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Abstract. We consider a nonautonomous eco-epidemiological model with
general functions for predation on infected and uninfected preys as well as
general functions associated to the vital dynamics of the susceptible prey and
predator populations. We obtain persistence and extinction results for the
infected prey based on assumptions on auxiliary systems constructed from the
disease-free system. We moreover consider an iterative process that can im-
prove the extinction results. We apply our results to general eco-epidemiological
models that include several examples existent in the literature.

1. Introduction

The description of the dynamics of eco-epidemiological systems is a subject that
have been receiving increasing attention by the researchers interested in mathemat-
ical biology. The inclusion of infected classes in predator-prey models has shown
that eco-epidemiological dynamics can show several differences to the original mod-
els. In particular, the inclusion of a disease in the preys or in the predators have
impact on the population size of the predator-prey community [5, 7].

Additionally, to make models more realistic, it is important, in many situations,
to consider time varying parameters. For instance, it is well known in epidemiology
that incidence rates are seldom subject to periodic seasonal fluctuations. In the
context of eco-epidemiological models, several periodic systems have been studied
in the literature [1, 2, 7, 8, 10]. In [10] a class of general non-autonomous eco-
epidemiological models with disease in the prey, containing the periodic case as a
very particular situation, is considered and threshold conditions for the extinction
and persistence of the infected preys are obtained. Related to the periodic version of
this model, in [12], it is proved the existence of an endemic periodic orbit. In [10, 12],
it is assumed that only infected preys are predated. More recently, based on this
model, [9] proposed a family of models that include predation on uninfected preys
described by a bilinear functional response and obtained threshold conditions for
the extinction and persistence of the disease.

In the previous papers, the functional response of the predator to prey is given by
some particular function. Also the vital dynamics of predator and prey is assumed
to follow some particular law. In this paper we generalize the models in [9, 10]
by considering general functions corresponding to the predation on infected and
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uninfected prey and also to the vital dynamics of uninfected prey and predator
populations. Namely, we consider the following eco-epidemiological model:











S′ = G(t, S)− a(t)f(S, I, P )P − β(t)SI

I ′ = β(t)SI − η(t)g(S, I, P )I − c(t)I

P ′ = h(t, P )P + γ(t)a(t)f(S, I, P )P + θ(t)η(t)g(S, I, P )I

, (1)

where S, I and P correspond, respectively, to the susceptible prey, infected prey
and predator, β(t) is the incidence rate of the disease, η(t) is the predation rate of
infected prey, c(t) is the death rate in the infective class, γ(t) is the rate converting
susceptible prey into predator (biomass transfer), θ(t) is the rate of converting
infected prey into predator, G(t, S) and h(t, P )P represent the vital dynamics of
the susceptible prey and predator populations, respectively, a(t)f(S, I, P ) is the
predation of susceptible prey and η(t)g(S, I, P ) represent the predation of infected
prey. It is assumed that only susceptible preys S are capable of reproducing, i.e,
the infected prey is removed by death (including natural and disease-related death)
or by predation before having the possibility of reproducing.

The objective of this work is to discuss the uniform strong persistence and ex-
tinction of the infectives I in system (1). Recall that the infectives are uniformly
strong persistent in system (1) if there exist 0 < m1 < m2 such that for every so-
lution (S(t), I(t)P (t)) of (1) with positive initial conditions S(t0), I(t0), P (t0) > 0,
we have

m1 < lim inf
t→∞

I(t) 6 lim sup
t→∞

I(t) < m2,

and we say that the infectives I go to extinction in system (1) if

lim
t→+∞

I(t) = 0,

for all solutions of (1) with positive initial conditions. For biological reasons we
will only consider for system (1) solutions with initial conditions in the set (R+

0 )
3.

Our approach is very different to the one in [10] and [9]. In fact, we want to
discuss the extinction and strong persistence of the infectives in system (1), having
as departure point some prescribed behaviour of subsystems related to the dynam-
ics of preys and predators in the absence of disease. We will assume that we have
global asymptotic stability of solutions of these special bi-dimensional subsystems
(see condition S6) in Section 2). Thus, to apply our results to specific situations
in the literature, one must first verify that the underlying referred subsystems sat-
isfy our assumptions or, looking at our results differently, we can construct an
eco-epidemiological model from a previously studied predator-prey model (the un-
infected subsystem) that satisfies our assumptions. We believe that this approach is
interesting since it highlights the relation of the dynamics of the eco-epidemiological
model with the behaviour of the predator-prey model used in its construction.

