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1. INTRODUCTION

In the theory of approximation Szasz operators play a significant role. Sev-
eral authors have investigated many amusing properties of these operators in
[11, 13, 15, 16]. Jakimovski and Leviatan generalized these operators in [7] using
Appell polynomials. Later Ismail [6] generalized these operators by using Sheffer
polynomials. In order to approximate Lebesgue integrable function Kantorovich
and Durrmeyer type amendment have been explored for the positive linear oper-
ators. For a > 0, p > 0 and z € R} = [0, 00), Péltdnea [10] recognized the two
parameter integral modification of Szasz operators as

Li(fia) =3 suala) [ LSO+ f0, (LD
k=1 0
where i
sun(z) = e (OZE!)
and

«
Oult) = py e (—an)

A connection between orthogonal polynomial and positive linear operators (see
[14]) were introduced by Varma et al. in 2012. They formulated positive linear
operators concerning Brenke polynomials. Later on many adaptation of Szasz
operators have been considered by involving different types of orthogonal poly-
nomials.
A Bézier curve is a parametric curve successively used in computer aided geomet-
ric design, image processing and curve fitting. Zeng and Piriou [19] pioneered the
Bézier variant of Bernstein operators. Subsequently, many researchers established
the Bézier variant of various operators [4, 5, 18].

Recently, In [3] the authors acknowledged the Bézier form of the Jakimovski-
Leviatan-Paltanea operators based on Appell polynomials and conferred some
direct approximation theorem and rate of convergence for the functions having

a derivative of bounded variation. Motivated by this, we study farther in this
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direction and introduce the Bézier variant of Paltanea operators based on Gould
Hopper polynomials. Gould Hopper polynomials have generating function of the
type

0 k

td‘H x

and explicit description as

_k
d+1 (1’ h) [ilj] k! hsl,k—(d+1)s
2 Sk — (d+ 1)s)! ’

where [.] denotes the integer part.

Forn e N, p >0, 8 > 1 and all real valued continuous and bounded function f
on R}, we define Bézier-Piltanea operators based on Gould Hopper polynomials
as

G (fx) = Zx:if;k / O (1 f(dt + XM F(0),  (13)

where
Xﬁji,k( )= ghk( )N’ -1 ghk—i—l( ))?,
p B Zlnh]() when k < n,
nhk‘( )
0 otherwise.
d+1
Cpoeh G (nzh)
lghk( >— € " kT
and

n Y _
@Z,k<t> = F(/{pr) e pt<_n:0t>kp 1'

Some important properties of ¢% h, . (z) are as follows:

(1) Grap(@) = g (@) = 105 5 (2),
(2) ¢ () > €y (@) > (o) > -+ > ¢y () > 0, Vo €RY.

Also, the operators GZ’?L’ , have the integral representation

Gl fia) = [ K w0 (1.4)
where Kff n.p(%;t) is the kernal defined by
K@ ZX:ka (2)64 () + Xk o (@) (2), (1.5)

d(t) is the Dirac-delta function.
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If we take & = 1 then operator (1.3) reduces to operators Gi’}z’p(f, x) =
Gynp(f.7) given by

Zznhk / O (1 f ()t +14,,/(0),  (16)

where

d+1
—na—n Ox (nx,h)
lg h, p(T) =e b Ll

and

np —n _
@Z,k(t) - F(kp) € pt(_npt)kp 1'

The main objective of this paper is to introduce the Bézier variant of linear
positive operators that have been derived from the d-orthogonal polynomials
e.g. Gould Hopper polynomials and study some direct theorem by means of
Ditzian-Totik modulus of smoothness and rate of convergence for function having
a derivative of bounded variation.

2. AUXILIARY RESULT

Lemma 2.1. Let G, be the operators defined by (1.6). Then, we have

(1) Go ([ —x);fv) = Mevd),

(2) G, ((t—2)%2) = (14 p) + LD (p(d + 1)(h +1) + 1),

(3) G, ((t —2)h ) = F(1 + 2+ F) + %(6h2(d +1)2 —4h(d + 1)3 +
14h(d +1)% + 4hd*(d + 1) + 1+ £ (6(h + 1)(d + 1)* + 18h(d + 1) + 6) +
> (14h(d +1) +11) + pig) + 4 (h(d + 1)+ 6h% + Th + 1) + %(d +

1)P(h* + 3h + 1) + L (h + 1)(d + 1) + h(d + 1))

Let C(R{) denote the space of all bounded and continuous functions on Ry
endowed with the norm

