References
Adams, M.R., Tamarin, R.H. & Callard, I.P. (1980). Seasonal changes in
plasma androgen levels and the gonads of the beach vole, Microtus
breweri. Gen. Comp. Endocrinol. , 41, 31–40.
Angelopoulou, E., Quignon, C., Kriegsfeld, L.J., Simonneaux, V. &
Anderson, G. (2019). Functional Implications of RFRP-3 in the Central
Control of Daily and Seasonal Rhythms in Reproduction. Front.
Endocrinol. (Lausanne). , 10, 1–15.
Ansel, L., Bolborea, M., Bentsen, A.H., Klosen, P., Mikkelsen, J.D. &
Simonneaux, V. (2010). Differential regulation of kiss1 expression by
melatonin and gonadal hormones in male and female syrian hamsters.J. Biol. Rhythms , 25, 81–91.
Baker, J. (1938). The evolution of breeding seasons. Evol. Essays
Asp. Evol. Biol. , 161–177.
Caro, S.P., Schaper, S. V., Hut, R.A., Ball, G.F. & Visser, M.E.
(2013). The Case of the Missing Mechanism: How Does Temperature
Influence Seasonal Timing in Endotherms? PLoS Biol. , 11.
Cooke, P.S., Spencer, T.E., Bartol, F.F. & Hayashi, K. (2013). Uterine
glands: Development, function and experimental model systems. Mol.
Hum. Reprod. , 19, 547–558.
Coppola, A., Meli, R. & Diano, S. (2005). Inverse shift in circulating
corticosterone and leptin levels elevates hypothalamic deiodinase type 2
in fasted rats. Endocrinology , 146, 2827–2833.
Daketse, M.-J. & Martinet, L. (1977). Effect of temperature on the
growth and fertility of the field-vole, Microtus arvalis, raised in
different daylength and feeding conditions. Ann Biol Anim Biochim
Biophys , 17, 713–721.
Dardente, H., Wood, S., Ebling, F. & Sáenz de Miera, C. (2018). An
integrative view of mammalian seasonal neuroendocrinology. J.
Neuroendocrinol. , 31.
Diano, S., Naftolin, F., Goglia, F. & Horvath, T.L. (1998).
Fasting-induced increase in type II iodothyronine deiodinase activity
and messenger ribonucleic acid levels is not reversed by thyroxine in
the rat hypothalamus. Endocrinology , 139, 2879–2884.
Ergon, T., Lambin, X. & Stenseth, N.C. (2001). Life-history baits of
voles in a fluctuating population respond to the immediate environment.Nature , 411, 1043–1045.
Gerkema, M.P., Daan, S., Wilbrink, M., Hop, M.W., Van Der Leest, F. &
Gerkema, M.P. (1993). Phase Control of Ultradian Feeding Rhythms in the
Common Vole (Microtus arvalis): The Roles of Light and the Circadian
System. J. Biol. Rhythms , 8, 151–171.
Greives, T.J., Humber, S.A., Goldstein, A.N., Scotti, M.A.L., Demas,
G.E. & Kriegsfeld, L.J. (2008). Photoperiod and testosterone interact
to drive seasonal changes in kisspeptin expression in siberian hamsters
(Phodopus sungorus). J. Neuroendocrinol. , 20, 1339–1347.
Guerra, M., Blázquez, J.L., Peruzzo, B., Peláez, B., Rodríguez, S.,
Toranzo, D., et al. (2010). Cell organization of the rat pars
tuberalis. Evidence for open communication between pars tuberalis cells,
cerebrospinal fluid and tanycytes. Cell Tissue Res. , 339,
359–381.
Guillemin, R. (1977). Purification, isolation, and primary structure of
the hypothalamic luteinizing hormone-releasing factor of ovine origin. A
historical account. Am. J. Obstet. Gynecol. , 129, 214–218.
Han, S.K., Gottsch, M.L., Lee, K.J., Popa, S.M., Smith, J.T., Jakawich,
S.K., et al. (2005). Activation of gonadotropin-releasing hormone
neurons by kisspeptin as a neuroendocrine switch for the onset of
puberty. J. Neurosci. , 25, 11349–11356.
Han, S.Y., McLennan, T., Czieselsky, K. & Herbison, A.E. (2015).
Selective optogenetic activation of arcuate kisspeptin neurons generates
pulsatile luteinizing hormone secretion. Proc. Natl. Acad. Sci. U.