We note that, similarly to the thresholds obtained in [9], our thresholds for
extinction and uniform strong persistence are not sharp. In spite of this, unlike the
conditions for extinction and strong persistence in [9], that rely on parameters that
can not, in principle, be computed explicitly (note that conditions (22) and (43)
in [9] depend on q1), our thresholds in Theorem 1 and Theorem 2 can be directly
obtained from the parameters and the limit behavior of the predator-(uninfected)
prey subsystem.
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To illustrate this results, in Section 3 some models available in the literature,
satisfying our assumptions, are considered and thresholds conditions for the cor-
responding eco-epidemiological model automatically obtained from our results: in
Section 3.1 we consider the situation where f ≡ 0 in system (1), that is with
no predation on uninfected preys, corresponding to a generalized version of the
situation studied in [10]; in Section 3.2 we obtain a particular form for the thresh-
old conditions in the context of periodic models and particularize our result for a
model constructed from the predator-prey model in [4]; in Section 3.3 we consider
a model with Michaelis-Menten (or Holling-type I) functional response of predator
to infected prey and a Holling-type II functional response of predator to suscepti-
ble prey; finally, in Section 3.4 we consider the eco-epidemiological model obtained
from an uninfected subsystem with ratio-dependent functional response of predator
to prey, a type interaction considered as an attempt to overcome some know bio-
logical paradoxes observed in models with Gause-type interaction and again obtain
the corresponding results for the eco-epidemiological model, based on the discussion
of ratio-dependent predator-prey systems in [6]. For all these examples we present
some simulation that illustrate our conclusions.

In Theorem 3 we provide an iterative process that can be used to improve the
extinction estimates in Therorem 1. In Section 3.5 we provide an example in order
to illustrate this iterative scheme in a simple situation.

2. Eco-epidemiological models with asymptotically stable behavior
in the predator-uninfected prey subspace

We will assume the following hypothesis concerning the parameter functions and
the functions f , g, G and h appearing in our model (1):

S1) The real valued functions a, β, η, c, γ and θ are bounded, nonnegative and
continuous;

S2) The real valued functions f , g, G and H(t, x) = h(t, x)x are locally Lipschitz
and functions f and g are nonnegative and f(0, 0, z) = 0, for every z > 0. For
fixed x, z > 0, functions y 7→ f(x, y, z) and y 7→ g(x, y, z) are nonincreasing;
for fixed y, z > 0, function x 7→ g(x, y, z) is nonincreasing; for fixed x, y > 0,
function z 7→ f(x, y, z) is nonincreasing and function z 7→ g(x, y, z) is nonde-
creasing

Our next assumption relates to the ω-limit of solutions of (1) and is usually
fulfilled by mathematical models in eco-epidemiology.

S3) Each solution of (1) with positive initial condition is bounded and there is a
bounded region R that contains the ω-limit of all solutions of (1) with positive
initial conditions.

Notice in particular that condition S3) implies that there is L > 0 such that

lim sup
t→+∞

(S(t) + I(t) + P (t)) < L,

for all solutions (S(t), I(t), P (t)) of (1) with positive initial conditions.

To proceed, we need to consider two auxiliary equations and one auxiliary sys-
tem. First, we consider the equation

s′ = G(t, s), (2)
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that corresponds to the dynamics of uninfected preys in the absence of infected
preys and predators (the first equation in system (1) with I = 0 and P = 0). We
assume the following properties for the solutions of (2):

S4) Each solution s(t) of (2) with positive initial condition is bounded, bounded
away from zero, and globally attractive on ]0,+∞[, that is |s(t)− v(t)| → 0 as
t→ +∞ for each solution v(t) of (2) with positive initial condition.

The second auxiliary equation we consider is the equation

y′ = h(t, y)y, (3)

that corresponds to the dynamics of predators in the absence of the considered
preys (the third equation in system (1) with I = 0 and S = 0). We need the
following property for the solutions of (3):

S5) Each fixed solution y(t) of (3) with positive initial condition is bounded and
globally attractive on [0,+∞).

Finally, starting from the uninfected subsystem, that is, the system that describes
the behavior of preys and predators in the absence of infected preys (the first and
third equations of system (1) with I = 0), given by

{

x′ = G(t, x) − a(t)f(x, 0, z)z

z′ = h(t, z)z + γ(t)a(t)f(x, 0, z)z
, (4)

we assume that we are able to construct families of auxiliary subsystems:
{

x′ = G1,ε(t, x)− a(t)f(x, 0, 0)ẑε(t)− v(ε)ρ(t)x

z′ = h1,ε(t, z)z + γ(t)a(t)f(x, v(ε)ρu, z)z
(5)

where (x̂ε(t), ẑε(t)) is a solution of
{

x′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + v(ε)ρ(t)g(x, 0, z)
(6)

satisfying the following assumptions.

S6) The following holds for systems (5) and (6):
S6.1) for sufficiently small ε > 0, the functions Gi,ε and hi,ε, i = 1, 2, are

continuous, the functionals ε 7→ Gi,ε and ε 7→ hi,ε, i = 1, 2, are continuous,
G1,0 = G2,0 = G, h1,0 = h2,0 = h,

G1,ε(t, x) 6 G(t, x) 6 G2,ε(t, x)

and

h1,ε(t, x) 6 h(t, x) 6 h2,ε(t, x);

S6.2) the real valued function v : [0,+∞[→ R verifies v(ε) > 0 for ε ∈ ]0,+∞],
v(0) = 0 and is differentiable near ε = 0 with

A < v′(ε) < B,

for some A,B > 0 and sufficiently small ε > 0;
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S6.3) there are constants ρu, ρℓ such that, for all t > 0,

0 < ρℓ 6 ρ(t) 6 ρu;

S6.4) there is a family of nonnegative solutions, {(x∗1,ε(t), z
∗
1,ε(t))} of system (5),

one solution for each ε > 0 sufficiently small, depending on a solution
(x∗2,ε(t), z

∗
2,ε(t)) of system (6), such that each solution in the family is

globally asymptotically stable in a set containing the set (R+)2 and the
function

ε 7→ (x∗1,ε(t), z
∗
1,ε(t)) is continuous;

S6.5) the family of nonnegative solutions {(x∗2,ε(t), z
∗
2,ε(t))} of system (6), one

solution for each ε > 0 sufficiently small, is such that each solution in the
family is globally asymptotically stable in a set containing the set (R+)2

and the function

ε 7→ (x∗2,ε(t), z
∗
2,ε(t)) is continuous.

