Evaluation of decadal land degradation dynamics in old coal-mines of Central India
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Abstract:  

The present study attempts to understand land use dynamics in an area subjected to opencast and underground coal mining for the last few decades in Kotma Coalmines of Anuppur district in Madhya Pradesh, India through geospatial techniques. Land Use and Land Cover (LULC) change detection analysis was performed digitally classifying Landsat 5 (2001) as well as Landsat 8 (2020) satellite data using maximum likelihood algorithm. Results revealed that area under Dense native vegetation decreased drastically (13.74 sq. km) with the gradual and consistent expansion in the activities of coal mines which showed the highest increase in area over time (15.84 sq. km).                                                                                                                                                                                                                                           Bivariate regression analysis showed the positive empirical relationships between vegetation indices and soil physico-chemical parameters. Studies suggested soil and vegetation is degraded over the large mining areas consistently over a long time period. Despite the continuous reforestation activities on mined areas, the decline area under dense vegetation and sparse vegetation over the twenty-year time-scale indicates that the reclamation activities are still in its’ infancy. Land Degradation Vulnerability Index (LDVI) map was generated to understand the extent of decadal land degradation trends and it shows that 8.60 % of the area is highly vulnerable to degradation. The LDI inputs will help the planners to develop alternate strategies to tackle vulnerability zones for safe mining. Monthly estimation of various meteorological parameters was also recorded to generate heat plots for the period 2001-2020. The study concludes that monitoring and assessment of fragile ecosystems are indispensable for holistic environmental management.
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Highlights
Decadal land degradation analysis of long term coal mining site was performed using geospatial tools and techniques 
Vegetation indices viz., NDVI, EVI and NDMI were exploited to understand the landscape and vegetation dynamics
Heat plots were generated to identify the impacts of long-term aggressive coal mining on micro-meteorological conditions contributing to changing regional climate.
Land degradation and Vulnerability Index maps were developed to identify critical zones for intensifying practices of environmental management for fast reclamation of degraded lands.















