S
~—

|
—



([ e - U>Mdv; )

“\ oo TR

R = Y R
([
T e s ]
< e (:) <= <éq'<( ez )
e S n
+ooin(|f i; (0 of | DD )

A e e e e

Since ¢ is strictly increasing on the interval J, we have sup ¢’(5) > a, for some a € RT = (0, 00), we get
»€J

E9at00:0 g0l < 280600 - {15l 4 LI

1 1 A ras
(m+1{m<(%)+a+l}_<(x) { a? + a3 }

{||Z;| I (2 —<<%>))2+ V‘%ﬁf}]

_|_

<
@7 @7,
2+ 2 1 @5)

In view of Lemma [5| and equation (4.2]), we get

L (03 32)]

IN

29, (o )+|w(%)l+’(wocl)(
3.

Hence, for ¢ € and g € W2, using equation (4.2]), we obtain

m¢(>)(a+1) + 1>'
(m+1)(a+1)

IN

L8003 2) — ()] < LR (f = g 2| + LR (g: ) — 9(2)| + g(3¢) — (52)]
() (a+ 1)+ 1 -1
b o (eI - o cew)
(o) ? » B (@) ? » ,
< 4f - gl+ %Eni—(kl))'g ||+;“E;;i1))g I 1¢l

+
&
N
AS)
~

5 mi(gjrlC( ))D




Let Cy = max{4, &, 121} then

’a2’ a3

(@) ? (a) (a)
© (. Yo (%) Yo (5) Yo ()
| L (03 5¢) — 0(x)] < Cl{llf—g||+(er 0 lg ||+7( —— g H+7( ) gl}

o(poc [z (53 -9)]): (16)

w(po¢ht) = sup{le(¢ (y) — (¢ (s

= sup{|e(y) — v(3)| : 0 < ((H) — (=) < ).

If 0 < ¢(y) — ¢(32) < t, then 0 < (§ — %)¢"(u) < t for some u € (32,7) ie. 0<Y—2< b~ <
and so

We have

o
N
<
\
AN
N
Rt

Q |

w(po¢hit) < sup{le(@) — ()| : 0<F -7 <

Using (4.7) in (4.6]), we obtain

}=w(e; =) (4.7)

© _
a3 %) — p(3)] = Cl{||f—9”Jr (m+ 1) (m+1) (m+1)

- olelmr(am o))

Now, taking the infimum on the right hand side over all g € W2, and using (4.1), we obtain

et ) oy g -c0)

a8 ) (el )

which completes the proof. O

YO GG AL Gl | AL (e >|g|}

L850 (03 32) — (52|

IA

IN

In the next result, we study the rate of approximation by the operators E,(ﬁ,)a (p; 5) for functions ()
in a Lipschitz-type space.
Following [IT], let us now consider the Lipschitz-type space:
[t —

Linutp) = {0 € €(0) £1(0) = plo)] < M2

(te g, %6(0,1]}.

Theorem 3. Let ¢ € Lippy(p). Then for all € (0,1], we have

© (o ot (e ()
1L (330) — 0(30)| < M(<m+1)<< )).

Proof. First, we show that result for the case p = 2, we may write

k +t
m+1

@ (e [ EECCAR
>t [

L8 (530) — (32)]

IA
N
s
2z
N
~
X
O\b—l

(poc ) (EE0) - po e

IA
=
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Using the fact, that

\/t+1<( ) < \/Cl(i) and the Cauchy-Schwarz inequality, we have

© L MO @ eim [ — e
£t o0l < 3 3 hC0 [0 = o

%c&f?a«c(t) ()% %)
M o 9

IN

hence the result is obtained for p = 2.
Now, we prove the theorem for the case 0 < p < 2. Using Lemma [6] and applying the Holder’s inequality
with p = and q = 5=, we get

k+t*
m+1

|ca$,>a«o;%>—so<z>\ < 3 PO /

e e R I

m o) 1 . k‘—l—fa = % %
< { oo ( [ [ )(mﬂ)—(woc ><<<%>>\df) }
- ) (¢ (5 ! k4t (3¢ g £
< {kz_opm,k<<< ) [ e (B oo ot}
@) e [
< w{aicon [ G
M IS~ eom [ :
< TOE Lk [ o
< e ERR (0 s
S M ‘Cl(mf)(y((C(t)C_Jf)(%))Zv%))2)2
(VL)% \ £
= <<m+1><<z>)
Thus, the proof is completed. (|