We write x∗1,0 = x∗1, x
∗
2,0 = x∗2, z

∗
1,0 = z∗1 and z∗2,0 = z∗2 for the components of

the solutions in S6.4) and S6.5) corresponding to ε = 0. For the continuity of
the functionals in S6.1), S6.4) and S6.5) we consider the usual supremum norm,
‖ · ‖0 (notice that, by S3) the solutions are bounded). Note that we only aim
to control two suitable families of perturbations of the uninfected subsystem, so
that condition S6) is sufficiently flexible to adapt to a wide range of uninfected
subsystems associated to the eco-epidemiological models.

We emphasize that our setting includes several of the most common functional
responses for both functions f and g. Writing

f(S, I, P ) =
kSα

h(S, I, P )
and g(S, I, P ) =

kPα

h(S, I, P )

we may consider the following cases:

- Holling-type I: h(S, I, P ) = 1, α = 1
- Holling-type II : h(S, I, P ) = (1 +m(S + I)), α = 1
- Holling-type III: h(S, I, P ) = (1 +m(S + I)), α > 0
- Holling-type IV: h(S, I, P ) = (a+ b(S + I) + c(S + I)2), α = 1
- Beddington-De Angelis: h(S, I, P ) = (a+ b(S + I) + cP ), α = 1
- Crowley-Martin: h(S, I, P ) = (a+ b(S + I) + cP + d(S + I)P ), α = 1,

where k,m, a, b, c, d > 0.

2.1. Main results. In this subsection, we will establish our results on the extinc-
tion and uniform strong persistence of the infective prey in system (1), assuming
conditions S1) to S6). Given a function f we will use throughout the paper the
notations f ℓ = inft>0 f(t), f

u = supt>0 f(t) and, for a ω-periodic function f we

use the notation f̄ = (1/ω)
∫ ω

0 f(s) ds.
We define

Rℓ(λ) = lim inf
t→+∞

∫ t+λ

t

β(s)x∗1(s)− η(s)g(x∗1(s), 0, z
∗
2(s)) − c(s) ds (7)

where we still denote by x∗1(t) and z
∗
2(t) the components of solutions in systems S6.4)

and S6.5), with ε = 0, and

Ru(λ) = lim sup
t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)g(s∗(s), 0, y∗(s))− c(s) ds. (8)
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where s∗(t) and y∗(t) are particular solutions, respectively, of (2) and (3) with
positive initial conditions.

As we will see in the following, using the global attractivity of solutions of (2)
and (3) in ]0,+∞[ and the global attractivity of solutions given at S6.4) and S6.5)
we can easily conclude that (7) is independent of the particular solutions considered
in S6.4) and S6.5). Similarly, it is easy to conclude that (8) is independent of the
particular solutions of (2) and (3) with positive initial conditions considered.

Proposition 1. The numbers (7) and (8) are independent, respectively, of the
particular solutions considered in S6.4) and S6.5) and of the particular solutions
of (2) and (3) with positive initial conditions chosen.

Proof. Let (x∗1(t), z
∗
1(t)), (x

∗
2(t), z

∗
2(t)) and (x̄∗1(t), z̄

∗
1(t)), (x̄

∗
2(t), z̄

∗
2(t)) be two dis-

tinct pairs of nonnegative solutions of (5) and (6) as in S6.4) and S6.5). Let δ > 0.
By S6), for t ≥ Tδ sufficiently large, we have

x∗1(t)− δ 6 x̄∗1(t) 6 x∗1(t) + δ and z∗2(t)− δ 6 z̄∗2(t) 6 z∗2(t) + δ.

Additionally, by S1) and S2) we have, for every t ≥ Tδ,
∣

∣

∣

∣

∫ t+λ

t

β(s)x∗
1(s)− η(s)g(x∗

1(s), 0, z
∗
2(s))− c(s) ds−

∫ t+λ

t

β(s)x̄∗
1(s)− η(s)g(x̄∗

1(s), 0, z̄
∗
2(s))− c(s) ds

∣

∣

∣

∣

6

∫ t+λ

t

β(s) |x∗
1(s)− x̄∗

1(s)|+ η(s) |g(x∗
1(s), 0, z

∗
2(s))− g(x̄∗

1(s), 0, z̄
∗
2(s))| ds

6 λβuδ + 2ληuϕ(δ),

with ϕ(δ) → 0 as δ → 0. We conclude that, for every δ > 0,

lim inf
t→+∞

∫ t+λ

t

β(s)x∗
1(s)− η(s)g(x∗

1(s), 0, z
∗
2(s))− c(s) ds− λβuδ − 2ληuϕ(δ)