Introduction:
[bookmark: bbb0425]Humanity is facing serious environmental consequences at the onset of the Anthropocene (Crutzen, 2002; Kareiva, et al., 2011; He and Dobson, 2019). The degradation of natural ecosystems, their biodiversity, and services has emerged as a humongous challenge globally (Dobson, et al., 2006; Dirzo, et al., 2014; Hautier, et al., 2015; Thakur, et al., 2021a; Thakur, et al., 2021b). Climate Change is further adding to this global crisis. It is a pervasive and increasing threat to biodiversity and ecosystems globally (Díaz, et al., 2019).  Environmental pollution is one of the major reasons behind environmental degradation across the world (Dutta, et al., 2021). Mining is one of the major drivers of environmental pollution at all stages, air, water, soil and noise. Mining is ubiquitously recognized as one of the major causes of degradation of the natural ecosystems and landscapes (Agboola, 2020; Mabey, 2020). The opencast coal mining is the most disastrous form of mining which has both short as well as long-term ecological consequences. The environmental effects of coal mining, permanent loss of natural vegetation and the ecological engineering of replenished sites are widely studied (Ahirwal et al., 2020; Alvarez-Berrios and Aide, 2015; Carter and Ungar, 2002; Evanylo, et al., 2005; Fettweis, et al., 2005; Juwarkar et al., 2010; Keskin and Makineci, 2009; Nyamadzawo, et al., 2008; Shrestha and Lal, 2001; Shrestha and Lal, 2008; Shukla, et al., 2005; Ussiri, et al., 2006).  Mining operations not only trigger the soil destruction processes through impoverishing physical-chemical and biological properties (Lei, et al., 2016) but also lead to long-term adverse effects on local flora and fauna (Cristescu, 2012). Resource depletion is intricately connected to coal excavation, which ultimately destabilizes the ecological sustainability of the region (Ghose, 2001). Reclamation is the ultimate goal of ecosystem management in abandoned coal-mines, which involves restoration of soil health through replenishment of organic matter and mineral nutrients via vegetation development (Upadhyay, et al., 2016). The challenges and problems involved in the reclamation of abandoned coal mine sites and disturbed landscapes were widely recognized (Ahirwal, et al., 2020; Mhlongo and Dacosta, 2016). From the environmental perspective, coal mining is a major habitat transforming activity that demonstrates a plethora of detrimental effects such as soil erosion, acid mine drainage and increased deposit load (as a result of the abandoned and unclaimed mined lands) (Parks et al., 1987). 
Apart from environmental degradation, the socio-economic implications of mining are also multidimensional and have been well documented in heterogeneous landscapes (Solomon, et al., 2008; Mehta and Dutta, 2017; Werner, 2019; Li, 2019; Kuo, 2019; Thakur, et al., 2021; Obeng et al., 2019; Shrestha, 2019; Thakur, et al., 2021).  Mining abruptly disturbs topography, geomorphology, drainage patterns and is responsible for drastic changes in land use, land cover and forestry within a short span of active mining. Monitoring of spatial and temporal extent of destruction and assessing the state of restoration are critical for ecological engineering of disturbed mined sites.  
In this context, geospatial technologies including satellite remote sensing, GIS and GPS techniques have been recognized as tools for the characterization of anthropogenically disturbed land use and vegetation changes at varying spatial and temporal scales. Moomen, et al. (2019) successfully exploited geo-informatics for the adoption of sustainable mining practices in Africa, while dynamic changes in land use from opencast coal mining have also been studied in the Singrauli, M.P. (Khan and Javed, 2012), Raniganj (Samanta, 2015) and Jharia coalfields (Prakash and Gupta, 1998) of India. A study conducted in Raniganj, West Bengal, which is one of the largest coalfields of India, revealed that over a 26-year timeframe, about 99.6 sq. km. of land use/land cover conversion has taken place, which accounts for 34.9 % of the total area (Sikdar et al., 2004). The monitoring of land use and vegetation changes at periodic intervals is necessary to understand the landscape dynamics and progress of reclamation efforts for rejuvenating degraded ecosystems. The abandoned mine sites show tremendous potential for holistic development into socio-economically important and attractive socio-cultural recreation point beside supporting in large scale afforestation as well as routine plantation activities of the concerned forest department. The recent years have seen a good surge in LULC studies but the socio-economic impacts of long-term mining is not well represented in the scientific literature as comprehensively reviewed by (Upgupta and Singh, 2017).
The present study is a spatial as well as temporal analysis of  the impacts of mining on land use land cover dynamics over a period of 20 years (2001-2020). Various natural as well as anthropogenic stress factors in tandem play a crucial role in determining the changing ecology of the region. Ecological degradation can only be arrested with proper scientific monitoring, time-based planning and proper execution. Reclamation of mined areas are extremely crucial and ecological restoration plays a pivotal role in the process. This study will help in monitoring large reclaimed areas in more scientific, economical and accurate manner. Furthermore, this study highlights the inter-relationships between vegetation indices, land vulnerability degradation indices as well as micro-meteorological parameters. This was done to explore and understand the potentials of geospatial techniques for understanding the impacts of coal mining and also restoration effects for afforestation over a longer time period as attempted jointly by coal-mining authorities as well as forest department. The study was intended to (i) quantify the land use dynamics of Kotma coalfields (ii) assess the soil properties and micro-meteorological aberrations  (iii) establish the empirical relationships between vegetation, vegetation indices and soil health parameters (iv) generate land degradation vulnerability index for identifying critical zones to intensify reclamation processes for mitigating the environmental degradation. Fig. 1a and 1b are diagrammatic representations of open-cast as well as underground coal mining conducted in the study area since decades.

Material and Methods:
Description of Study Area:
The study was conducted in Kotma coalfields spread across in an area about 614.45 km2, a popular coal mining belt of South Eastern Coal Field Limited (SECL) in Anuppur district of Madhya Pradesh, Central India. The study area harbors luxuriant forests and agriculture in the past is now witnessing severe environmental degradation due to intensive coal mining and associated human activities. The study site is covered in Survey of India (SOI) Topo sheets no. 64E/16 and 64I/4 and is located between 23o 0’ and 23o 15’ N latitudes and 81o 45’ and 82o 05’ E longitudes (Fig. 2). The elevation of study area ranges between 512.42 and 573.47 m from above mean sea level, while the maximum temperature reaches to 43.9o C in May and minimum goes below 5o C in January. The annual rainfall varies from 1350 mm 1500 mm, which is mainly received from south west monsoon during July-September. 