If[]' = sup |f(z)|

xeRj

Lemma 2.2. For f € Cg(R]), we have

IG5 a1l < IIFI-
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Remark 2.3. We have

o0

Gt (150) = SN, [ Ol (0i+ X1,
0

Lemma 2.4. Let Gi%p be the operator defined by (1.3), then
(1) Guf (¢ — 2);2) < OMEH),

@) G (¢ - 2y ><e{ (14 p) + 40 (p(d 1 1)(h+1) + 1)

(3) G, ((t—2)ha )<0{3®’ (1+ +%) +%<6h2(d+1)2—4h(d+1)3+
14h(d + 1)* + 4hd?(d + 1) + 1 + (6h(h + 1)(d + 1)* + 18h(d + 1) + 6) +
>(14h(d + 1) + 11) > ( DR + 60 + Th + 1) + S(d +

1P(h* +3h + 1) + L3 (h 4+ 1)(d + 1)* + h(d+1))}

Proof. From equation (1.3), we have

Gh1e) = DX [ Oro+ X0

= ZM@M@W— e / o,

k=1

+([Gno(@)]” = [Grna (@)]) £(0)

Using the well known inequality |a® — b%| < Bla — b| with 0 < a,b < 1, B> 1
and (1), we have

Gﬁ‘;p z) < 9{Zznhk /@ (t)dt + 12,0 (0 )}

In view of Lemma 2.1, we find

Gy ((t—x)) <0G, ((t—x);x)
h(d + 1)

0 ,
n

IN




and

G ((t—x)% )

IN

0G 1,((t = 2)% @)

n,h,p

x h(d+1)
< 03 —(1 —(p(d+1)(h+1 1) .
< o{ e+ M pin+p + 0}
0
Remark 2.5. (1) For C; > 1, p>0, 8 > 1, v € (0,00) and sufficiently large
n
(1 +
G (e —aia) < ™21
(2) For Cy > 1, p>0, 8 > 1, z € (0,00) and sufficiently large n
r(1+ 2
Gr (t—a)h2) < C29< ( o p)> :
Lemma 2.6. Let f € Cp(R{), then
1G5 < I1F1
Proof. In view of equation (1.3) and Remark 2.3, we have
Gl = | SOxi [ ensns X, 0)
k=1 0
< (Zxiao [ et xit, i)
k=1
do (1.
< G, L) =111
which completes the proof. O

3. DIRECT APPROXIMATION

In this section first we recall the definition of well known Ditizian-Totik
modulus of smoothness wy-(f;) and Peetre’s K —functional [2].
Let ¢(z) = y/z and f € Cp(R]). For 0 < 7 < 1, define

T W AT R

wer (f;t) = sup sup
0ShSt 4y 187 (@) gt

and the K —functional

Ko (/1) {Hf g+ tuwg'u}

= inf
geEW-
where
Wy ={g: g€ ACi; [|¢7¢'|| < oo}
AC),. denotes the space of locally absolutely continuous function on Ry and ||.||
is the uniform norm on Cz(Ry). Also,

wer (f5t) ~ Kyr (f51),
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which means that there exists a constant C' > 0 such that
Oy (f58) < Ko (f51) < Congr (f31) (3:2)
Lemma 3.1. For f € W,, ¢(x) = /z, 0 <7 <1 and t,z > 0, we have

[ oo

< 2a k|t —af o7 f].

Proof. Since

du
fu)du) < (|67 f' ; (3.3)
’/ ¢ (u)
applying Holder inequality with p = ; and ¢ = , we get
du / 1
— < —du| [t —zx|7
’/ sl < | =
< Tl\f ValTlt — x|
< QT‘t_'Tl ’t ’ -7
€2
(3.4)
From (3.3) and (3.4), we have
t
[ st < vaile -l
OJ

Theorem 3.2. For f € Cz(Ry), we have

644, (F:0) = (o)) < Cur (£ - ),

where wyr is given by (3.1) and C is a constant independent of n and x.

Proof. Let g € W, using Lemma 2.6, we have
G (Fie) = f@)] < |G (f = o)l + | f (@) — g(2)| +|GyY (g 2) — g(2)]
< 20 f =gl + G (g5 2) — g(2)]-
(3.5)

t
Since g(t) = g(z) + [ ¢'(v)du and Gi%p( x) = 1, we obtain

t
G (gi0) - g(a)] < ]Giip( / g’(u)du) |

T




By Lemma 3.1, we get
G (g:0) = g(x)] < 27275 ]|¢7g |Gl (It — s ). (3.6)

Using Cauchy-Schwarz inequality and Remark 2.5, we have

G (It —alx) < \JGH (L) /GH ((t— 2)2)

C10x(1 + p)
np
(3.7)
Combining (3.5)-(3.7), we get
1-7
G240 = S(@)| < 207 = gl + 7| =2
Taking infimum over all g € W, we have
644, 15) - 1)l < utee (1,2
vn
Using (3.2), we get
1-r
645, () = @) < Cu (1150,
which is the required result. O

Remark 3.3. Taking 7 = 0, we get error estimation in terms of the classical
modulus of continuity. i.e.,

G2 (f0) — ﬂMsa(ﬁ¢®.

