References
1. Doudna JA, Charpentier E. The new frontier of genome engineering with
CRISPR-Cas9. Science 2014 46:1258096.
2. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a
class 2 CRISPR-Cas system. Cell 2015 163, 759–771.
3. Kim,H. and Kim,J.S. (2014) A guide to genome engineering with
programmable nucleases. Nat. Rev. Genet., 15, 321¨C334.
4. Sander,J.D. and Joung,J.K. (2014) CRISPR¨CCas systems for editing,
regulating and targeting genomes. Nat. Biotechnol., 32, 347¨C350.
5. Cox,D.B.T., Platt,R.J. and Zhang,F. (2015) Therapeutic genome
editing: prospects and challenges. Nat. Med., 21, 121¨C131.
6 Mohanraju,P., Makarova,K.S., Zetsche,B., Zhang,F., Koonin,E. V. and
Van Der Oost,J. (2016) Diverse evolutionary roots and mechanistic
variations of the CRISPR¨CCas systems. Science, 353,
556¨C568.
7 Hart,T., Chandrashekhar,M., Aregger,M., Steinhart,Z., Brown,K.R.,
MacLeod,G., Mis,M., Zimmermann,M., Fradet-Turcotte,A., Sun,S. et al.
(2015) High-Resolution CRISPR screens reveal fitness genes and
genotype-specific cancer liabilities. Cell, 163, 1515¨C1526.
8 Shalem,O., Sanjana,N.E. and Zhang,F. (2015) High-throughputfunctional
genomics using CRISPR¨CCas9. Nat. Rev. Genet., 16,299¨C311.
9. Wang,W., Ye,C., Liu,J., Zhang,D., Kimata,J.T. and Zhou,P. (2014)CCR5
gene disruption via lentiviral vectors expressing Cas9 andsingle guided
RNA renders cells resistant to HIV-1 infection. PLoS
One, 9, e115987.
10. Zhou,H., Liu,B., Weeks,D.P., Spalding,M.H. and Yang,B. (2014)Large
chromosomal deletions and heritable small genetic changes induced by
CRISPR/Cas9 in rice. Nucleic Acids Res., 42,
10903¨C10914.
11. Wu,W.Y., Lebbink,J.H.G., Kanaar,R., Geijsen,N. and Van Der Oost,J.
(2018) Genome editing by natural and engineered CRISPR-associated
nucleases. Nat. Chem. Biol., 14, 642¨C651.
12 Nakade S, Yamamoto T, Sakuma T. Cas9, Cpf1 and C2c1/2/3-What’s next ?
Bioengineered. 2017;8(3):265–273.
13. Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B,
Zheng X, Zhang D, Malzahn A, Gong Z, Qi Y, Zhang T, Zhang Y. A
large-scale whole-genome sequencing analysis reveals highly specific
genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome
Biol. 2018 Jul 4;19(1):84.
14. Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn
A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K. Activities and
specificities of CRISPR/Cas9 and Cas12a nucleases for targeted
mutagenesis in maize. Plant Biotechnol J. 2019 Feb;17(2):362-372.
15. Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y.
CRISPR Cpf1 proteins: structure, function and implications for genome
editing. Cell Biosci. 2019;9:36
16 Bayat H, Modarressi MH, Rahimpour A. The Conspicuity of CRISPR-Cpf1
System as a Significant Breakthrough in Genome Editing. Curr Microbiol.
2018 Jan;75(1):107-115.
17 Ding D, Chen K, Chen Y, Li H, Xie K. Engineering Introns to Express
RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. Mol
Plant. 2018 Apr 2;11(4):542-552.
18 Creutzburg SCA, Wu WY, Mohanraju P, Swartjes T, Alkan F, Gorodkin J,
Staals RHJ, van der Oost J. Good guide, bad guide: spacer
sequence-dependent cleavage efficiency of Cas12a. Nucleic Acids Res.
2020 Apr 6;48(6):3228-3243.
19 Kim H, Lee WJ, Oh Y, Kang SH, Hur JK, Lee H, Song W, Lim KS, Park YH,
Song BS, Jin YB, Jun BH, Jung C, Lee DS, Kim SU, Lee SH. Enhancement of
target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide.
Nucleic Acids Res. 2020 Sep 4;48(15):8601-8616.
20. Doench,J.G., Fusi,N., Sullender,M., Hegde,M., Vaimberg,E.W.,
Donovan,K.F., Smith,I., Tothova,Z., Wilen,C., Orchard,R. et al.(2016)
Optimized sgRNA design to maximize activity and minimize
off-target effects of CRISPR–Cas9. Nat. Biotechnol., 34, 184–191.
21. Wang,T., Wei,J.J., Sabatini,D.M. and Lander,E.S. (2014) Genetic
screens in human cells using the CRISPR–Cas9 system. Science(80-.).,
343, 80–84.
22. Doench,J.G., Hartenian,E., Graham,D.B., Tothova,Z., Hegde,M.,
Smith,I., Sullender,M., Ebert,B.L., Xavier,R.J. and Root,D.E.