Selection of Remote Sensing Data
[bookmark: _Hlk32541244]The Landsat 5 TM May 2001 satellite data was downloaded from the open source website of United States Geological Survey (USGS) (http://glovis.usgs.gov/) Landsat 8 from May 2020 was taken for the comparative analysis of the mined landscapes and the areas associated with it. The data covers the entire Kotma coal mining area along with surrounding landscapes. Digital analysis of the data was performed on ERDAS Imagine (Version 2013) image analysis software. The self-explanatory flow-chart for generation of satellite image is detailed in Fig. 3.
[bookmark: _Hlk32572138]
Pre-Processing and Classification of Satellite Data:
Geometric and radiometric corrections were done prior to classification to remove geometric and radiometric distortions existing due to sensor, sun's azimuth and elevation, atmospheric, topographic conditions and sensor's response. The sub-setting of satellite images were done to extract the study area from both satellite images by taking geo-referenced out line boundary collected from SECL of mined areas as AOI (Area of Interest). Near Infra-red and visible bands were used excluding all other bands and the images were projected in UTM 44N (Universal Transverse Mercator) projection. The Landsat – 5 TM bands were resampled and merged with high resolution Landsat 8 data using modified Intensity Hue Saturation (IHS) method to enhance the spatial resolution of Landsat – 5 TM (30m). The histogram matching was performed to normalize the radiometric differences between two satellite images. Digital image classification uses spectral in order to stand by the pixel values in various spectral combinations and effort to classify each pixel based on spectral information (Kuang, et. al., 2001; Deidda and Sanna, 2012).

Stacking, Clipping and Extraction:
The layer stack option in image interpreter tool box was used to generate FCCs using the band combination of 4 or 5, 3 and 2 in ERDAS Imagine, while image enhancement techniques were employed for improving the brightness of FCCs. All the electromagnetic wavelength/bands were stacked in both the satellite images. Later, the study area data was exported in ARC-GIS after clipping and overlay operations of the boundaries on two composition bands using ARC-GIS (Version 10.3). 

Land Cover Classification and Accuracy Analysis:
Maximum likelihood algorithm of supervised classification was used for Land use/land cover classification of study area. The spectrally homogenous areas on FCC were identified with the help of reference maps, expertise and GPS observations, which were served as signatures for a particular land cover class. Representative samples of given cover type for each land class was taken by drawing polygons. These areas are called as training set; while the training sets were carefully selected to cover the full range of variability existed within a particular land cover to avoid misclassification. The reference data of SOI maps were also used as ancillary data for smoothening classification of forest classes. Signature files were generated for each training classes of different land use classes for classifying the entire area. Based on the statistics computed from signature files of training sets on reflection pattern of different land cover classes in different spectral bands under which a pixel with the maximum likelihood is classified into the corresponding class. Accuracy assessment of classified images were carried out by employing the confusion matrix (Story and Congalton, 1986) considering 700 independent random samples of known pixels as reference points (100 per class) from the original image and generated error matrices for the classified image (Congalton, 2002). Error matrices indicating the concordance of the results of classification and the ground truth data were constructed from the comparison. The user’s accuracy, producer’s accuracy and overall accuracy were computed from the confusion matrix generated from the accuracy assessment as per the procedure of Jensen, 2004. Finally, the kappa coefficient was computed (Congalton, 1991; Foody, 2002) for accuracy assessment between the actual agreement (known pixels) and chance agreement (classified pixels) (Lea and Curtis, 2010).

LULC Change Detection Analysis:
The post classification comparison technique, which is based on maximum likelihood supervised classification using metrics union in ERDAS Imagine was employed in this study. Pairs of two different time series classified images (2001 and 2020) were compared using cross-tabulation to find the information of LULC changes between 2001 and 2020. The change matrix presents significant information about the spatial extent of vegetation changes in LULC (Shalaby and Tateishi, 2001). The change detection analysis was based on the transition matrix that detected the changes and identified systematic transitions in order to determine the quantity of conversions from a particular land cover to other land cover category were compared at time and their corresponding area over the evaluated period, while cross tabulation analysis performed as pixel-by-pixel basis. Change matrix viewing the LULC changes in both the images were generated from 2001 to 2020 classified images to evaluate all the changes in LULC and it was performed using ERDAS Imagine software (Yang, et al., 2018). 