6 lim inf
t→+∞

∫ t+λ

t

β(s)x̄∗
1(s)− η(s)g(x̄∗

1(s), 0, z̄
∗
2(s))− c(s) ds

6 lim inf
t→+∞

∫ t+λ

t

β(s)x∗
1(s)− η(s)g(x∗

1(s), 0, z
∗
2(s))− c(s) ds+ λβuδ + 2ληuϕ(δ),

Thus Rℓ(λ) is independent of the chosen solution. Taking, respectively, lim sup, s∗(t)
and y∗(t) instead of lim inf, x∗

1(t) and z∗2(t) and using the same reasoning we can prove
that Ru(λ) is also independent of the particular solutions chosen. The result follows. �

Theorem 1. Assume that conditions S1) to S5) hold. Assume further that either
G(t, S) = Λ(t) − µ(t)S and g(S + I, 0, P ) 6 g(S, I, P ) or g does not depend on
I. If there is λ > 0 such that Ru(λ) < 0, then the infectives in system (1) go to
extinction.

Proof. Assume that there is λ > 0 such that Ru(λ) < 0 and let s∗(t) and y∗(t)
be particular solutions, respectively, of (2) and (3) with positive initial conditions.
Since functions β and η are bounded, there are κ > 0, t0 > 0 and ε0 > 0 such that,
for t > t0 and δ ∈ ]0, ε0], we have

∫ t+λ

t

β(s)(s∗(s) + δ)− η(s)g(s∗(s) + δ, 0, y∗(s)− δ)− c(s) ds 6 −κ < 0. (9)

Let (S(t), I(t), P (t)) be a solution of (1) with positive initial conditions. We will
prove first that

lim inf
t→+∞

I(t) = 0. (10)
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Assume that (10) does not hold. Then, there is ε > 0 such that I(t) > ε for all
sufficiently large t. By the first equation of (1) we have

S′
6 G(t, S)

and thus S(t) 6 s(t), where s(t) is the solution of (2) with s(t0) = S(t0). By
condition S4), given ε ∈ ]0, ε0], we have S(t) 6 s∗(t) + ε, for all sufficiently large t.

By the third equation of (1), we have

P ′
> h(t, P )P

and thus P (t) > y(t), where y(t) is the solution of (3) with y(t0) = P (t0). By
condition S5), given ε ∈ ]0, ε0], we have P (t) > y∗(t)− ε, for all sufficiently large t.

When G(t, S) = Λ(t)− µ(t)S,

(S + I)′ ≤ Λ(t)− µ(t)S − c(t)I ≤ Λ(t)− µ(t)(S + I),

and consequently, for sufficiently large t

S(t) + I(t) ≤ s∗(t) + ε.

Under this assumption on G, by the second equation of (1), since we assumed that
g(S + I, 0, P ) 6 g(S, I, P ), we have

I ′ 6 [β(t)(s∗(t) + ε)− η(t)g(s∗(t) + ε, 0, y∗(t)− ε)− c(t)] I, (11)

for all sufficiently large t. Notice that, for a general G, if g does not depend on I
we have g(S, I, P ) ≥ g(s∗(t) + ε, 0, y∗(t)− ε) and we still obtain inequality (11).

Denoting by ⌊α⌋ the integer part of α and integrating the previous equation, we
get

I(t) 6 I(t0) exp

{
∫ t

t0

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r) − ε)− c(r) dr

}

6 I(t0) e
λ(βu(s∗)u+εβu)

× exp

{

∫ t0+⌊
t−t0

λ
⌋λ

t0

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r)− ε)− c(r) dr

}

6 I(t0) e
−⌊(t−t0)/λ⌋κ eλ(β

u(s∗)u+εβu),

for all sufficiently large t. Since ⌊(t − t0)/λ⌋κ → +∞ as t → +∞, we get a
contradiction to the hypothesis that there is ε > 0 such that I(t) > ε for sufficiently
large t. We conclude that (10) holds.

Let ε > 0. Next we will prove that for sufficiently large t

I(t) 6 ε ehλ, (12)

where

h = sup
t>0

|β(t)(s∗(t) + ε0)− η(t)g(s∗(t) + ε0, 0, y
∗(t)− ε0)− c(t)| .

By (10), there exists t1 > t0 such that I(t1) < ε.
Assume, by contradiction that (12) does not hold. Then, there is t2 > t1 such

that I(t2) > ε ehλ. Since I(t1) < ε, there is t3 ∈ ]t1, t2[ such that I(t3) = ε and
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I(t) > ε, for all t ∈ ]t3, t2[. Integrating we get, by (9),

ε ehλ < I(t2)

6 I(t3) exp

{
∫ t2

t3

β(r)(s∗(r) + ε)− η(r)g(s∗(r) + ε, 0, y∗(r)− ε)− c(r) dr

}

6 ε exp

{

∫ t2

t3+⌊(t2−t3)/λ⌋λ

β(r)(s∗(r) + ε0)− η(r)g(s∗(r) + ε0, 0, y
∗(r) − ε0)− c(r) dr

}

6 ε ehλ,

witch is a contradiction. Thus, we conclude that (12) holds and, since ε ∈ ]0, ε0] is
arbitrary, we conclude that I(t) → 0 as t→ 0, as claimed. �

Theorem 2. Assume that conditions S1) to S3) and S6) hold. If there is λ > 0 such
that Rℓ(λ) > 0, then the infectives in system (1) are uniformly strong persistent.

