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Abstract

In this paper we apply the Legendre wavelets basis to solve the linear weakly singular Volterra
integral equation of the second kind. The basis is defined on [0, 1) , and in this work we extend this
interval to [0, n) for some positive integer n. For this aim we solve the problem on [0, 1); then we
apply the Legendre wavelets on [1, 2) and use the lag solution on [0, 1) to obtain the solution on [0, 2)
and continue this procedure. Convergence analysis of Legendre wavelets on [n, n + 1), is considered
in Section2. We give a convergence analysis for the proposed method, established on compactness
of operators. In numerical results we give two sample problems from heat conduction. For this
purpose, in Section 6 we give an equivalent theorem between the proposed heat conduction problem
and an integral equation. Then we solve the equivalent integral equation by the proposed method
on union of some interval and obtain the solution of the heat conduction problem. As Tables and
Figures of two and three dimensional plots show, accuracy of the method is reasonable and there is
not any propagation of error from lag intervals. The convergence analysis and these sample problems
demonstrate the accuracy and applicability of the method.
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1 Introduction

Wavelets are a powerful techniques to solve the linear and nonlinear integral equations, but most authors
consider these techniques on a bounded interval solution such as [0, 1) [9, 26]. We are going to solve the
problem in the larger interval [0, n) for some positive integer n. In this paper, we consider the linear
weakly singular Volterra integral equation as follows:

φ(t)−
∫ t

0

φ(τ)p(t, τ)K(t, τ)dτ = r(t), t > 0, (1)

where K(t, τ) is a smooth kernel and is known, r(t) is a known function in L2(0,∞), p(t, τ) is a weakly
singular kernel such as mentioned in Theorem 3 and φ is the unknown function. There are some methods
for solving (1) such as product integration method [4, 5, 6, 7, 8, 13, 22], collocation methods [10] and
so on. The product integration method is used for short intervals, and for a larger interval we must
continue with another method [22]. Volterra integral equations with weakly singular kernels have solu-
tions whose derivatives are unbounded at the left endpoint of the interval of integration. Due to this
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singular behaviour, the optimal global and local convergence results for collocation solutions in piecewise
polynomial spaces on uniform meshes will no longer be valid. The use of appropriately graded meshes, or
of non-polynomial collocation spaces on uniform meshes, are two of the possible alternative approaches
for dealing with this order reduction problem, and these cause the complexity of problem [10]. Hence, in
this paper we suggest the proposed method, and show that the method is convergent and applicable for
union of some intervals.
One of the most important applications of equation (1) is in the heat conduction, which arises in physical
and mechanical phenomena. For this purpose, we consider the following heat conduction problem in one
spatial dimension

ut = uxx, 0 < x <∞, 0 < t, (2)

u(x, 0) = f(x), 0 < x <∞, (3)

ux(0, t) + α(t)u(0, t) +

∫ t

0

F (t, τ)u(0, τ)dτ = g(t), 0 < t, (4)

and
|u(x, t)| ≤ C1 exp

{
C2x

2
}
. (5)

Here u(x, t) is the temperature and is unknown, Ci, i = 1, 2, are positive constants, and the known
functions f, α, g, and F are explained in Theorem 7. We convert this problem to a weakly singular
integral equation. Both applicability and accuracy of the method are illustrated by some benchmark
sample problems from this system. The organization of this paper is as follows:
The Legendre wavelets is introduced, in Section 2, and extended to a larger interval. In Section 3,
numerical solution of weakly singular Volterra integral equation is illustrated by a test equation. In Section
4, algorithm of the Legendre wavelet is explained on [0, n0), for some positive integer n0. In Section 5, we
give a convergence analysis for the proposed method, established on compactness of operators in Banach
spaces. In Section 6, an equivalent integral equation associated with (2)-(5) is obtained. This section
shows the application of the method in the heat transfer. Finally, in Section 7, numerical results of two
sample problems originated from heat transfer solved by the proposed method are reported.