Vegetation indices 
Vegetation and its health depend on the environment and therefore satellite derived vegetation indices were used to understand the structure of vegetation and physico-chemical properties of soil in degraded coal mined environment. The vegetation indices were derived from different spectral bands of satellite data and equations are presented in  Table 1 as well as Fig. 4a and 4b respectively. Normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI) and the normalized difference moisture index (NDMI) are commonly employed in assessing the vegetation status and soil conditions (Olmos-Trujillo et al., 2020) were derived. NDVI is the most commonly used index and uses the reflectance of near- infrared band and red band to represent characters of active vegetation (Rodríguez-Moreno and Bullock, 2015). EVI is similar to NDVI and measures the greenness of vegetation. It reduces the background noise, atmospheric noise and provides more accurate results (Olmos-Trujillo et al., 2020). NDMI is the ratio between near-infrared and short-wave infrared and gives an estimate of the water content present in vegetation (Vermote, et al., 2016). The vegetation indices are correlated with vegetation and soil attributes, the empirical relationships were drawn between strongly correlated vegetation indices with the vegetation and soil parameters to directly assess the impact of restoration process in coal mine environment. 


Field Survey and Vegetation Analysis in overburden dumps:
The field inventory was carried out on mined overburden (OB) areas to monitor the progression in succession of vegetation as part of rehabilitation via reforestation activities carried out in the last few years. The natural colonization on the mine spoil is very slow, plantations are usually done to assist regeneration and improve progress of succession.  The classified map of 2020 along with GPS data was used to identify the sample plot and these also served for the ground verification and accuracy analysis of classified images. A sum total of 25 sample plots was randomly selected on mined sites for surveying the vegetation. The plant composition was studied in these twenty five samples by laying quadrates of 20m x 20m, 5m x 5m and 1m x 1m for tree, shrub and herbaceous vegetation, respectively with a minimum separation distance of 100 m. The GPS coordinates of the sample plots are presented in Table 2. The composition of vegetation in tree, shrub and herbaceous layers were recorded to find out the regeneration and development of vegetation supported reforestation activities aimed at restoration of degraded mined lands. Trees (diameter at breast height, dbh ≥10 cm) and shrubs (dbh < 10 cm) were identified and enumerated in the plots. The herbaceous vegetation grasses and herbs were recorded. The species were identified with the assistance of a plant taxonomist and also using field guides. 

Soil Sampling and Analysis:
In order understand the impacts of coal mining on soil health, the physic-chemical properties were analyzed. A sum total of 50 representative soil samples was collected at depths of 0-30 cm and 30-60 cm from the sample locations. Soil samples were air-dried at room temperature for a week and oven-dried at 105 ◦C for 48 h. Coarse roots and gravels were separated manually from the bulk samples, and then soils were lightly crushed with the mortar and pestle. Fine earth material (The collected samples were dried in shade for a week at room temperature and coarse root and gravel materials were removed and then soils were lightly crushed with the mortar and pestle. Later, the soils samples were passed through a 2-mm sieve to further separate any coarse materials.  The physico-chemical parameters of soil like pH, conductivity, bulk density, organic carbon, Nitrogen, Potassium, Phosphorus and Magnesium and trace elements (Copper and Iron) were estimated following the standard protocols (Table 3).
Land Surface Temperature (LST) estimation
L k = ML* Q c a l + AL
where:
ML = Band-specific multiplicative rescaling parameter from Landsat metadata (RADIANCE MULT BAND *, whereas the number of band is x)
AL = Band-specific preservative rescaling parameter from Landsat metadata (RADIANCE ADD BAND *, whereas the number of band is x)
Q c a l = calibrated and Quantized standard product pixel magnitudes (DN)