Proof. Assume that there is λ > 0 such that Rℓ(λ) > 0 and let us fix particu-
lar families of solutions of systems (5) and (6), respectively (x∗1,ε(t), z

∗
1,ε(t)) and

(x∗2,ε(t), z
∗
2,ε(t)), with positive initial conditions and satisfying N6.4) and N6.5).

Then, we can choose t0 > 0, κ > 0 and ε0 > 0 such that, for t > t0 and δ ∈ [0, ε0]
we have

∫ t+λ

t

β(s)(x∗1(s)− δ)− η(s)g(x∗1(s)− δ, δ, z∗2(s) + δ)− c(s) ds > κ > 0. (13)

Let (S(t), I(t), P (t)) be a solution of (1) with positive initial conditions. We will
prove first that there is ε > 0 such that

lim sup
t→+∞

I(t) >
v(ε)ρℓ

(1 + βu)(1 + θuηu)
> 0. (14)

Assume that for all sufficiently small ε > 0

lim sup
t→+∞

I(t) <
v(ε)ρℓ

(1 + βu)(1 + θuηu)
.

Then, we conclude that there is t1 > t0, such that

I(t) <
v(ε)ρℓ

(1 + βu)(1 + θuηu)
< v(ε)ρ(t), (15)

for each t > t1. By the first and third equations of (1) and the inequalities in S6.1)
we have

{

S′ 6 G2,ε(t, S)

P ′ 6 h2,ε(t, P )P + γ(t)a(t)f(S, 0, P )P + v(ε)ρ(t)θ(t)η(t)g(S, 0, P )
.

Let (x̂ε(t), ẑε(t)) be the solution of
{

x′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x, 0, z)z + v(ε)ρ(t)θ(t)η(t)g(x, 0, z)

with x̂ε(t1) = S(t1) and ẑε(t1) = P (t1). We have S(t) 6 x̂ε(t) and P (t) 6 ẑε(t) for
t > t1. By the global stability assumption in N6.5), we have

∣

∣x∗2,ε(t)− x̂ε(t)
∣

∣→ 0 and
∣

∣z∗2,ε(t)− ẑε(t)
∣

∣→ 0, as t→ +∞
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and, by continuity, again according to N6.5), we have for sufficiently large t

|x∗2(t)− x̂ε(t)| 6
∣

∣x∗2(t)− x∗2,ε(t)
∣

∣+
∣

∣x∗2,ε(t)− x̂ε(t)
∣

∣

6 ‖x∗2 − x∗2,ε‖0 +
∣

∣x∗2,ε(t)− x̂ε(t)
∣

∣

6 ϕ1(ε),

and

|z∗2(t)− ẑε(t)| 6
∣

∣z∗2(t)− z∗2,ε(t)
∣

∣+
∣

∣z∗2,ε(t)− ẑε(t)
∣

∣

6 ‖z∗2 − z∗2,ε‖0 +
∣

∣z∗2,ε(t)− ẑε(t)
∣

∣

6 ϕ2(ε),

with ϕ1(ε), ϕ2(ε) → 0 as ε→ 0. In particular, for sufficiently large t,

S(t) 6 ŝε(t) 6 ϕ1(ε) + x∗2(t) and P (t) 6 ẑε(t) 6 ϕ2(ε) + z∗2(t). (16)

On the other hand, by (15) and the first and third equations of (1), we have
{

S′ > G1,ε(t, S)− a(t)f(S, 0, 0)ẑε(t)− v(ε)ρ(t)S

P ′ > h1,ε(t, P )P + γ(t)a(t)f(S, v(ε)ρu, P )P

Letting (x̃ε(t), z̃ε(t)) be the solution of
{

x′ = G1,ε(t, x)− a(t)f(x, 0, 0)ẑε(t)− v(ε)ρ(t)x

z′ = h1,ε(t, z)z + γ(t)a(t)f(x, v(ε)ρu, z)z

with x̃(t1) = S(t1) and z̃(t1) = P (t1), we have S(t) > x̃ε(t) and P (t) > z̃ε(t), for
all t > t1. By the global stability assumption in N6.4), we have

∣

∣x∗1,ε(t)− x̃ε(t)
∣

∣→ 0 and
∣

∣z∗1,ε(t)− z̃ε(t)
∣

∣→ 0, as t→ +∞.

and, by the continuity property in S6.4), for sufficiently large t, we have

|x∗1(t)− x̃ε(t)| 6
∣

∣x∗1(t)− x∗1,ε(t)
∣

∣+
∣

∣x∗1,ε(t)− x̃ε(t)
∣

∣

6 ‖x∗1 − x∗1,ε‖0 +
∣

∣x∗1,ε(t)− x̃ε(t)
∣

∣

6 ψ1(ε),

and

|z∗1(t)− z̃ε(t)| 6
∣

∣z∗1(t)− z∗1,ε(t)
∣

∣+
∣

∣z∗1,ε(t)− z̃ε(t)
∣

∣

6 ‖z∗1 − z∗1,ε‖0 +
∣

∣z∗1,ε(t)− z̃ε(t)
∣

∣

6 ψ2(ε),

with ψ1(ε), ψ2(ε) → 0 as ε→ 0. In particular, for sufficiently large t,

S(t) > x̃ε(t) > x∗1(t)− ψ1(ε) and P (t) > z̃ε(t) > z∗1(t)− ψ2(ε). (17)