Next, we study a local direct estimate of the operators defined as in equation (1.5 in terms of the
Lipschitz-type maximal function of order £ given by Lenze [I] as

t —
@e(po(lie) = sup M, »€J and &€ (0,1].
s, tes  [t— ¢
Theorem 4. Let ¢ € C(T) and 0 < £ < 1, then for all € 3, we have
N )T
[Cin(pi) = @Gl < @elpo¢ 1;%><(mnf+1)) '
Proof. We have
k+t
m+1

L8 (3.2¢) — o()|

IA
N
s
2z
N
~
X
O\b—l

(8004_1)( )—(wé“_l)(((%))‘df

LS P () / [t = (o)l de

IA
£
A}
S
o]
3



IN
&
Ay
©
(e
“7

2
P
m 1 g
L9 (0150) — o) < @e(poC m{ S Ao [ =gy dx}
k=0 0
(( ) (50))? )
This complete the proof. O

Now we present a Voronovskaja type asymptotic formula for the operators E,(fy)a (p; 5).

Theorem 5. Let ¢ € C(T). If " exists at a point » € J, then we have

lim m<£f§,)a(¢;%)—s0(%)> - (<POC_1)’(C(%))< ! —<<%>)+(*”OC_ €D 91— ¢,

m—00 a—+1 2

Proof. By Taylor formula, we can write

(PoC™CM) = (poC )69 + (€1 = Cp o C(C) + 5 (¢ =€) (0 0 ¢ ()

2
+E(C(), CC) = C(50))%,
©)

where £({(t),{(5)) — 0 as ¢(t) — ((2¢) and is a continuous function on J. Applying the operator Ly
on both sides of the above equation

£ (pi ) = cS,f,)a((soocl)(c(%));%) +c$§?a(<<<t> - <<z>><«»o<1>’<<(%>>;%)
T (R O N ) RN (ORI CURS ey

= o0+ (0o YL (<<<t> () %)

L

b 5oL (600~ G000 + £ (S0, CONIE) - 6% )

+ ST ) [<2<z> SE (1 - 4(%»}

Lo, (§<<<t>, LN — o) %).

Hence,

i (€ (i)~ () =i E2ETECD ()

m—o00 m— o0 m-+1 a—+1
4 i 50D g2 - 2094 s w1 - 669)

+ i m £ (€600, €N G0 — )% )

1 (po¢™h)"(C()
at+1 C(%)> + 2

- <soo<—1>’<<<x>>(

T dim w2, (g(«t), CONCE) — S %), (48)

m—00
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uniformly in s € J. Applying Cauchy-Schwarz inequality and Remark [I} we get

2

w £ (60,00 ) = m { Lo} { (et - cet)
We observe that £2(¢(t),((5)) € C(J) and £2({(5),((¢)) = 0, hence, by Theorem [1] we are led to

lim dﬁ’a(g (<<t>,<<x)>;%> — (), ¢() =0,

m—00
uniformly with respect to » € J.
Further, using Remark hm m \/ﬁ(o (C(t) — ¢(52))%; ») is finite and

Jimm 245, (€000 CLAEH) ~ ) =0, (1.9)
uniformly in s € 7.
Finally, consideration of (4.8) and (4.9) completes the proof. a

5. RATE OF CONVERGENCE

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued
function whose total variation is bounded (finite), the graph of a function having this property is well
behaved in a precise sense. For a continuous function of a single variable, being of bounded variation
means that the distance along the direction of the y-axis, neglecting the contribution of motion along
»-axis, traveled by a point moving along the graph has a finite value.

We have the following chains of inclusions for continuous functions over a closed, bounded interval of the
real line:

Continuously differentiable C Lipschitz continuous C absolutely continuous C continuous and bounded
variation C differentiable almost everywhere.