S. A. , 112, 13109–13114.
Hanon, E.A., Lincoln, G.A., Fustin, J.-M., Dardente, H., Masson-Pévet,
M., Morgan, P.J., et al. (2008). Ancestral TSH mechanism signals
summer in a photoperiodic mammal. Curr. Biol. , 18, 1147–1152.
Hileman, S.M., McManus, C.J., Goodman, R.L. & Jansen, H.T. (2011).
Neurons of the lateral preoptic area/rostral anterior hypothalamic area
are required for photoperiodic inhibition of estrous cyclicity in sheep.Biol. Reprod. , 85, 1057–1065.
Hrvatin, S., Sun, S., Wilcox, O.F., Yao, H., Lavin-Peter, A.J.,
Cicconet, M., et al. (2020). Neurons that regulate mouse torpor.Nature , 583, 115–121.
Hut, R.A. (2011). Photoperiodism: Shall EYA compare thee to a summers
day? Curr. Biol. , 21, 22–25.
Hut, R.A., Dardente, H. & Riede, S.J. (2014). Seasonal timing: How does
a hibernator know when to stop hibernating? Curr. Biol. , 24,
602–605.
Hut, R.A., Pilorz, V., Boerema, A.S., Strijkstra, A.M. & Daan, S.
(2011). Working for food shifts nocturnal mouse activity into the day.PLoS One , 6, 1–6.
Jaroslawska, J., Chabowska-Kita, A., Kaczmarek, M.M. & Kozak, L.P.
(2015). Npvf: Hypothalamic Biomarker of Ambient Temperature Independent
of Nutritional Status. PLoS Genet. , 11, 1–23.
Klosen, P., Sébert, M.E., Rasri, K., Laran-Chich, M.P. & Simonneaux, V.
(2013). TSH restores a summer phenotype in photoinhibited mammals via
the RF-amides RFRP3 and kisspeptin. FASEB J. , 27, 2677–2686.
Krebs, S., Fischaleck, M. & Blum, H. (2009). A simple and loss-free
method to remove TRIzol contaminations from minute RNA samples.Anal. Biochem. , 387, 136–138.
Król, E., Douglas, A., Dardente, H., Birnie, M.J., Vinne, V. van der,
Eijer, W.G., et al. (2012). Strong pituitary and hypothalamic
responses to photoperiod but not to 6-methoxy-2-benzoxazolinone in
female common voles (Microtus arvalis). Gen. Comp. Endocrinol. ,
179, 289–295.
Lincoln, G.A. & Fraser, H.M. (1979). Blockade of episodic secretion of
luteinizing hormone in the ram by the administration of antibodies to
luteinizing hormone releasing hormone. Biol. Reprod. , 21,
1239–1245.
Lomet, D., Druart, X., Hazlerigg, D., Beltramo, M. & Dardente, H.
(2020). Circuit-level analysis identifies target genes of sex steroids
in Ewe seasonal breeding. Mol. Cell. Endocrinol. , 110825.
Nakane, Y. & Yoshimura, T. (2019). Photoperiodic Regulation of
Reproduction in Vertebrates. Annu. Rev. Anim. Biosci. , 7,
173–94.
Nakao, N., Ono, H., Yamamura, T., Anraku, T., Takagi, T., Higashi, K.,et al. (2008). Thyrotrophin in the pars tuberalis triggers
photoperiodic response. Nature , 452, 317–322.
Negus, N.C. & Berger, P.J. (1977). Experimental Triggering of
Reproduction in a Natural Population of Microtus montanus.Science , 196, 1230–1231.
Nelson, R.J., Dark, J. & Zucker, I. (1983). Influence of photoperiod,
nutrition and water availability on reproduction of male California
voles (Microtus californicus). J. Reprod. Fertil. , 69, 473–477.
Nelson, R.J., Frank, D., Smale, L. & Willoughby, S.B. (1989).
Photoperiod and temperature affect reproductive and nonreproductive
functions in male prairie voles (Microtus ochrogaster). Biol
Reprod , 40, 481–485.
Nelson, R.J., Marinovic, A.C., Moffatt, C.A., Kriegsfeld, L.J. & Kim,
S. (1997). The effects of photoperiod and food intake on reproductive
development in male deer mice (Peromzycus maniculatus). Physiol.
Behav. , 62, 945–950.
Nieminen, P., Hohtola, E. & Mustonen, A.-M. (2013). Body temperature
rhythms in Microtus voles during feeding, food deprivation, and
winter acclimatization. J. Mammal. , 94, 591–600.