2 Legendre Wavelets on union of intervals

Wavelets are powerful tools in approximation theory and numerical analysis of the Hilbert space L2(R)
[14]. There are several bases for wavelets, such as Haar wavelet, Daubechies wavelets, Chebyshev wavelets,
Legendre wavelets, and so on [11, 15, 3, 21, 23, 25]. In this paper, we consider the Legendre wavelets,
which are an orthonormal set of functions with respect to the weight function w(t) = 1, on the interval
[0, 1), as follows:

ψnm(t) =

{√
m+ 1

22k/2Pm(2kt− 2n+ 1), n−1
2k−1 ≤ t < n

2k−1

0, otherwise
, (6)

where n = 1, ..., 2k−1, k is an integer, m is the degree of Legendre polynomial Pm, m = 0, 1, ...,M − 1,
for some positive integer M . A function f ∈ L2(0, 1), can be represented as series of Legendre wavelets

f(t) =

∞∑
n=1

∞∑
m=0

fnmψnm(t), (7)

where fnm =< f, ψnm >=
∫ n

2k−1

n−1

2k−1

f(τ)ψnm(τ)dτ , is the inner product of f and ψnm in the Hilbert space

L2(0, 1). Suppose

VMk−1 =
{
ψnm : n = 1, ..., 2k−1,m = 0, 1, ...,M − 1

}
, PMk−1 (f(t)) =

2k−1∑
n=1

M−1∑
m=0

fnmψnm(t),
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then, we have the following theorem about the error of the approximated solution in subspaces VMk−1 [19].

Theorem 1. Let f ∈ CM [0, 1] and PMk−1 (f(t)) ∈ VMk−1, then∣∣f(t)− PMk−1 (f(t))
∣∣ ≤M12−M(k+1) max

ξ∈[0,1]

∣∣∣f (M)(ξ)
∣∣∣ ,

where M1,is a constant.

Proof. See Theorem 2.4 of [19].

Now suppose n0 ∈ N, and let f ∈ L2(0, n0). Since [0, n0) =
⋃n0−1
l=0 [l, l + 1), we put t ∈ Il := [l, l + 1)

for l ∈ {0, 1, ..., n0 − 1}, and we are ready to establish the idea in the interval [0, n0). In this paper, we
assume, left hand side:=right hand side, which means that ”left hand side” is defined as the known ”right
hand side” quantity. Similarly left hand side=:right hand side, which means that ”right hand side” is
defined as the known ”left hand side” quantity.

Lemma 1. Let {pi}Ni=1 is a sequence of orthogonal polynomials on [0, 1] with respect to the weight function
ω(t), then {qi}Ni=1 is a sequence of orthogonal polynomials on [a, b] with respect to the weight function
ω̃(t) where

qi(t) = pi

(
t− a
b− a

)
, ω̃(t) = ω

(
t− a
b− a

)
, t ∈ [a, b].

Proof. Put x = t−a
b−a , then for i, j ∈ {1, ..., N} and i 6= j∫ b

a

qi(t)qj(t)ω̃(t)dt = (b− a)

∫ 1

0

pi(x)pj(x)ω(x)dx = 0.

Theorem 2. Let f ∈ CM [l, l + 1], VMk−1,l :=
{
ψnm(t− l) : n = 1, ..., 2k−1,m = 0, 1, ...,M − 1

}
, and

PMk−1,l (f(t)) :=
∑2k−1

n=1

∑M−1
m=0 f

(l)
nmψnm(t− l) ∈ VMk−1,l,where f

(l)
nm =

∫ l+ n

2k−1

l+ n−1

2k−1

f(τ)ψnm(τ − l)dτ , then

∣∣f(t)− PMk−1,l (f(t))
∣∣ ≤M12−M(k+1) max

ξ∈[l,l+1]

∣∣∣f (M)(ξ)
∣∣∣ ,

where M1,is a constant.