Land Degradation Vulnerability Index (LDVI) Map
Land Degradation Vulnerability Index maps were generated for prioritizing and intensifying eco-restoration of degraded mined lands. The land degradation vulnerability depends on physical, environmental and socio-economic conditions prevailing in the coal mine areas. In this study, the physical parameters like vegetation, topographic features (slope, aspect, hydrology and drainage), edaphic conditions (physico-chemical status) and environmental conditions (meteorological conditions) were included in the generation of vulnerability index. The different thematic layers were developed satellite data and ground data integrated under Arc-GIS environment. For each factor that influencing land degradation, three weights (1-4, Severe, moderate, less severe and very less severe) were assigned. First the map of physical features index map that influencing land degradation was generated using combining land cover, vegetation layer, topographic conditions slope, aspect, hydrological aspects etc. Secondly, the composite map of soil health index map was generated by overlaying the maps of soil pH, Bulk Density, Organic C, N, P and K. The environmental index map was generated by overlaying major environmental variables like rainfall, temperature, relative humidity and wind velocity. Finally, the three thematic maps viz., physical features index map, soil health index map and environmental index map were integrated in Arc-GIS environment and Land Degradation Vulnerability Index map was generated by categorizing the area as highly vulnerable (lowest score), moderately vulnerable (average score), low vulnerable (high score) and very low (very high score) vulnerable zones.   
Statistical analysis
The multiple correlation analysis was performed between soil physic-chemical properties and vegetation indices to see the interrelationships between remotely sensed and ground measured variables. The regression relationships were developed for strongly correlated soil variables and vegetation indices to understand the soil health affected by restoration operations in coal mining environments.  

Results and Discussion:
Physico-chemical analysis of soil:
The results on various physico-chemical properties of reclamation mined sites are summarized in Table 4. Among the different soil characteristics studied, pH and bulk density values had increased with soil depth, whereas organic C, N, P K, Mg, Cu and Fe showed reverse trend which decreased with soil depth.  Range of N, P and K value indicates that soil is moderately rich to poor as the quantities of nutrients decreased with an increase in depth of the soil. The data on trace elements revealed that copper and iron contents were higher in the region when compared to reference values and decreased with depth but the decrease is not much significant. 

[bookmark: _Hlk32582894]Land use land cover dynamics:
[bookmark: _Hlk32587891]Land use/land cover of the study area was categorized into seven classes viz., agriculture, dense vegetation, sparse vegetation, settlement, coal mines and OB dump were recorded in the study area. Spatial distribution and area of the seven LULC categories corresponding to the years 2001 and 2020 are presented in Table 5 and depicted through Fig 5a and 6a. Accuracy percentages of the area covered by each LULC are also shown in Table 6 and Table 7. The study area is predominantly covered by forest (>50%) followed coal mines and overburden, built up areas and agriculture, while waterbodies occupy relatively smaller area.  The change detection analysis from temporal satellite data revealed huge positive and negative changes occurred in land cover between 2001 and 2018. The prominent changes were observed under vegetation and agriculture. About 17.8% of dense and sparse vegetated areas had been converted to mined land and coal overburden (OB) while the area under mining, agriculture, settlement and water bodies expanded by 18.8%, 14.9%, 10.9%  and  2.73%, respectively.
The results on various landforms cover extents and their changes are shown in Fig. 7 and Table 5. The high elevation areas are mostly covered by forests whereas the low-lying areas are occupied by agricultural land. The Kotma opencast and underground coal mines are mostly seen along the depository of the Kewai River. The water body of the study area shows an increase from (51.52 km2) in the year 2001 to (54.25 km2) in the year 2020 (Table 5). The coal mining area had increased by 15.84 km2 within the duration of study period. As a consequence of spread of mining, the area of the mining and overburden (OB) dumps increased by replacing native forests.

Accuracy assessment:
The overall classification accuracy and Kappa statistics are given in Tables 6 and 7. The total area of the study is 614.45 km2 covered under the seven dominant land use classes (Table 5, Fig.7). The overall classification accuracy for 2001 was 89.37% with a Kappa coefficient of 0.89 as displayed in Table 6 whereas the classification accuracy for the Landsat 8 image of 2020 is 96.21% with a Kappa coefficient of 0.96 in Table 7. The overall accuracy using LULC classification in the current study varies from 79% to 98%. 