DBV(J) denotes the class of all absolute continuous function ¢ defined on J, having on J, a derivative ¢’
equivalent with a function of bounded variation on J. We notice that the functions ¢ € DV V(J) possess
a representation

p(x) = /Og(f)dtJrso(O)

where g € BV (J), i.e. g is a function of bounded variation on I.
The integral representation of the operator [,,(f)a is defined as

£ (1 3¢ / NS, 30, 0) (@ 0 CTH)(1)dt, (5.1)

where the Kernal N‘E?)(g , %, 1) is given by

CV) Ca% t :Z 'leg(t)

k k4] with respect to J.

where v 1 (t) is the characteristic function of the interval [, =T

Lemma 7. For a fized ¢ € (0,1) and sufficiently large m, we have

. Vet (39))*
(7’) 55[10%(% y foy leia) (C, >, t)dt = ma 0 S y < C(%)

y (@) v () (1{. ()2
(i) 1= Boe = J) Na(C 2, )dt = 285, C) < 2 <1,
(e

where (vm,Z;(%)) = wm,g(%> + D@D



Proof. Using equation (5.1]), we get

B (52, )

Now, Lemma [7} we obtained

= [ NS¢ 0d
0
() —t (@)
< (4% y) N (€, 5, t)dt
Yy
< 2/0 2NK (¢, 52, )t
Yy
< 2/0 N(a (¢, 7, t)dt
1

B (52, y)

IN

() —y)?
(380 (50))?

7L ((C(H) = C(0))% %)

S W DEG) -

0 <y <{(5).

The proof of (i7) is similar hence the details are omitted.

11

Theorem 6. Let ¢ € DBV (J). Then for every » € (0,1) and sufficiently large m, we have

L5003 72) — p(30)| <

+

(i

1

1-¢()

Jm

(1-¢

[Vm]  ((>)+

k=1

5|00 (CGeb) + (oo

C(3)+ 1— C(%)

¢(5)

<2
=5 ROV,
o1y SV
a2 Ve )]+ R v
> C(”‘)f\/ﬁ

(Vo).

| { g (551 -
2))2 [vm] ¢(5) )
(1); Ee ,H( V (eoc)

(m+

where \/Z(go o ¢~1), denotes the total variation of (po (1), on |a,b] and (o (1), is defined by

(po¢h) (v —

(po ¢, (1) =

L) (5 52) —

w()

{

(po <*1>’<t> -

Lt(nc,)a (¥

) —

£ (o(4);

£

o(t)

(po ) (C=)), if 0<t<C()
0, if t=C()

(5.2)

(po VY (Cet)), if C()<t<l.

Proof. Since E(O (1;5¢) = 1 by applying (5.1]), for every s € (0, 1), we have

L8015 5¢) - ()
5) — LS (9 (50); )
— p(52)); %)

[ M0 (0060 - ¢ 60 )

v

t

(>9)

<¢o<—1><u>dt) N (¢, 52, )dt




For any ¢ € DBV/(J), from equation (5.2), we may write
(poc W) = (oot + 5{ (0o ¢ (Clr) + (000 G-}
+ 5{ (0o Q) - (9067 (e fagnlu - ()
+ 8uw)| (0o () - { (o )+ (o N || 6

where

)1, ifu=((x)
5%(u)—{0, if u £ C(5).

Obviously,

/01 (/C:%) <(<P (™) (u) - ;{(so 0 ¢ (CGe)) + (po C_l)/(C(%—)}>5%(u)du) NS (€, 2, 4)dt = 0.(5.5)

Using (5.1)), we have

[ / :%) ({0 €l + (oo (60 | ) N8 €.

1
= ;{(sﬂoc1)'<<(%+))+(soo<1)'(4‘(%—))}/0 (t— C0))NSD(C, 52, t)dt

1

= 5{ ol + (006 (G et (60 - i), (5.