Now, we give the following local approximation result for the function be-
longing to two parameter family of Lipschitz-type space:
For a > 0, b > 0 be fixed, consider the Lipschitz-type space([9]):

. ab o +\ . = |y - w’ﬁ
Lips(8) = { 1 € Co®) : 1f(w)-1(@)] < M
(y + ax? + bx)

- andx,y € (0,00)},
2

(3.8)
where M is any positive constant and 0 < § < 1. For a = 0 and b = 1, space
Lipy} (B) coincides with the space Lip3,(3) given by O. Szasz [12].

Theorem 3.4. Let f € Lip%l(8). Then for everyn € N, p > 0, 6 > 1 and
€ (0,00), we have

[Slpey

)

mp((t = 1‘)2;1’))

ax? + bx

oG
WﬂAﬁ@—f@ﬂ§M<

where
x h(d+1)
Gi,h,p(<t_x)2;x) = _(1+p) + ngp

" (p(d+1)(h+1)+1).
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Proof. First of all we prove the theorem for § = 1. Consider f € sz?\/[b(ﬁ) and
x € (0,00), then

G5 (F(t) = f(z);2)]
Goo (Lf(t) = f(a)];2)

e (M it — x| x)
mhp Vi+ax? +bx’

M 4,0
\/ﬁGn’,h,p(\f —xf;x).

G (fr2) — f(z)]

IN A

IA

IN

Applying Cauchy-Schwarz inequality and using the fact GZ:%’ ,(1;2) =1, we have

d,0 M

Clhalfi7) = F@) S e (G (= )2
M 1
< m(ec}g,h,p((t—@2§x))§

)

M (QGZ”“P(@ — o) a:)) 3

ax? + bx

where G, ((t— )% x) is given in Lemma 2.1. Hence the result holds for 5 = 1.

Now assume that 0 < < 1 and f € Lz’p?\}[b(ﬁ), then we have

G20 (fra) = f(@)] < G5 (F(t) = f(2)];2)
_ B
< Gi’ip(M = Mf)
w (t 4+ ax? + bx)z
_ B
” (ax? 4 bx)2
M 62 (o)

(az? + bx)g e

IN

Now applying Holder inequality with p = % and ¢ = ﬁ, we have

M
G (fi2) = fla)] < M(Gf{,h,p(\t — z;2))°

[N]he



Finally, by Cauchy-Schwarz inequality, we get

M d,0 2 8
GaS (fix) = f(2)] € ——— (G2 ((t—2)%2))2
e (az? + bx)g e
M d,0 2 8
< (0G) (= 2)%5x))2
(az? + bx)g e
o (Gt =N E
ar? + bx
which is the desired result. O

Now, we give the rate of convergence of our constructed operators in the
weighted space: Weighted space of function which are defined on semi-axis Ry
and satisfy the inequality | f(z)| < M;(1+4x?), where M} is a constant depending
on f, is denoted by B,2(R7). i.e

B2 (R) = {f | f(z)] < Myp(1+2?), My is a constant connected with f}

Introduce
Cp2(RE) = {f € By(Ry) : fis contz’nuous}.

z—00 | + ]}2

L (RY) = {fe@(R*) 3 tim L@ <oo}.

These spaces are endowed with the norm

1]l = sup 112

:cER + 1+ 2

In general the first and second order modulus of continuity do not tend to zero
with § — 0 on R, so we use the following weighted modulus of continuity [17]:

e [f(x+1) = fz)|
RAE A o M

Theorem 3.5. Let f € C%(R) and QUf;.) be its modulus of continuity. Then
forz e RE, p,d >0, 0 > 1 and sufficiently large n, we have

(3.9)

G (fr0) — fla)] < z<1+x2>9(f;i)(1+clew<1_+p>+ ecl(m

NG

(revm(50)))

where C1,Cy > 1 are constants independent of x and n.

np p

Proof. For t,x € R}, § > 0 and by the definition of weighted modulus of conti-
nuity, we have

10— fol <20+ -t (145 e, )

)g
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Applying G , on the inequality (3.10) and then Cauchy-Schwarz inequality in
the last term we obtain

G (50 — f@lia) < 20+ ) >(Giip<1+<t—x>2;:c>

1 t— t—
G%p( =) x|,x))

< 21+ )OS >(Giip< 2) G ((t— x)ia)
1—1—25—3; )|t — x| x))
< 201+ )OS >(Giip< £)+ G ((t— ) 2)

(Gl (0 = 25 +

<(G4, (¢~ o)) ).