Proof. A multiresolution analysis framework developed by Alpert [1], Mallat [18], Meyer [20], and dis-

cussed at length by Daubechies [16] shows that VM = L2[0, 1] , where VM := ∪∞k=1V
M
k−1. Similar analysis

shows that VM,l = L2[l, l+ 1] , where VM,l := ∪∞k=1V
M
k−1,l. Application of Theorem 1 for VMk−1,l insted of

VMk−1 forces the statement.

For the recent function f , we obtain

f(t) =

∞∑
n=1

∞∑
m=0

f (l)nmψnm(t− l), t ∈ [l, l + 1). (8)

In the numerical process, we consider the following approximation

f(t) ≈
2k−1∑
n=1

M−1∑
m=0

f (l)nmψnm(t− l) = FTl Ψ(t− l), t ∈ [l, l + 1), 0 ≤ l < n0, (9)

where
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Fl =
(
f
(l)
10 , f

(l)
11 , ..., f

(l)
1,M−1, f

(l)
20 , ..., f

(l)
2,M−1, ..., f

(l)

2k−1,0
, ..., f

(l)

2k−1,M−1

)T
=
(
f
(l)
1 , f

(l)
2 , ..., f

(l)
M , f

(l)
M+1, ..., f

(l)

2k−1M

)T
, (10)

Ψ(t− l) =
(
ψ10(t− l), ψ11(t− l), ..., ψ1,M−1(t− l), ψ20(t− l), ..., ψ2,M−1(t− l), ..., ψ2k−1,0(t− l), ..., ψ2k−1,M−1(t− l)

)T
= (ψ1(t− l), ψ2(t− l), ..., ψM (t− l), ψM+1(t− l), ..., ψ2k−1M (t− l))T .

For the simplicity of numerical evaluations, we rearrange indices in the second representation of vectors.

3 Application of Legendre wavelets by means the Lag terms on
Volterra integral equation

We consider the following test equation to illustrate the technique

φ(t)−
∫ t

0

φ(τ)p(t, τ)dτ = r(t), t ∈ [0, n0), (11)

where φ is unknown function, r is the right hand side function and is known, and p(t, τ) is the weakly
singular kernel and in most problems is defined by p(t, τ) = |t − τ |−α, 0 < α < 1 or p(t, τ) = log |t − τ |.
Since the data of Theorem 7 are piecewise-continuous and wavelets span such solutions, we apply wavelets.
Using Eq. (9) with l = 0, for approximate φ(t) and r(t) in Eq. (11) forces(

Φ(0)
)T

Ψ(t)−
∫ t

0

(
Φ(0)

)T
Ψ(τ)p(t, τ)dτ =

(
R(0)

)T
Ψ(t), t ∈ [0, 1), (12)

where
(
Φ(0)

)T
=
[
φ
(0)
1 , φ

(0)
2 , ..., φ

(0)

2k−1M

]T
, is unknown vector. Let v(0)(t) =

∫ t
0

Ψ(τ)p(t, τ)dτ , then from

Eq. (9) we obtain v(0)(t) '
(
V (0)

)T
Ψ(t), where V (0) is a 2k−1M × 2k−1M matrix. Substitution of these

quantities in (12) yields,
(
Φ(0)

)T (
I − V (0)

)T
Ψ(t) =

(
R(0)

)T
Ψ(t). Hence the linear system(

I − V (0)
)

Φ(0) = R(0), (13)

must be solved, to obtain the solution on [0, 1). For l ≥ 1 we rewrite (11) on [l, l + 1)

φ(t)−
∫ t

l

φ(τ)p(t, τ)dτ = r(t) +

l−1∑
s=0

∫ s+1

s

φ(τ)p(t, τ)dτ, t ∈ [l, l + 1). (14)

We approximate the φ in the right hand side by the known lag term φ(τ) '
(
Φ(s)

)T
Ψ(τ−s), s ≤ τ ≤ s+1,

φ in the left hand side is approximated by φ(τ) '
(
Φ(l)