Ono, H., Hoshino, Y., Yasuo, S., Watanabe, M., Nakane, Y., Murai, A.,et al. (2008). Involvement of thyrotropin in photoperiodic signal
transduction in mice. Proc. Natl. Acad. Sci. , 105, 18238–18242.
Paul, M.J., Pyter, L.M., Freeman, D.A., Galang, J. & Prendergast, B.J.
(2009). Photic and nonphotic seasonal cues differentially engage
hypothalamic kisspeptin and RFamide-related peptide mRNA expression in
Siberian hamsters. J. Neuroendocrinol. , 21, 1007–1014.
Pfaffl, M.W. (2001). A new mathematical model for relative
quantification in real-time RT-PCR. Nucleic Acids Res. , 29,
16–21.
Rasri-Klosen, K., Simonneaux, V. & Klosen, P. (2017). Differential
response patterns of kisspeptin and RFamide-related peptide to
photoperiod and sex steroid feedback in the Djungarian hamster (Phodopus
sungorus). J. Neuroendocrinol. , 29, 1–14.
Reiter, R.J. (1968). Changes in the reproductive organs of cold-exposed
and light-deprived female hamsters (mesocricetus auratus). J.
Reprod. Fertil. , 16, 217–222.
Revel, F.G., Saboureau, M., Pévet, P., Simonneaux, V. & Mikkelsen, J.D.
(2008). RFamide-related peptide gene is a melatonin-driven photoperiodic
gene. Endocrinology , 149, 902–912.
van Rosmalen, L., van Dalum, J., Hazlerigg, D.G. & Hut, R.A. (2020).
Gonads or body? Differences in gonadal and somatic photoperiodic growth
response in two vole species. J. Exp. Biol. , 223, jeb.230987.
De Roux, N., Genin, E., Carel, J.C., Matsuda, F., Chaussain, J.L. &
Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of
function of the KiSS1-derived peptide receptor GPR54. Proc. Natl.
Acad. Sci. U. S. A. , 100, 10972–10976.
Ruffino, L., Salo, P., Koivisto, E., Banks, P.B. & Korpimäki, E.
(2014). Reproductive responses of birds to experimental food
supplementation: A meta-analysis. Front. Zool. , 11, 1–13.
Sáenz de Miera, C., Bothorel, B., Jaeger, C., Simonneaux, V. &
Hazlerigg, D. (2017). Maternal photoperiod programs hypothalamic thyroid
status via the fetal pituitary gland. Proc. Natl. Acad. Sci. ,
114, 8408–8413.
Sáenz De Miera, C., Monecke, S., Bartzen-Sprauer, J., Laran-Chich, M.P.,
Pévet, P., Hazlerigg, D.G., et al. (2014). A circannual clock
drives expression of genes central for seasonal reproduction.Curr. Biol. , 24, 1500–1506.
Sanders, E.H., Gardner, P.D., Berger, P.J. & Negus, N.C. (1981).
6-methoxybenzoxazolinone: A Plant Derivative that Stimulates
Reproduction in Microtus montanus. Science , 214, 67–69.
Schally, A. V., Parlow, A.F., Carter, W.H., Saito, M., Bowers, C.Y. &
Arimura, A. (1970). Studies on the site of action of oral contraceptive
steroids. II. Plasma LH and FSH levels after administration of
antifertility steroids and LH-releasing hormone (LH-RH). Obstet.
Gynecol. Surv. , 25, 953–954.
Schneider, J.E. (2004). Energy balance and reproduction. Physiol.
Behav. , 81, 289–317.
Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno,
J.S., Shagoury, J.K., et al. (2004). The GPR54 Gene as a
Regulator of Puberty. Obstet. Gynecol. Surv. , 59, 351–353.
Simonneaux, V. (2020). A Kiss to drive rhythms in reproduction.Eur. J. Neurosci. , 51, 509–530.
Simonneaux, V., Ancel, C., Poirel, V.J. & Gauer, F. (2013). Kisspeptins
and RFRP-3 act in concert to synchronize rodent reproduction with
seasons. Front. Neurosci. , 7, 1–11.
Smith, J.T., Cunningham, M.J., Rissman, E.F., Clifton, D.K. & Steiner,
R.A. (2005a). Regulation of Kiss1 gene expression in the brain of the
female mouse. Endocrinology , 146, 3686–3692.