By the second equation in (1), (13), (16) and (17) we get, for t > t1,
∫ t+λ

t

β(s)S(s)− η(s)g(S(s), I(s), P (s))− c(s) ds

>

∫ t+λ

t

β(s)(x∗
1(s)− ψ1(ε))− η(s)g(x∗

1(s)− ψ1(ε), v(ε)ρ
u, z∗2(s) + ϕ2(ε))− c(s) ds > κ.
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Thus, choosing ε > 0 such that max{ϕ2(ε), ψ1(ε), v(ε)ρ
u} < ε0, we have

I(t) = I(t1) exp

{
∫ t

t1

β(s)S(s)− η(s)g(S(s), I(s), P (s))− c(s) ds

}

> I(t1) exp

{
∫ t

t1

β(s)(x∗
1(s)− ψ1(ε))ds

}

× exp

{
∫ t

t1

−η(s)g(x∗
1(s)− ψ1(ε), 0, z

∗
2(s) + ϕ2(ε))− c(s) ds

}

> I(t1) e
−λ(βuψ1(ε)+η

ug((x∗
1
)u−ψ1(ε),0,(z

∗

2
)ℓ+ϕ2(ε))+c

u)

× exp

{

∫ t1+⌊(t−t1)/λ⌋λ

t1

β(s)(x∗
1(s)− ψ1(ε))ds

}

× exp

{

∫ t1+⌊(t−t1)/λ⌋λ

t1

−η(s)g(x∗
1(s)− ψ1(ε), 0, z

∗
2(s) + ϕ2(ε))− c(s) ds

}

> I(t1) e
⌊(t−t1)/λ⌋κ e−λ(β

uψ1(ε)+η
ug((x∗

1
)u−ψ1(ε),0,(x

∗

1
)ℓ+ϕ2(ε))+c

u),

a contradiction to the fact that, according to S3), I(t) is bounded. We conclude that (14)
holds.

Next we will prove that there is m1 > 0 such that for any solution (S(t), I(t), P (t))
with positive initial condition,

lim inf
t→+∞

I(t) > m1. (18)

Assume that (18) does not hold. Then, given ε ∈]0, ε0[, there exists a sequence of initial
values (xn)n∈N, with xn = (Sn, In, Pn) and Sn > 0, In > 0 and Pn > 0 such that

lim inf
t→+∞

I(t, xn) <
ρuv(ε/n2)

(1 + θuηu)(1 + βu)
,

where (S(t, xn), I(t, xn), P (t, xn)) denotes the solution of (1) with initial conditions S(0) =
Sn, I(0) = In, and P (0) = Pn. By (14), given n ∈ N, there are two sequences (tn,k)k∈N
and (sn,k)k∈N with

sn,1 < tn,1 < sn,2 < tn,2 < · · · < sn,k < tn,k < · · ·

and lim
k→+∞

sn,k = +∞, such that

I(sn,k, xn) =
ρℓv(ε/n)

(1 + θuηu)(1 + βu)
, I(tn,k, xn) =

ρuv(ε/n2)

(1 + θuηu)(1 + βu)
(19)

and, for all t ∈]sn,k, tn,k[,

ρuv(ε/n2)

(1 + θuηu)(1 + βu)
< I(t, xn) <

ρℓv(ε/n)

(1 + θuηu)(1 + βu)
. (20)

By the second equation in (1) and S3), for sufficiently large t, we have

I ′(t, xn) = [β(t)S(t, xn)− η(t)g(S(t, xn), I(t, xn), P (t, xn))− c(t)] I(t, xn)

> −(ηug(L, 0, 0) + cu)I(t, xn).

Therefore we obtain
∫ tn,k

sn,k

I ′(r, xn)

I(r, xn)
dr > −(ηug(L, 0, 0) + cu)(tn,k − sn,k)

and thus I(tn,k, xn) > I(sn,k, xn) e
−(ηug(L,0,0)+cu)(tn,k−sn,k). By (19), and S6.3) we get

ρuv(ε/n2)

ρℓv(ε/n)
>
ρ(tn,k)v(ε/n

2)

ρ(sn,k)v(ε/n)
> e−(ηug(L,0,0)+cu)(tn,k−sn,k)
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and therefore we have

tn,k − sn,k >
log(ρℓ/ρu) + log(v(ε/n)/v(ε/n2))

ηug(L, 0, 0) + cu
→ +∞ (21)

as n→ +∞, since, by S6.2) we have

lim
n→+∞

v(ε/n)

v(ε/n2)
= lim
n→+∞

n v′(ε/n)

2 v′(ε/n2)
> lim
n→+∞

An

2B
= +∞.

By the first and third equations of (1) and (20), we have, for t ∈ ]sn,k, tn,k[,











S′
6 G2,ε(t, S(t, xn))

P ′
6 h2,ε(t, P (t, xn))P (t, xn) + γ(t)a(t)f(S(t, xn), 0, P (t, xn))P (t, xn)

+ρ(t)v(ε/n)θ(t)η(t)g(S(t,xn), 0, P (t, xn))

.