)T
Ψ(τ − l), and results in(

Φ(l)
)T

Ψ(t− l)−
(

Φ(l)
)T ∫ t

l

Ψ(τ − l)p(t, τ)dτ

= r(t) +

l−1∑
s=0

(
Φ(s)

)T ∫ s+1

s

Ψ(τ − s)p(t, τ)dτ, t ∈ [l, l + 1). (15)

Let v(l)(t) =
∫ t
l

Ψ(τ − l)p(t, τ)dτ '
(
V (l)

)T
Ψ(t− l), w(s)(t) =

∫ s+1

s
Ψ(τ − s)p(t, τ)dτ '

(
W (s)

)T
Ψ(t− l),

r(t) '
(
R(l)

)T
Ψ(t− l), and substituting these quantities in (15) forces
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(
Φ(l)

)T (
I −

(
V (l)

)T)
Ψ(t− l) =

{(
R(l)

)T
+

l−1∑
s=0

(
Φ(s)

)T (
W (s)

)T}
Ψ(t− l), t ∈ [l, l + 1). (16)

Hence, (
I − V (l)

)
Φ(l) =

{
R(l) +

l−1∑
s=0

W (s)Φ(s)

}
, (17)

must be solved recursively for l = 1, ..., n0 − 1, which is the initial Φ(0) obtained from (13).

4 Algorithm

In this section we give an algorithm for the above discussion. This algorithm can be written by any
mathematical Programming software such as Mathematica, MathLab, C, Pascal, and so on. In this work
we apply the Mathematica Programming software.

Remark 1. In this paper, an N−column vector V with ith component vi, i = 1, ..., N is denoted by
V = [vi : i = 1, ..., N ] and an N × N Matrix A with (i, j)th component aij is denoted by A = [aij : i =
1, ..., N, j = 1, ..., N ]. These notations are similar to Mathematica programing.

• Step1 Take the initial integer data k,M, n0, and the known right hand side function r(t). Put
N = 2k−1M , αl,i = l+

[
i−1
M

]
/2k−1, l = 0, 1, ..., n0 − 1, i = 1, ..., N , lagv = [0, ..., 0]T , an N−column

vector with zero components, φ = [ ], a null vector, and define ψmn(t) as the same as (6), and let

Ψ(t) =
[
ψ[ i−1

M ]+1,i−M[ i−1
M ]−1(t) : i = 1, ..., N

]
=: [ψi(t) : i = 1, ..., N ] ;

For i = 0, 1, 2, ..., j = 1, 2, 3, ..., i < j, set

w(t, i, j) =

[{∫ αi,i0
+ 1

2k−1

αi,i0
p(t, τ)ψi0(τ − i)dτ, j ≤ t < j + 1,

0, otherwise.
: i0 = 1, ..., N

]
=: [wi0(t, i, j) : i0 = 1, ..., N ] ;

Set W (i, j) =
[∫ αi,i0

+ 1

2k−1

αi,i0
wj0(τ, i, j)ψi0(τ − j)dτ : i0 = 1, ..., N, j0 = 1, ..., N

]
;

Set v(t, i) = [vi0(t, i) : i0 = 1, ..., N ] , where vi0(t, i) is defined as follows:

vi0(t, i) =


∫ t
αi,i0

p(t, τ)ψi0(τ − i)dτ, αi,i0 ≤ t < αi,i0 + 1
2k−1 ,∫ αi,i0+

1

2k−1

αi,i0
p(t, τ)ψi0(τ − i)dτ, αi,i0 + 1

2k−1 ≤ t ≤ i+ 1,

0, otherwise.

Set

V (i) =

[∫ αi,i0
+ 1

2k−1

αi,i0

vj0(τ, i)ψi0(τ − i)dτ : i0 = 1, ..., N, j0 = 1, ..., N

]
;

• Step2 For l = 0, 1, ..., n0 − 1 do

Set rhsv =
[∫ αl,i+

1

2k−1

αl,i
r(τ)ψi(τ − l)dτ : i = 1, ..., N

]
;

Solve the system (I − V (l))X = rhsv + lagv, and obtain X, then join X to φ. Set lagv =∑n0

s=0W (s, l + 1) [φi+s×N : i = 1, ..., N ], and if l < n0 − 1, put l = l + 1, and repeat Step2.