Applying Cauchy-Schwarz inequality

< |po Y (€)= (po™H (C(e-)) / [t = CGa) NG (€, 0, t)dt

< (o™ () = (o ¢ (Ce))| LR (C() = C(32)]s 2)

< (@0 ™) (€)= (o ¢Y (C(-)) (cas,z((ca)—a%))%%)) : (5.7)
Applying Lemma |4, Lemma [7| and using —, we get
£ i)~ oGl = g0 @) + (oo ¢ (o) [ (7~ <09)

7()

n 1]<<po<-1>/<<<z+>>+<wo< Y ()

2
¢(2) t
OC 1 ) 0‘) C t ‘
(/M«o VL) -

‘/C(% ( - (ol (u )du)N<“ (¢, 7, t)dt‘ (5.8)

Lot HE)((po 1), ) = “”)(f«% (o ”“”“)Né‘a)“’”’t)dtand

Gt (20 ¢ 2) = [ (fq%) wo<1>;<u>du) N (€, bt

+
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To complete the proof, it is sufficient to estimate the terms H(O‘) ((pol™ 1y, 5) and G(a) ((po o¢7h),, 5).
Since, f dtﬂn rs(52,1) <1 for all [a,b] C 7, using integration by parts with y = ((5) — Q we get

CGe) f ot "
(/C(%)(WOC_l) (u )dU)dtﬂ(a)( )‘

C(%

HE) (g0 <-1>;7%>'

B (e, (0 ¢ >;,(t>dt\

(
<

: /
Using Lemma@and considering t = ((3¢) — % we get

()= 22 (@) % (50) pCG-= , ,
[ Koo wiseiinna < W/ r‘(sﬁoCl)%(t)(SDOCI)I(C(%))‘dt

)woc (O] ) (e, Ot

¢(3)
0(” ><>|5<“)<%,t>df+/ |(<PO< ) ()85 (2, t)t

()—

a\”

i~

}

Y (C(3) —t)?
(a)? _SG L ((3)
’ymg (%) ¢(0) Ve L dt
= (m+1) /0 <\t/(9006 1)%>(m+1)
() * ¢()
— ’}/m,g (%) vm . .
- (m+1)c(%)/1 (C(%)\/(%)(w ¢ ),,)dt
(o) * Wl o, (o)
dme () .

k=1 C(”)*M

Since (@ o ™1 (¢(3)) = 0 and 6,(:%(%, t) <1, then we have

/M (90 CYLMIB e, 0t = /M (00 C 1Y) — (0 ¢ 1YL (C(2)| B (o2, Bat
Ce)—<2 ¢ g me
C(5) ¢(5)
< o 1/%)dt
/C(%)_%)(\t/(«p )
() ¢(3)
< ( (soo<1>;)/ dt
(-2 =R
¢()
= LV o).
C(n)— 2
Thus,
() ? [v/m] ¢(2)
O (po ¢ = MZ( v <@o<—1>;,)

()
+ i%)( \ (gpo(_l),%). (5.10)



14

Also, using integration by part in Gl(f)q((ap o C‘l)/w ») and applying Lemma IZI with z = ((5) + 1=CCd

Jm
we reached
1 t ,
] / ( / (sooc1>%<u>du)Nm<<7%,t><a><z,t>dt\
¢() ¢(2)
’ ) < " (o (wd >d(1—ﬂ(a)(% )
/cof) /4(;»(@ ) me

/zl (/c:%)(‘p o Cl);(U)dl) - ﬁé:é(% t))‘

- ([ eeemm)a-sioan] = [ o in-sin o

’ K/C “”Cl)é(uWU)(lﬂﬁi’féwt))]l [ eocwn - sl )i

() z

G (9o ¢Th),, )|

_|_

= ’/%) po(¢™h )(1—5(00( ))dt—i—/l(apog‘l);(t)(l—ﬁ;"fz_(%{))dt‘
(a)?

t
< B (Ve ) mr [, Ve

¢(50) C()
(@) 2 ; ¢ G+
Ve, (%)/ ( N dt 1—C(5) o
< T \ (po¢™ + Vo (po¢h ).
1 (s E< t— 2 3
(m+1) JeparOzgen \ 0 (t—¢(=)) vm 09
By substituting u = 1:&(;’)), we get
(o) ? v St
1y Ym,e (9) (VO 1y _
Gulpocuml < e V' eoc™) ) -t
m+1) Jy
¢(>)
G+
1—¢(5) ( -1y’
+ — Vo (po¢h
Vm ¢(5)
(o) ? vml GG+
Y, ¢ (5) Z < \/ —1y
’ (po¢ ).
w0 =\ Y
(%)_,’_1 ¢(2)
1—(() ( -1y’
+ = \V  (pol™). ). (5.11)
Vm ¢(5)
Collecting the estimates ([5.8)-(5.11]), we get the required result. a