(2014)Rational design of highly active sgRNAs for
CRISPR–Cas9-mediatedgene inactivation. Nat. Biotechnol., 32,
1262–1267.
23. Ren,X., Yang,Z., Xu,J., Sun,J., Mao,D., Hu,Y., Yang,S.J., Qiao,H.H.,
Wang,X., Hu,Q. et al. (2014) Enhanced specificity and efficiency of the
CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell
Rep., 9, 1151–1162.
24. Malina,A., Katigbak,A., Cencic,R., Ma¨ýga,R.I., Robert,F., Miura,H.
and Pelletier,J. (2014) Adapting CRISPR/Cas9 for functional genomics
screens. Methods Enzymol., 546, 193–213.
25. Moreno-Mateos,M.A., Vejnar,C.E., Beaudoin,J.D.,
Fernandez,J.P.,Mis,E.K., Khokha,M.K. and Giraldez,A.J. (2015)
CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting
in
vivo. Nat. Methods, 12, 982–988.
26. Xu,H., Xiao,T., Chen,C.H., Li,W., Meyer,C.A., Wu,Q., Wu,D., Cong,L.,
Zhang,F., Liu,J.S. et al. (2015) Sequence determinants of improved
CRISPR sgRNA design. Genome Res., 25, 1147–1157.
27. Wong,N., Liu,W. and Wang,X. (2015) WU-CRISPR: characteristics of
functional guide RNAs for the CRISPR/Cas9 system. Genome Biol., 16, 218.
28. Guo J, Wang T, Guan C, Liu B, Luo C, Xie Z, Zhang C, Xing XH.
Improved sgRNA design in bacteria via genome-wide activity profiling.
Nucleic Acids Res. 2018 Aug 21;46(14):7052-7069.
29 .Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a
biotechnology and application in bacteria. Synth Syst Biotechnol. 2018
Oct 3;3(3):135-149.
30 Ungerer J., Pakrasi H.B. Cpf1 is a versatile tool for CRISPR genome
editing across diverse species of cyanobacteria. Sci Rep. 2016;6:39681.
31 Zhang X., Wang J., Cheng Q., Zheng X., Zhao G., Wang J. Multiplex
gene regulation by CRISPR-ddCpf1. Cell Discov. 2017;3:17018
32 Yan M.Y., Yan H.Q., Ren G.X., Zhao J.P., Guo X.P., Sun Y.C.
CRISPR-Cas12a-Assisted recombineering in bacteria. Appl Environ
Microbiol. 2017;83
33 Kim,H.K., Song,M., Lee,J., Menon,A.V., Jung,S., Kang,Y.M.,Choi,J.W.,
Woo,E., Koh,H.C., Nam,J.W. et al. (2017) In vivo high-throughput
profiling of CRISPR-Cpf1 activity. Nat. Methods,14, 153¨C159.
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch
MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ,
Joung JK. Engineered CRISPR-Cas12a variants with increased activities
and improved targeting ranges for gene, epigenetic and base editing. Nat
Biotechnol. 2019 Mar;37(3):276-282.
Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, Mintzer E, Suresh S,
Morrison K, Frazão JB, Bolukbasi MF, Ponnienselvan K, Luban J, Zhu LJ,
Lawson ND, Wolfe SA. Enhanced Cas12a editing in mammalian cells and
zebrafish. Nucleic Acids Res. 2019 May 7;47(8):4169-4180.
36. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.
Nat Biotechnol. 2018;36(3):239©\241.
37. Creutzburg SCA, Wu WY, Mohanraju P, Swartjes T, Alkan F, Gorodkin J,
Staals RHJ, van der Oost J. Good guide, bad guide: spacer
sequence-dependent cleavage efficiency of Cas12a. Nucleic Acids Res.
2020 Apr 6;48(6):3228-3243
38. Luo J, Chen W, Xue L, Tang B. Prediction of activity and specificity
of CRISPR-Cpf1 using convolutional deep learning neural networks. BMC
Bioinformatics. 2019;20(1):332.
39.Zhang G, Zeng T, Dai Z, Dai X. Prediction of CRISPR/Cas9 single guide
RNA cleavage efficiency and specificity by attention-based convolutional
neural networks. Comput Struct Biotechnol J. 2021 Mar 7;19:1445-1457.
40.Wang J, Zhang X, Cheng L, Luo Y. An overview and metanalysis of
machine and deep learning-based CRISPR gRNA design tools. RNA Biol. 2020
Jan;17(1):13-22.
41.Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with
increased activities and improved targeting ranges for gene, epigenetic
and base editing. Nat. Biotechnol. 37, 276–282 (2019).
42.DeWeirdt PC, Sanson KR, Sangree AK, et al. Optimization of AsCas12a
for combinatorial genetic screens in human cells. Nat Biotechnol. 2021
43.Zetsche B, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F. A Survey
of Genome Editing Activity for 16 Cas12a Orthologs. Keio J Med. 2020
44.Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline
transmission of multiple gene mutations in rat using CRISPR-Cas systems.
Nat Biotechnol. 2013
45.Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X,
Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using
CRISPR/Cas systems. Science. 2013