• Step3 Set φ̃(t) =
∑n0−1
l=0

∑N
i=1 ψi(t− l)φi+l×N , as the approximated solution of (11).
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5 Convergence Analysis

We give some definitions, lemmas and theorems associated with this section.

Definition 1. Let X and Y be normed spaces, and let A : X → Y be linear operator. Then A is
compact if the set {Aφ : ‖φ‖ ≤ 1} has compact closure in Y . This is equivalent to saying that for every
bounded sequence {φn} ⊆ X, the sequence {Aφn} has a subsequence that is convergent to some point
in Y . Compact operators are also called completely continuous operators (see also [2] section 2.8, [24]
chapter 4 and [17] chapter12.)

Definition 2. A sequence An : X → Y of linear operators from a normed space X into a normed space
Y is called collectively compact if each sequence from the set {Anφ : φ ∈ X, ‖φ‖ ≤ 1, n ∈ N} contains a
convergent subsequence.

Theorem 3. Let I = [0, T ], D = {(t, s) : 0 ≤ s ≤ t ≤ T}, for some positive 0 < T , pα(t − s) ={
(t− s)−α 0 < α < 1,
Log(t− s) α = 1.

and (Vαφ)(t) =
∫ t
0
pα(t− s)K(t, s)φ(s)ds, where K ∈ C(D). Then for r ∈ C(I)

the linear, weakly singular Volterra integral equation φ(t) − (Vαφ)(t) = r(t), t ∈ I possesses a unique
solution φ ∈ C(I).

Proof. See Theorems 6.1.2 and 6.1.7 of [10].

Theorem 4. Let A : X → X ,be a compact operator in a normed linear space X. Then I−A is surjective
if and only if it is injective. If the inverse operator (I −A)−1 : X → X exists, it is bounded.

Proof. See Theorem 12.2 of [17].

Theorem 5. Let X be a Banach space, let An : X → X be a collectively compact sequence, and
let Bn : X → X be a pointwise convergent sequence with limit operator B : X → X. Then
limn→∞ ‖(Bn −B)An‖ = 0.

Proof. See Theorem 12.9 of [17].

Theorem 6. Let A : X → X be a compact linear operator on a Banach space X such that I − A is
injective, and assume that the sequence An : X → X of linear operators is collectively compact and
pointwise convergent; i.e., limn→∞Anφ = Aφ for all φ ∈ X. Then for sufficiently large n the invers
operators (I −An)−1 : X → X exist and are uniformly bounded. For the solutions of the equations

φ−Aφ = f, (18)

and
φn −Anφn = fn, (19)

we have an error estimate ‖φn − φ‖ ≤ C {‖(An −A)φ‖+ ‖fn − f‖} for some constant C.

Proof. See Theorem 12.10 of [17].

We rewrite equations (14) and (16) in the form of (18) and (19) respectively. For this aim, define

Aφ(t) :=

∫ t

l

φ(τ)p(t− τ)dτ, φ ∈ X := L2(l, l + 1),

f(t) := r(t) +

l−1∑
s=0

∫ s+1

s

φ(τ)p(t− τ)dτ,

Bnφ(t) :=
(

Φ(l)
)T

Ψ(t− l), Φ(l) = Φ(l)
n = (φ

(l)
1 , φ

(l)
2 , ..., φ

(l)
2n−1×n2)T ,
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φn(t) := Bnφ(t), An := BnA.