6. A-STATISTICAL APPROXIMATION OF KOROVKIN-TYPE THEOREM

Let A = (b);; be a positive infinite summability matrix with order ¢ x j. Let we have a sequence
» = (5);, then the A—transform 3¢ denoted by A = (Ax); is defined by as follows:

o]
Aij =) ai;%
§=0

provided the above series converges for each ¢. The matrix A will be a regular matrix if lim;(Ax); = I,
whenever lim;(s); = I. Then, the sequence » = (), is called A— statistically convergent to a number [
ie. stq —lim;(»); =1if Ve > 0, = lim, Zj:l%rllze a;; = 0. If we replace A by C; then A is Cesaro
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matrix of order one and A— statistical convergence is change to the statistical convergence. In this way,
if we take a particular case i.e. if A is an Identity matirix, then .4—statistical convergence is said to
be ordinary convergence. In this direction, many researchers have studied for the statistical convergence
properties for several sequences and classes of non-neagitive linear operators (cf. [1],[2],[3],[5]-[7] and [9]
etc.).

For statistical convergence Gadjiev [8], proved the very famous Bohman-Korovkin type theorem.

Theorem 7. Following [8], let L; : C([c,d]) — C([c,d]) be the sequence of positive linear operators and
satisfy the following conditions

sta —lim|[L(ei) = eille(e,a) = 0,
with e;(t) = t',i = 0, 1,2, then for any function ¢ € C(|c,d]), we have
sta =1l | Li(e) = ¢lle(e.ay = 0.
1t is very interesting to see that this result also work well for a A—statistical convergence.
Theorem 8. Let (a); ; be a non-negative regular summability matriz. Then for any ¢ € C(J), we have
sta —lim [ £ita(¢) = @lle) = 0.
Proof. Let e;(s) = s, i =0,1,2. For i = 0,1, 2., it is sufficient to show that
st —lim L8 (es5 ) — eilleca) = 0,

It is observed that
sta —lim L5 (eo.c; ) — eocllec) = 0.

From Lemma [2] we have

st —lim [£a(er.ci) = erclle = ‘ <:fi%1)> (ot 1)1(m T C“‘)‘
- ‘ () ‘
- (m+1)  (a+1)(m+1)
1
<

(a+1)(m+1)

For € >,0 let us define the following sets as follows §; = {m € N : def,)a(@l,g; ) —eic] > €} and
: 1

Sy;={meN: CESCESY) > €}

Then, we obtain S; C Sy which gives that Zmesl a;; < Zmesz a; ; hence

sta —lim [[Lita(erc) = exclle) = 0.

Consequently, we may write

sta —lim; LS (e2,c;7) — eacller

mc® () | m{()(1 = () 2mg () 1 )
’(m+ D2t e @+ Dm+D? | @atDmiiE (%)‘
1 2m( () 1 5o ) )
= m+ 12| (@+D) " Q2at1) _{” ¢7(30) + (50) + 2m( (%)—mC(%)H
2m 1

(m+1)(a+1) + (m+1)22a+1)
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For € > 0 we define the following sets such that

G, = {meN:Hﬁﬁf,)a(ez;-)—ezH>6}
2n €
_ > °
Go {mGN (m+1)(04+1)_2}
1 €
= . > — 5.

It is clear that, G1 C G2 UG5 and which implies that > o aij <> cq, @i+ D neq, @i, and hence
sta = lim [ £i5a(9) = ¢lle) =0,
we obtain the desired result. O

Finally, we show by the suitable choice of the function ((s) and the value of the parameters a the
operators (|1.5) gives the better convergence as well as error estimate also as compare to the operators

3.