Smith, J.T., Dungan, H.M., Stoll, E.A., Gottsch, M.L., Braun, R.E.,
Eacker, S.M., et al. (2005b). Differential regulation of KiSS-1
mRNA expression by sex steroids in the brain of the male mouse.Endocrinology , 146, 2976–2984.
Steinlechner, S., Stieglitz, A., Ruf, T., Heldmaier, G. & Reiter, R.J.
(1991). Integration of Environmental Signals by the Pineal Gland and its
Significance for Seasonality in Small Mammals. In: Role of
melatonin and Pineal Peptides in Neuroimmunomodulation . pp. 159–163.
Takahashi, T.M., Sunagawa, G.A., Soya, S., Abe, M., Sakurai, K.,
Ishikawa, K., et al. (2020). A discrete neuronal circuit induces
a hibernation-like state in rodents. Nature , 583, 109–114.
Team, R.C. (2013). R: A language and environment for statistical
computing. R Found. Stat. Comput. Vienna, Austria.
van der Vinne, V., Gorter, J.A., Riede, S.J. & Hut, R.A. (2015).
Diurnality as an energy-saving strategy: energetic consequences of
temporal niche switching in small mammals. J. Exp. Biol. , 218,
2585–2593.
van der Vinne, V., Riede, S.J., Gorter, J.A., Eijer, W.G., Sellix, M.T.,
Menaker, M., et al. (2014). Cold and hunger induce diurnality in
a nocturnal mammal. Proc. Natl. Acad. Sci. , 111, 15256–15260.
van der Vinne, V., Tachinardi, P., Riede, S.J., Akkerman, J., Scheepe,
J. & Hut, R.A. (2019). Maximising survival by shifting the daily timing
of activity. Ecol. Lett. , 22, 2097–2102.
Wang, D., Li, N., Tian, L., Ren, F., Li, Z., Chen, Y., et al.(2019). Dynamic expressions of hypothalamic genes regulate seasonal
breeding in a natural rodent population. Mol. Ecol. , 28,
3508–3522.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.Springer-Verlag New York.
van de Zande, L., van Apeldoorn, R.C., Blijdenstein, A.F., de Jong, D.,
van Delden, W. & Bijlsma, R. (2000). Microsatellite analysis of
population structure and genetic differentiation within and between
populations of the root vole, Microtus oeconomus in the Netherlands.Mol. Ecol. , 9, 1651–1656.
Figure 1. Food scarcity and ambient temperature effects on
gonadal weight and body mass in male and female voles.(A ,D ) paired testis mass, (B ,E )
paired ovary mass, (C ,F ) uterus mass and
(G -J ) body mass for Common and Tundra voles
respectively at low (open symbols) or high workload (filled symbols), at
10°C (blue) or 21°C (red). Data are presented as means ± SEM (n = 6-8).
Significant effects (two-way ANOVA) of workload (wl), temperature (temp)
and interactions (wlxtemp) are shown: *p < 0.05,
**p < 0.01, ***p < 0.001. Significant
differences between groups (one-way ANOVA) are indicated by asterisks.
Statistic results for ANOVAs can be found in Table S4.
Figure 2. Food scarcity and ambient temperature affect gene
expression in the posterior and anterior hypothalamus. Relative gene
expression levels of Tshβ , Tshr , Dio2 , Kiss1and Rfrp3 in the posterior hypothalamus and Kiss1 andGnrh in the anterior hypothalamus for (A , E )
Common vole males, (B , F ) Common vole females,
(C , G ) Tundra vole males and (D , H )
Tundra vole females respectively, at low (open symbols) or high workload
(filled symbols), at 10°C (blue) or 21°C (red). Data are presented as
means ± SEM (n = 6-8). Significant effects (two-way ANOVA) of workload
(wl) and temperature (temp) are shown: *p < 0.05,
**p < 0.01, ***p < 0.001. Significant
differences between groups (one-way ANOVA) are indicated by asterisks.
Statistic results for ANOVAs can be found in Table S4.
Figure 3. Relationship between reproductive organ mass,Tsh β and Kiss1 expression. Correlations
between (A -D ) Tshβ expression in the posterior
hypothalamus and reproductive organ mass (male: paired testis weight,
females: paired ovary + uterus weight), and between
(E -H ) Kiss1 expression in the anterior
hypothalamus and reproductive organ mass for common vole males, common
vole females, tundra vole males and tundra vole females respectively at
low (open symbols) or high workload (filled symbols), at 10°C (blue) or
21°C (red). Linear models are fitted and R2 andp -values are shown.