(G2 ((t — )% )2

OqH—‘

N

(3.11)
From remark 2.5, we have
x(1l+
Gyl (=) < Cﬂ(npm (3.12)
(1 + 2
Gl ((t—x)h2) < Cof ((n—pp)) : (3.13)

for some positive constants C; and Cj.

Combining the estimates (3.11)-(3.13) and choosing § = % we get the required

result. 0J
4. QUANTITATIVE VORONOVSKAJA-TYPE THEOREM

In this section, we give Voronovskaja-type theorem for Gi’i’ ,- By using
Ditzian-Totik modulus of smoothness of first order we will prove this theorem:

Theorem 4.1. Let f € Cg(R{) such that f', f" € Cp(RZ). Then there hold
1 : 1
VG i - sl < 171 (co™ ) et 20

Vnp
z(1+ p) ,¢PW@
et s (1570

where C7 > 1 and C3 are constants independent of n and x.

Proof. By Taylor formula, we write
t

F(t) = F(2) + (¢ —2)f () + / (t — ) f"(w)du.

T
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Thus,

operating Gi’i’ ,(-; ) to both side of above relation, we get

1
G (fi2) = F@)] < f @GS (= 2)2) + S @) G, (= 2)% )]

+ Gfl’fi,p</t(t —u)(f"(u) — f”(l‘))duxc)

x

1
[F @G (1t = 2l 2) + S (@)|G (= 2)% 2)

)

IN

1G4

n,h,p (

= - @)

x

(4.2)

Therefore g € W, we have

t

‘/(t—U)(f”(U) = ["(@))du| < [If" = gll(t —2)* + 2707 (@) |67 [t — 2 (4.3)

xT

From (4.2), we have

Lo
Grinp(F32) = @) < PGS (It =l ) + SIIGLS (= 2)% )
HIF" = gl G, (= 2)%52) + 2707 (@) |67 1G5, (1t — =5 2)
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In view of Remark 2.5 and using Cauchy-Schwarz inequality in the first and last
term, we obtain

G (fiz) = F@)] < G (= )%))% + Hf”IHGnhp((t—x)Z;w)\

= gl G (- 2)%2) + 2707 ()07 g I(GL5 (- 2)?;2))
(G2 ((t—a)hx))z

1 (1
< Hf,H(Cl (n——;p)> HfHHC@ (n‘;/))
HIf = gl ™22 ooyl (o™ 22
p p
2\ 2
x(@@(M) )
np
< HfH(Cl (1+p)) Hf"HC@ z(1+ p)
P np

Taking taking the infimum on the right hand side of the above relations over
g€ W., we get

VARG i) - S < 11 p)) - glrest 2

z(1+p) @ (@)
+C 9 N K¢T<f,M NG >

Now using the inequality (3.2), theorem is proved. O

5. RATE OF CONVERGENCE FOR FUNCTIONS OF BOUNDED VARIATION

The rate of convergence for functions having derivative of bounded variation
is a fascinating topic, several researchers have studied in this direction [I, 8. In
this section, we shall obtain the rate of convergence of Gn np(+;-) for functions
having derivative of bounded variation.

Let BV (R{) be the space of functions on R} having derivative of bounded vari-
ation on every finite subinterval of Rj. Now, we consider the space

DBV(RY) ={f:Rf = R: fe BV(R})and |f(z)] < M;(1+2?) for some My > 0}
Let f € DBV (R{) then f can be interpreted as

xT

@)= [ gty + f10),

where g is a function of bounded variation on each finite subinterval of R .

NI
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Lemma 5.1. Let x € R} and KZ:z’p(x,t) be the kernel defined by (1.5). Then
for Cy > 1 and sufficiently large n, we have

(1) & p(x,y) = fopr( t)dt < P L0 <y < g,

n,p np (z—y)2>

2) 1-¢& (z,2 dee Hdt < Gelie) 1 <2< oo

n,h p np (z—z)2>
Proof. Using Lemma 2.2, we get

0

d,0
np(x y) = / Knhp

= /0 (i:y) Koo )t

1 d,0 2
< ) . .
i (ZL‘ N y)g Gn,h,p((t ZE) ,ZL’)

np (x—y)?
Similarly, we can show (2) hence proof is omitted. O

Theorem 5.2. Let f € DBV (RS). Then for every x € (0,00), p >0, 6 > 1
and sufficiently large n, we have

Grhp(fi2) = @) < %If’(x+)+0f’(x_)|(w>

where Cy > 1 is a positive constant and \/ f denotes the total variation of f on
le,d] and f! is defined by

@) — fl(z—) if 0 <t <u,
fit)y=¢ 0 ift =, (5.1)
F@t) = f(x+) if x <t < oo.