7. NUMERICAL RESULTS

Example 1. For m = 5,10,20,35,45 and o = 2 the convergence of the operator /J,(]f?a(gp; ) to the
function () = —63¢3 + 952 — $85¢ is illustrated in Figure 1 with the function ((») = §(=14 /8 +1).

Furthermore, It is observed that, the operator El(ng,)a(cp;%) converge to the function p(3) as the value of
m tend to oco.

— L) — L) — LEa(@n-ok)

— L) — L0

== @(x}=—813+912—%x

FIGURE 1. Convergence of operator ﬁ,(.i)a(cp; ») to the function ¢(s) = —65¢% + 932 — 505

Example 2. For the choice of m = 10,a = 1, and ((3) = 3zZ=4tv9x"+16 W the convergence of the two

operators Ky o(p; ) and E‘(ﬁ?a(ga; x2) to p(x) = 3* — 33 — 3+ 1 is illustrated in Figure 2. In the

Figure 2, we compare the rate of convergence of the operators E,(If,)a (5 20) with Ky o(p; 2¢) with the help

of the certain functions p(s¢) by suitably choosing (), we notice that operator C,(.f,)a(ap; ) gives better
approzimation to the functions p1(x) = »* — 33 — 52+ 1 in Figure 2, than Kuy o(p; ») in the interval
0.38, 1].
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FIGURE 2. Convergence of the operators Ky o(p;2) and £I(f7)a(<p; ») to the function
st — 2% — 1

Example 3. For m = 5,10,15,20 and 25 the error estimate |£t(,$7)a(g0; %) — p(3)| of the operators
,Cl(nc,)a (3 5¢) with the function p(x) = »* + 2 — 1 is illustrated in Figure 3, where () = % V9246
and o = 2.

It is observed that, the error estimate |£,(.§7)a(<p; ) — ()| gives the better convergence as the value of m
is increased.

— 1L -t — 1L (g-g)

Pl

— 1L 1 @00 — 1L+ (@x)-g(x)

— |L'2if_3(@:x}—¢(x}l

nos|

FI1GURE 3. Error of approximation.

Example 4. Figure 4,5 and Figure 6, for ((») = 32=4+v9:"+16 W, m = 15 and o = 2, show the comparison
of error estimate between the operators Ky o(p; ) and ﬁfﬁ?a (3 ) for the functions p(x) = > + »* +
» — % +e () = 3% + 3 — 5 and p(x) = 33 4 932 — T, is illustrated in Figure 4,5 and Figure 6,
respectively. It is observed that for the suitable choice of ((5) and function p(3¢) the operator ng’)a(go; )
gives a better error estimate as compare to the operator Ky o(p; ) when m =15 and o = 2.
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02sf
020
0.4s5L — Kz z(@ix)- i)l
— 1L 2(ex)-(x)|
0.10 |
nasf
e __
I CII: I n_la

FIGURE 4. For m = 15, ¢(5) = 33 + »* + s — % +e7! and @ = 2, the error estimate

for the operators Ky o(¢; ) and £5§,)a(cp; ).

012

010 F

posl — Kz zl@x)-plx)]

s08f — 1L (@)

D.04F

T

52 Y 0.9 0.8 7o
us

FIGURE 5. For m = 15, ¢(3) = »* + » —
operators Ky o(p; ) and Esf,)a(cp; ).

2

and « = 2, the error estimate for the
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— [Kis2(@x)-@(x)|

|L3 5 (gl

FIGURE 6. For m = 15, () = 33 + 95®> — 7> and o = 2, the error estimate for the
operators Ky o(¢; 22) and Et(,fﬁ)a(ap; ).

8. CONCLUSION

In this article, we consider a new kind of variant of the modified Bernstein-Kantorovich operators
defined by Ozarslan [12]. The operators yields us to a better error estimation for a suitable choice
of the different different functions as comparison to modified Bernstein-Kantorovich operators defined as
in . The advantage of using a non-negative real parameter o and m is that it provides exibility to the
operators , so the results presented in this manuscript shows that depending on the value of the pa-
rameters o and m an approximation to a function improves compared to modified Bernstein-Kantorovich
operators defined as in .

Furthermore, the error approximation of the our operators is better than modified Bernstein-
Kantorovich operators defined as in .
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