Obviously (14) is in the form of (18). By defining

fn(t) :=

{(
R(l)

)T
+

l−1∑
s=0

(
Φ(s)

)T (
W (s)

)T}
Ψ(t− l) = Bnf(t),

we see that

Aφn(t) = ABnφ(t) =
(

Φ(l)
)T ∫ t

l

Ψ(τ − l)p(t− τ)dτ,

and hence

Anφn(t) = BnAφn(t) =
(

Φ(l)
)T (

V (l)
)T

Ψ(t− l),

these means (16) is in the form of (19).
To terminate this section, it is sufficient to show that all hypotheses of theorem 6 are true for the

produced operators. The operator A is compact (see Section 2.8 of [2]). Theorem 3 shows that the
operator I−A is surjective, and theorem 4 says that I−A is injective. Compactness of A shows that the
fixed sequence An := A be a collectively compact sequence. Equation (8) says that limn→∞Bnφ = Bφ =
Iφ = φ, and hence Theorem 5 forces that limn→∞ ‖An − A‖ = limn→∞ ‖BnA − IA‖ = limn→∞ ‖(Bn −
B)An‖ = 0. An converges to A in norm and this forces either An : X → X be collectively compact and
pointwise convergent. These analyses show that all hypotheses of Theorem 6 are true.

For l = 0, fn(t) :=
(
R(0)

)T
Ψ(t−l) and equation (10) shows that limn→∞ ‖fn−f‖L2(0,1) = 0, then the

error estimate of Theorem 6 forces ‖φn−φ‖L2(0,1) ≤ C
{∥∥(An −A)‖L2(0,1)‖φ

∥∥
L2(0,1)

+ ‖fn − f‖L2(0,1)

}
→

0 as n → ∞, and hence limn→∞ ‖fn − f‖L2(1,2) = 0. The error estimate of Theorem 6 forces

‖φn − φ‖L2(1,2) ≤ C
{∥∥(An −A)‖L2(1,2)‖φ

∥∥
L2(1,2)

+ ‖fn − f‖L2(1,2)

}
→ 0 as n → ∞, and so on. By

induction, we see that for finite l ∈ N, limn→∞ ‖φn − φ‖L2(l,l+1) = 0.

6 Application in heat conduction

We give some definitions, lemmas and theorems associated with this section

Definition 3. The fundamental solution of heat equation is denoted by K(x, t), and the Neumann’s
function is denoted by N(x, ξ, t),

K(x, t) :=
1√
4πt

exp

{
−x

2

4t

}
, N(x, ξ, t) := K(x− ξ, t) +K(x+ ξ, t).

Lemma 2. For any integrable function f that satisfies |f(x)| ≤ C1 exp{C2x
2}, where C1 and C2 are

positive constants, limt↓0
∫∞
−∞K(x− ξ, t)f(ξ)dξ = f(x), 0 < t, at the point x of continuity of f .

Proof. See Lemma 3.4.3 of [12].

Lemma 3. At a point of continuity of g, limx↓0−2
∫ t
0
∂K
∂x (x, t− τ)g(τ)dτ = g(t).

Proof. See Lemma 4.2.1 of [12].

Theorem 7. The problem of determining the unique bounded solution u that satisfies (2)- (5), where
Ci, i = 1, 2, are positive constants, and where f, α, and g are piecewise-continuous functions, and F
is an integrable function on {(t, τ)|0 ≤ τ ≤ t}, is equivalent to the problem of determining the unique
piecewise-continuous solution φ to the integral equation



Convergence analysis of Legendre wavelets with application in heat transfer 8

φ(t)− 1√
π

∫ t

0

{
α(t) +

∫ t

τ

F (t, s)ds

}
φ(τ)√
t− τ

dτ = r(t) 0 < t, (20)

where

r(t) = g(t) +
α(t)√
πt

∫ ∞
0

exp

{
−ξ

2

4t

}
f(ξ)dξ −

∫ t

0

F (t, τ)√
πτ

∫ ∞
0

exp

{
− ξ

2

4τ

}
f(ξ)dξdτ. (21)

And the solution u has the representation

u(x, t) = −2

∫ t

0

K(x, t− τ)φ(τ)dτ +

∫ ∞
0

N(x, ξ, t)f(ξ)dξ. (22)