Regeneration status of vegetation 
The natural succession was supplemented with artificial planting on coal mine dumps. The analysis of vegetation on mined reclamation site was distributed in three distinct canopy layers. Twenty-two species in tree layer, twelve species in shrub layer and twenty-three species were found in the herbaceous layers. The distribution of the species composition in the reclamation site is depicted in Table 8. Ecological succession would be reclaimed through natural regeneration processes such that the species used during the reclamation process as well as naturally regenerated species can survive during environmental stress conditions.

Comparative analysis of NDMI, NDVI and EVI:
NDMI and NDVI indicate a decreasing trend in dense and sparse vegetation between 2001 and 2020 (Table 9). The NDVI values for dense vegetation ranges between 0.30 to 0.60 of domesticated sites for both the years. Although this is indicative of vegetation diversity, it also indicates a medium level of vegetation density in the area. In 2001, the area covered by dense and sparse vegetation was 111.59 Km2 and 90.85 Km2 respectively as per NDVI results. In 2020, the area covered by dense and sparse vegetation decreased to 109.69 Km2 and 88.99 Km2 respectively (Table 9, Fig. 5b and 6b). EVI has an improved concern for high biomass regions as it incorporates better vegetation monitoring through de-coupling of the waning environment signal, thus reducing atmospheric influences. The EVI exposed a 52% decrease in dense vegetation and a 12.1% increase in sparse vegetation (Table 9, Fig. 5c and 6c).  NDMI values are represented in (Fig. 5d and 6d) respectively. The comparative spatial increase and decrease over the study duration, as per NDMI is discussed in Table 9. A 17.85% increase in the dense vegetation was observed (Fig. 5d and 6d). The change detection within the study period (2001-2020) is illustrated in Fig 7. The results reveal dynamic changes in the agricultural, dense and sparse vegetation across all indices. 

Relations between Vegetation indices and Soil parameters
Attempts were also made draw the correlations between vegetation indices (NDVI, MDVI, EVI and VI) and soil health indicators (Table 10). Among the various indices tried, the strong positive correlation was observed between NDVI and soil properties like organic C, N, P and K.  The empirical relationships showed physical properties (pH and Bulk Density) exhibited better relationships than chemical properties (C, N, P and K). The study revealed that physical properties were comparatively better predicted than chemical properties in impoverished coal mined soils Fig. 8(a-f).

Decadal Land Surface Temperature (LST): 
The decadal land surface temperature map is recorded for the study area. It shows that the LST has increased considerably during the last twenty years (2001-2020). The diurnal and annual average temperature of the study area has risen as a result of aggressive mining and rampant deforestation in the area. Unwarranted anthropogenic interferences have caused a steady degradation of the micro-meteorological parameters of the area such as rainfall, humidity, temperature etc. This has brought immense loss to the ecology of the region concerned. Land Surface Temperature has increased over the 20-year time period with increase in regional temperature assisted by rampant deforestation in the mined landscapes as observed in Fig. 9.

Meteorological parameters:
In Fig. 10, the micrometeorological parameters of the study area such as mean temperature, mean precipitation and mean humidity have been analyzed. It is observed that, with mining and aggressive deforestation in the area, temperature have increased while humidity and precipitation have decreased over the twenty-year period (2001-2020). Long-term anthropogenic interferences in the ecosystem lead to alterations in meteorological parameters as well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Land Degradation Vulnerability Index (LDVI):
LDVI model analysis revealed that the study area shows high to very high LDVI values alluding to its high vulnerability to different forms of land degradation. Land manager need evidence-based information about land degradation patterns and effectiveness of their management responses. NDVI values into a land degradation assessment analyzed the variance of the annual average NDVI within different landscape units, which we identified based on Land Use Land cover (LULC), Land Surface Temperature (LST) and land degradation.
Using all the combinations of the priority classes, a multi-parametric criterion was employed for developing the Land Degradation Vulnerability Index (LDVI) model to assess the cumulative impact of the environmental and socioeconomic parameters on land degradation at a village level. The model classified the study area into eight land degradation vulnerability classes’ viz., very low vulnerability, low, moderate vulnerability, moderate vulnerability, high vulnerability (Fig. 11). Land Degradation Vulnerability Index (LDVI) model was developed in GIS environment based on the exclusive combination of various natural resource and socio-economic priority zones using the weighted index to assess the cumulative impact of social, economic and environmental factors on land degradation. The integration of the Natural Resources Priority Zones with the Socio-Economic Priority Zones, based on the relative weights of the relevant parameters in GIS modeling framework, yielded a robust estimate of the current status and vulnerability of the land degradation status in the study area. The LDVI modeling analysis indicated that 8.60% of the study area (5.6 Km2) shows high vulnerability correlating to their high vulnerability to different forms of land degradation. About 34.84% of the area (22.7 Km2) covered with sparse and dense vegetation has LDVI values indicating lower to least vulnerability due to land degradation. 19.20% of the area (12.5 Km2) shows moderate vulnerability to land degradation processes (Fig. 10). 