Proof. For any f € DBV (R{), from the definition of f.(¢), we can write

PO = GG 407+ 220 + 57 = Fla=) (sanle - 2) + 577 )

+6,0(£10) = () + 7)) (5.2
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where
1 if v =t,
6x<t>_{0 if v #£t.
Now since G hp( x) = 1, we have

G (fiz) - fla) = Giip(f( ) — f(z);x)

From (5.2), we obtain

Gl i) - fa) = [k o [{0enrore+ L
#5(0) = o) (somtu = o)+ 551 )

From the definition of d,(t), it is clear that

[ee) t

[t an( [ (re- 50w+ ren)atn)a=o 6

T

Now, consider

7}(5;2@(:@ t) (/t Wll(f’(:cjt) + 9f’(x—))du) dt‘

1
= [rvensoren | K28 (o)~ 0]
< e 07 o) [ Kl — s
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Applying Cauchy Schwarz inequality and Remark 2.5 for sufficiently large n, we

have
| / i o) / e <x+>+ef'<x—>>du)dt\

(a4) + 0f ()] G2

nhp

np

< — (t —
= 9+1| z)

]' !/ /
T +oreol(

IN

IN

\/g / / Clx(l—i_p) 2
9+—1|f(93+)+9f (if—)|<n—p) -

Similarly, we obtain

o] t

‘/ngsz(x,t)(/%(f’(ﬁ) . ))(sgn(t—x)—i—gT)du)dt'

0 T

0 , 0C (1 + p)\ 2
< prlfen - o) ()
< lren - peo) (B2

(5.6)

Considering (5.3)-(5.6), we obtain the following estimates

G4 (fi2) — f(@)] < ' / K (2 t)( / f;(u)du) dt‘

\/_ / ! Clx(1+p> %
bl + o o)) (A0 )
bl e4) = flam) (DXL

IN

AT (fhiw) + BYS (fu )

\/5 / / 01$(1+p) %
bl o)+ o) (S22

0 np
: Ciz(1+p)\?
bl ) = flam) (B

(5.7)
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where

AR W T Ve
By, (fiiw / (/f )Kzzp( £)dt.

Now, we estimate the terms An%p( s x) and BZZP( ix):

and

Using the definition of fg ,(-,-) given is Lemma 5.1 and applying the definition of
integral by parts, we can write

Ad@

i = [ [ ) Bt
:téﬁwﬁwww

pxtdt‘

Thus,

A (o)l = &

< A I(Mwwwﬁ+/ilﬂ®ﬂA%Ww

B

Since fl(z) =0 and 527,0(:6,15) <1, we get

| inog,eoe = [

v v
< | fo(t) = fol(o)|dt
[

I
VR
N<H
o=
~
QL
~

IN
B
~~
<=
o

z- 2

Now consider f | fr(t)]€5 ,(x,t)dt and using Lemma 5.1, we have
0

x

0

(x —1)2

Clx1+p T |fa(t) — fal)]
(Gt en) (5 0 o,

e [ ()

IN
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Assuming ¢t = x — 7, we have

€T

z——= NG z
J A e N VA
0 1

np .
[vn] z
np k=1 w—%

Therefore,

A% (5 )\<9M[m(\2fé)+%(\7fé)- 6.9

np k=1

([ oo o

using integration by parts and applylng Lemma 5.1 with z = x + \%7 we have

Consider

d,0
|Bn,h,p(f:;

B ()] <

)(1— :L‘t dt‘

)(1— € ( ,t))dt‘

Ciz(1+p , 1
< /w\/f”/”dH@n—p/z \/fﬁmdt

T

S
%(\/f;) C1$1+,0 \/f t—2)2dt,

<
erf T
(5.9)
Put t =2 + 2, we get
,Cr(l+ Ci(1+p) [V
Gr+p) \/ft—:z: )2t = 91—”/ \/ fidu,
et np 0 -
[v/n] 2+
< g SIS g
np k=1 =z
(5.10)
Combining 5.9 and 5.10, we have
o [vn] 245
x Ci(1+p)
B (1 7( V o)+ ofDS N e
x k=1 =z

Now collecting the estimates 5.7, 5.8 and 5.11, we get the required result. O
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