Proof. We are going to search u(x, t) = u1(x, t)+u2(x, t), such that u1, u2 satisfy heat equation and each of

them establish one of the equations (3), (4). For this aim let u1(x, t) = −2
∫ t
0
K(x, t−τ)φ(τ)dτ, u2(x, t) =∫∞

0
N(x, ξ, t)f(ξ)dξ. From [12], chapter one, both of u1 and u2 are solutions of equation (2). Lemma 2

leads u(x, 0) = u2(x, 0) = limt↓0
∫∞
0
N(x, ξ, t)f(ξ)dξ = limt↓0

∫∞
−∞K(x− ξ, t)fe(ξ)dξ = f(x), where fe is

the even extension of f to −∞ < x < ∞. Elementary evaluations lead Nx(0, ξ, t) = 0, and ux(0, t) =

limx↓0
∫∞
0
Nx(x, ξ, t)f(ξ)dξ+limx↓0−2

∫ t
0
∂K
∂x (x, t−τ)φ(τ)dτ =

∫∞
0
Nx(0, ξ, t)f(ξ)dξ+φ(t) = φ(t), where

we apply Lemma 3 for the function φ. On the other hand

u(0, t) = u1(0, t) + u2(0, t) = −2

∫ t

0

K(0, t− τ)φ(τ)dτ +

∫ ∞
0

N(0, ξ, t)f(ξ)dξ

= − 2√
4π

∫ t

0

φ(τ)√
t− τ

dτ +
1√
πt

∫ ∞
0

exp

{
−ξ

2

4t

}
f(ξ)dξ.

Substitution of ux(0, t), u(0, t) in Eq. (4) and using Fubini’s theorem reduces to Eq. (20), where the
known right hand side function r(t) is given by (21). By consideration of chapter3 of [12] the solution u
in the class (5) is unique, and hence the proof is completed.

7 Numerical examples

Example 1. In the problem (2)-(5), for f(x) = 1, F (t, τ) =
√
π√
t−τ , α(t) =

√
π, the integral equation

associated with this problem is, φ(t) −
∫ t
0
φ(τ)p(t, τ)dτ = r(t), where p(t, τ) = 2 + 1√

t−τ , r(t) = −2 +

3e−t − 2DawsonF (
√
t), which has the exact solution φ(t) = e−t. The Dawson integral is defined by

DawsonF (t) = e−t
2 ∫ t

0
ey

2

dy, is a special function, defined in many programming languages such as
Mathematica.The exact solution of the problem (2)-(5) is

u(x, t) = 1− 1

2
e−t−ix

(
−i+ e2ix

(
i+ erfi

[
2t− ix

2
√
t

])
+ erfi

[
2t+ ix

2
√
t

])
,

where i is the imaginary unit. In Table 1, column2 shows absolute errors of φ̃ at t = 0.5i, i = 1, 2, 3, 4, 5, 6,
φ is exact solution and φ̃ is evaluated by Legendre wavelets technique with M = 8, k = 3, n0 = 3. Figure
1 shows variations of these solutions as functions of t for Example 1.
In Table 1, columns 3, 4, 5, 6, 7, 8, show absolute errors of ũ at (x, t) = (0.5i, 0.5j), i, j = 1, 2, 3, 4, 5, 6, u

is exact solution and ũ is the approximated solution evaluated numerically by substitution of φ̃, instead
of φ in u representation Eq.(22). Here eij , i, j = 1, 2, 3, 4, 5, 6 is the absolute error of ũ at (0.5i, 0.5j),
and for example 1.84D − 14 means 1.84× 10−14, which shows convergence of the method. Figures 3 and
4 show variations of these solutions as functions of (x, t) for Example 1. As these Figures show, ũ is a
good approximation of u.
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Table 1: Absolute errors of φ̃ and ũ for Example 1.