Letting (x̂n,k(t), ẑn,k(t)) be the solution of

{

x′ = G2,ε(t, x)

z′ = h2,ε(t, z)z + γ(t)a(t)f(x,0, z)z + ρ(t)v(ε/n)θ(t)η(t)g(x,0, z)

with x̂n,k(sn,k) = S(sn,k) and ẑn,k(sn,k) = P (sn,k). We conclude that S(t, xn) 6 x̂n,k(t)
and P (t, xn) 6 ẑn,k(t), for each t ∈ ]sn,k, tn,k[. By N6.5), given δ > 0, we have

∣

∣x∗
2,ε/n(t)− x̂n,k(t)

∣

∣ < δ/2 and
∣

∣z∗2,ε/n(t)− ẑn,k(t)
∣

∣ < δ/2,

for all sufficiently large k (that depends on n). By continuity, for sufficiently large n and
all sufficiently large k > K(n), we have

|x∗
2(t)− x̂n,k(t)| 6

∣

∣x∗
2(t)− x∗

2,ε/n(t)
∣

∣+
∣

∣x∗
2,ε/n(t)− x̂n,k(t)

∣

∣ 6 δ.

and

|z∗2(t)− ẑn,k(t)| 6
∣

∣z∗2(t)− z∗2,ε/n(t)
∣

∣+
∣

∣z∗2,ε/n(t)− ẑn,k(t)
∣

∣ 6 δ.

In particular, for sufficiently large n, all sufficiently large k > K(n) and for t ∈ ]sn,k(n), tn,k(n)[,
we have

S(t) 6 x̂n,k(t) 6 x∗
2(t) + δ and P (t) 6 ẑn,k(t) 6 z∗2(t) + δ. (22)

Similar computations show that, for sufficiently large n, all sufficiently large k > K(n)
and for t ∈ ]sn,k(n), tn,k(n)[, we obtain

S(t) > x̃n,k(t) > x∗
1(t)− δ and P (t) > z̃n,k(t) > z∗1(t)− δ. (23)

Notice that, for a given δ, eventually considering a larger n, we can take the same n and
k in (22) and (23).

Given l > 0, by (21) we can choose T > 0 such that tn,k − sn,k > lλ for all n > T .
Therefore, by (19), (22) and (23), and by the second equation in (1), for n > T and
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k > K(n) we get

ρuv(ε/n2)

(1 + θuηu)(1 + βu)

= I(tn,k, xn)

> I(sn,k, xn) exp

{

∫ tn,k

sn,k

β(r)S(r)− η(r)g(S(r), I(r), P (r))− c(r) dr

}

> I(sn,k, xn)×

× exp

{

κl +

∫ tn,k

sn,k+⌊(tn,k−sn,k)/λ⌋

β(r)(x∗
1(r)− δ)− η(r)g(x∗

1(r)− δ, 0, z∗2(r) + δ)− c(r) dr

}

>
ρℓv(ε/n)

(1 + θuηu)(1 + βu)
eκl−λ(β

uδ+ηu(g((x∗
1
)u−δ,0,(z∗

2
)u+δ)+cu)

>
ρℓv(ε/n)

(1 + θuηu)(1 + βu)
,

for sufficiently large l (that requires that T is sufficiently large). We conclude that

ρuv(ε/n2)

ρℓv(ε/n)
>1

and this contradicts the fact that, by S6.2) and S6.3), we have

lim
n→+∞

ρuv(ε/n2)

ρℓv(ε/n)
= lim
n→+∞

2ρuv′(ε/n2)/n3

ρℓv′(ε/n)/n2
6 lim
n→+∞

2ρuB

nρℓA
= 0.

We conclude that there is m1 > 0 such that lim inf
t→+∞

I(t) > m1 and the result follows

from S2). �

In [9], the authors obtain extinction and persistence results for eco-epidemiological
model with Crowley-Martin functional response. In the extinction result the au-
thors consider auxiliary equations different from (2) and (3) using some upper
bound for S and some lower bound for P related to the dimension of some positive
invariant region that contains the omega limit of all solutions. We will borrow
and improve the idea of that paper in our context. To this purpose, we need
to consider families of auxiliary equations. We begin by noticing that, by the
proof of Theorem 1, for any solution (S(t), I(t), P (t)) of our problem with initial
condition (S(t0), I(t0), P (t0)) = (S0, I0, P0) we have s1,ℓ(t) 6 S(t) 6 s1,u(t) and
y1,ℓ(t) 6 P (t) 6 y1,u(t), for all t > 0 sufficiently large, where s1,ℓ(t) = 0, s1,u(t)
is the solution of (2) with initial condition s1,u(t0) = S0, y

1,ℓ(t) is the solution
of (3) with initial condition y1,ℓ(t0) = P0 and y1,u(t) = L, where L is given in
condition S3). Let k ∈ N be given and assume that sk,u(t), sk,ℓ(t), yk,u(t) and
yk,ℓ(t) are defined. Consider the equations:

s′ = G(t, s)− a(t)f(s, L, yk,u(t))yk,ℓ(t), (24)

and
s′ = G(t, s)− a(t)f(s, 0, yk,ℓ(t))yk,u(t)− β(t)sL, (25)

and set sk+1,u(t) and sk+1,ℓ(t) as particular solutions of (24) and (25) with positive
initial condition, respectively. Consider also the equations

y′ = h(t, y)y + γ(t)a(t)f(sk+1,u(t), 0, y)y + θ(t)η(t)g(0, 0, y)L, (26)

and

y′ = h(t, y)y + γ(t)a(t)f(sk+1,ℓ(t), L, y)y, (27)
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and set yk+1,u and yk+1,ℓ as particular solutions of (26) and (27) with positive
initial condition, respecively.