Discussion:
Coal mines in developing countries such as India stands on the crossroads of environmental integrity and energy consumption. Thus, it is extremely important to understand the effects of coal mining induced landscape degradation on the health of the environment. The intensification of anthropogenic stressors in our study area is observable from the studies of temporal variation as well, the same trend being observed by (Thakur, et al., 2021c). Mining expansion, infrastructure and establishment of new townships were recognized as major drivers of forest and land degradation in study area, which are not extraordinary as previous studies also documented such detrimental drivers in landscape changes in coal mining areas of Jharia, Raniganj and Singrauli of Jharkhand, West Bengal and Madhya Pradesh states of India (Khan and Javed, 2012; Sadhu, et al., 2012; Samanta, 2015; Ahirwal et al., 2020). The various land-use classes documented from satellite image data and ground reconnaissance surveys are dense and sparse vegetation, open-cast mining (coal), overburden dump, subsidence and wasteland, settlement and water body. It has been found that Landsat TM false-color composites (FCC) of bands 4, 3 and 2; FCC of bands 7, 5 and 3; FCC of bands 5, 4 and 2 and ratio images provide very useful information about land-use mapping. It is found that there has been a specific land use change with a slight increase in the water body area from 52.52 km2 in 2001 to 54.25 km2 in 2020.  The coal mining areas have also increased from 59.66 km2 in 2001 to 75.50 km2 between in 2020. On the other hand, dense vegetation and sparse vegetation have decreased from 231.92 km2 to 218.18 km2 and from 86.14 km2 to 82.13 km2 respectively. Settlement and Overburden dump land has increased from 83.85 km2 to 94.79 km2 and from 29.7 km2 to 32.25 km2 respectively, from 2001 to 2020. Agricultural land has progressively increased from 57.35 km2 in 2001 to 72.26% in 2020. LULC analysis is critical to assess reclamation successes, more so in areas where heavy population thrives and around the vicinity of mines due to the broadening horizon of livelihood opportunities. The overall accuracy of LULC in the current study varied from 79% to 98%. This is in agreement with (Aslami and Ghorbani, 2018) who reported the overall accuracy to range within (91.76% to 93%) and (Chetan et al., 2020) who reported the overall accuracy to range within (80% to 93%). It is generally presumed that classification accuracies usually above are 80% are acceptable and precise for land use characterization. Rapid,  consistent and accurate monitoring of SOM content is of great significance for the environmental management and ecological restoration of mining area (Viscarra et al., 2010; Xu, et al., 2018). The organic carbon content is low in the soil of the current study area which is attributed to less organic matter produced from the sparse vegetation and poor litter decomposition due to inadequate microbial populations on mined lands. The removal of vegetation and top soil during the process of mining might be primarily responsible for poor nutrient status of soil as well as increasing degradation vulnerability of mining landscapes. The loss of organic matter and leaching of nutrients from runoff in the absence of vegetation on mined sites are quite common in coal mining areas. Our findings are corroborated with previous studies in coal mine areas where the significant loss of organic matter and nutrients were reported (Li, et al., 2020). 
NDVI, EVI, RVI techniques were used to analyze the spatio-temporal vegetation changes (Karan, et al., 2016). According to the study, regular monitoring of these reclaimed sites near the mining areas and closed over burden (OB) dumps are crucial for the holistic environmental management. This has been established in the current research project as well. Three vegetation indices (Normalized Difference Moisture Index, Enhanced Vegetation Index, and Normalized Difference Vegetation Index) were used to quantify the vegetation cover changes in the temporal scale of 20 years (2001 – 2020). Among the vegetation indices employed for understanding real-time soil degradation status, NDVI showed much better relationship than other indices for assessing the soil health indicators in coal mine environments. NDVI is directly related to the amount of green biomass and vegetation, where the soil health depends on litter crop, decomposition and recycling of nutrients.  The presence of vegetation definitely results in more litter crop than barren environment. Several studies demonstrated that NDVI is the best predictor of vegetation phenology and biomass, commonly employed for estimating the ecological variables (https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology)( https://www.usgs.gov/land-resources/nli/landsat/normalized-difference-moisture-index).