i |φ− φ̃|i ei1 ei2 ei3 ei4 ei5 ei6
1 1.85D − 14 5.72D − 15 1.67D − 15 5.57D − 14 1.53D − 12 4.02D − 11 1.05D − 9
2 3.15D − 14 3.19D − 15 2.33D − 15 1.40D − 14 4.25D − 13 1.12D − 11 2.93D − 10
3 5.45D − 13 1.15D − 15 1.53D − 15 2.55D − 15 1.16D − 13 3.12D − 12 8.17D − 11
4 1.41D − 11 1.53D − 16 9.58D − 16 7.77D − 16 2.89D − 14 8.70D − 13 2.28D − 11
5 3.69D − 10 2.64D − 16 6.38D − 16 2.35D − 15 5.43D − 15 2.45D − 13 6.35D − 12
6 9.65D − 9 2.49D − 16 1.06D − 15 2.18D − 15 9.02D − 16 6.96D − 14 1.77D − 12

Example 2. In problems (2)-(5), for f(x) = 1, F (t, τ) = 1, α(t) = 1, the integral equation associated with

this problem is, φ(t)−
∫ t
0
φ(τ)p(t, τ)dτ = r(t), where p(t, τ) = 1√

π(t−τ)
+
√
t−τ√
π
, r(t) =

√
t− 1

8

√
πt(4 + t),

which has the exact solution φ(t) =
√
t.The exact solution of the problem (2)-(5) is

u(x, t) = 1 +
1

2
e−

x2

4t

√
tx−

√
π

4

(
2t+ x2

)
erfc

[
x

2
√
t

]
.

In Table 2, column2 shows absolute errors of φ̃ at t = 0.5i, i = 1, 2, 3, 4, 5, 6, φ is exact solution and φ̃ is
evaluated by Legendre wavelets technique with M = 8, k = 3, n0 = 3. Figure 2 shows variation of these
solutions as functions of t for Example 2.
In Table 2, columns 3, 4, 5, 6, 7, 8, show absolute errors of ũ at (x, t) = (0.5i, 0.5j), i, j = 1, 2, 3, 4, 5, 6, u

is exact solution and ũ is the approximated solution evaluated numerically by substitution of φ̃, instead
of φ in u representation Eq.(22). Here eij , i, j = 1, 2, 3, 4, 5, 6 is the absolute error of ũ at (0.5i, 0.5j).
Figures 5 and 6 show variations of these solutions as functions of (x, t) for Example 2. As these Figures
show, ũ is a good approximation of u.

Table 2: Absolute errors of φ̃ and ũ for Example 2.

i |φ− φ̃|i ei1 ei2 ei3 ei4 ei5 ei6
1 1.05D − 8 9.37D − 10 1.54D − 11 7.83D − 6 1.68D − 5 3.80D − 5 8.77D − 5
2 9.72D − 4 4.03D − 11 3.96D − 11 3.86D − 6 8.80D − 6 1.99D − 5 4.58D − 5
3 1.78D − 5 6.91D − 13 1.62D − 10 1.66D − 6 4.50D − 6 1.05D − 5 2.37D − 5
4 4.04D − 5 4.82D − 11 1.35D − 9 6.01D − 7 2.23D − 6 5.05D − 6 1.26D − 5
5 9.34D − 5 3.13D − 10 2.43D − 9 1.84D − 7 1.16D − 6 2.73D − 6 8.51D − 6
6 2.17D − 4 3.51D − 10 3.47D − 9 8.70D − 8 2.86D − 7 1.58D − 6 3.01D − 7
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Figure 1: Variations of φ(t) and φ̃(t) as functions of t for Example 1.

Figure 2: Variations of φ(t) and φ̃(t) as functions of t for Example 2.
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Figure 3: Variation of the ũ(x, t) as a function of (x, t) for Example 1.

Figure 4: Variation of the u(x, t) as a function of (x, t) for Example 1.
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Figure 5: Variation of the ũ(x, t) as a function of (x, t) for Example 2.

Figure 6: Variation of the u(x, t) as a function of (x, t) for Example 2.