The soil is also tested for various physico-chemical parameters and results indicate improvements in soil condition as a result of reforestation measures undertaken in the area during last decade but there is still room for further improvements required to make soil and its conditions optimum for plantation and to support vegetation in long run. Soil properties and vegetation health are closely interrelating factors in determining the percentage of long term restoration success (Mishra, et al., 2013). LDVI showed higher values for the mined environments than natural ecosystems.  About 8.60% of the study area is highly vulnerable to different forms of land degradation. About 34.84% of the area (22.7 Km2) covered with sparse and dense vegetation and is least vulnerable to land degradation. 19.20% of the area (12.5 Km2) shows modest vulnerability. The land surface temperature (LST) has shown increase in the span of 20 years.
Restoration of coal mined landscape continued with planned approach and should be conducted by keeping in mind the growing uncertainty of climate globally as well as with an evolved understanding of the future restoration targets (Dhyani, et al., 2020). This article further provides insight on an integrated climate-sensitive restoration framework that recognizes the local participation in mapping degraded lands, identification of species that can support socio-economic needs of the region as well as confronting the erratic climate pattern. Eco-restoration successes in mines of our country have had a glorious past (Rajdeep, et al., 2011; Soni, et al., 2011).  Afforestation on mine degraded lands or lands with problematic soils with monoculture and mixed-species helps in soil reclamation with different efficiencies (Singh, et al., 2012). Wild edible plants can be used extensively in eco-restoration processes as they are the major storehouse of nutritional efficiencies and supports the nutrition profile of indigenous communities as studied by (Mishra, et al., 2021). Land reclamation and natural ecosystem-based restoration approaches face a variety of challenges across different ecosystems as observed by Singh and Sinha, 1993; Abelson, et al., 2020. Unplanned mining operations in conjunction with a general lack of awareness regarding its adverse environmental impacts have catalyzed the creation of industrial wastelands. The same thoughts are echoed through the results of our current research which clearly indicates the immense latent opportunity of reclamation approaches in the study area. Fig. 12 showcases the biodiversity and basic ecological framework of our study area. It explains the impact of coal-mining on different land use classes in the study area. Holistic environmental management plan for ensuring ecological sustainability is the need of the hour. This has been validated through regular monitoring and evaluation at several stages of mining. There is a lot of room for the development of a comprehensive policy for such anthropogenic landscape degradation and the sustainable coal mining practices needs to be introduced jeopardizing ecological health and economic development.


Conclusion:
Consistent and stringent monitoring of degraded landscapes is crucial to ensure environmental sustainability across the globe. Long-term coal extraction irreversibly assaults the ecological integrity of the area leading to biodiversity degradation and species loss. Vegetation studies stand on the pivot of such ecosystem analysis. Studies of decadal variations in vegetation types are crucial to improve our understanding of the degree of environmental stresses and reclamation successes in coal mines which lays down multi-pronged environmental assaults. In this study, it is seen that there has been a significant change in land use and land cover making the land vulnerable to degradation and the vegetation health is also affected by rampant coal mining. The soil health can be improved through cost effective biological and simple mechanical measures. The environmental changes brought by intense mining activities in study area responsible modifying microclimate by altering temperature, humidity and rainfall might contribute for global change if ignored. The present study highlights the need for intensifying eco-restoration process according to the degree of vulnerability. The study advocated to adopt comprehensive measures to immediately rejuvenate fragile coal mined ecosystems to avert long term ecological health and environmental degradation. 
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