For each k ∈ N we consider the following conditions:

S4k) For each i = 1, . . . , k, si,u(t) and si,ℓ(t) are bounded, bounded away from zero,
and globally attractive on ]0,+∞[, that is |si,u(t)− v(t)| → 0 as t→ +∞ for
each other solution v(t) of (24) (respectively (25)), with k = i, with positive
initial condition.

S5k) For each i = 1, . . . , k, yi,u(t) and yi,ℓ(t) are bounded and globally attractive
on [0,+∞).

We define the following number:

Ru,k(λ) = lim sup
t→+∞

∫ t+λ

t

β(τ)sk,u − η(τ)g(sk,u, 0, yk,ℓ)− c(τ)dτ. (28)

Notice that Ru,1(λ) = Ru and, according to our assumptions, it is easy to prove,
with similar arguments to the ones in Proposition 1, that for all k ∈ N the number
Ru,k(λ) is independent of the particular solutions considered.

Theorem 3. Assume that conditions S1) to S3), S4k) and S5k) hold for some
k ∈ N. Assume further x → f(x, y, z) in nondecreasing and that either G(t, S) =
Λ(t)− µ(t)S and g(S + I, 0, P ) 6 g(S, I, P ) or g does not depend on I. If there is
λ > 0 such that Ru,k(λ) < 0, then the infectives in system (1) go to extinction.

Proof. The proof consists in repeating the steps in the proof of Theorem 1, with
the changes that we will describe below. Let us consider k ≥ 2 (otherwise the proof
follows from Theorem 1). In the first place, instead of the bounds given by (2) and
(3), we use bounds obtained in the following way: letting yk−1,ℓ(t) and yk−1,u(t)
be the solutions defined above, we know that

S′ 6 G(t, S)− a(t)f(S,L, yk−1,u(t))yk−1,ℓ(t) (29)

and

S′ > G(t, S)− a(t)f(S, 0, yk−1,ℓ(t))yk−1,u(t)− β(t)SL. (30)

Thus, using solutions sk,ℓ(t) and sk,u(t), from the monotonicity properties of f we
obtain

P ′ > h(t, P )P + γ(t)a(t)f(sk,ℓ(t), L, P )P (31)

and

P ′ 6 h(t, P )P + γ(t)a(t)f(sk,u(t), 0, P )P + θ(t)η(t)g(0, 0, P )L.

The bounds in (29) and (31) allow us to conclude that, for sufficiently large t > 0,
we have S(t) 6 sk,u(t) and P (t) > yk,ℓ(t); using the number Ru,k(λ) in (28), similar
arguments to the ones in Theorem 1 allow us to obtain the result. �

We notice that Theorem 3 can be used to obtain a better understanding of the
extinction threshold. For instance if Ru,k < Ru,m, for some m < k, condition
Ru,k < 0 is weaker than Ru,m < 0, so we may improve the threshold for extinction.
See Section 3.5.

3. Examples

In this section we will apply Theorem 1 and Theorem 2 to some particular cases
of model (1). We finish with an example for Theorem 3.



14 LOPO F. DE JESUS, CÉSAR M. SILVA, AND HELDER VILARINHO∗

3.1. Models with no predation on uninfected preys. In this section we will
consider a family of models with no predation on uninfected preys by letting f ≡ 0
and g(S, I, P ) = P . This family generalises the family of models in [10] by allowing
a very general form for the vital dynamics of predators and preys. Thus, we consider
in this subsection the following model:











S′ = G(t, S)− β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = h(t, P )P + θ(t)η(t)PI

.

In this context, (7) and (8) become

Rℓ
np(λ) = lim inf

t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)y∗(s)− c(s) ds

and

Ru
np(λ) = lim sup

t→+∞

∫ t+λ

t

β(s)s∗(s)− η(s)y∗(s)− c(s) ds.

where s∗(t) and y∗(t) are particular solutions, respectively, of (2) and (3).
Under the hypotheses of Theorem 1, we obtain that if there is λ > 0 such that

Ru
np(λ) < 0 then the infectives in system (3.1) go to extinction, and under the

hypotheses of Theorem 2, we conclude that if there is λ > 0 such that Rℓ
np(λ) > 0

then the infectives in system (3.1) are uniform strong persistent.
As we already mentioned, model (3.1) includes the model discussed in [10] as

the particular case where G(t, S) = Λ(t) − µ(t)S and h(t, P ) = b(t) − r(t)P , with
Λ, µ, r and b nonnegative, continuous and bounded functions satisfying:

lim inf
t→+∞

∫ t+ω1

t

Λ(s) ds > 0, lim inf
t→+∞

∫ t+ω2

t

µ(s) ds > 0,

lim inf
t→+∞

∫ t+ω3

t

r(s) ds > 0 and lim inf
t→+∞

∫ t+ω4

t

b(s) ds > 0,

for some constants wi > 0, i = 1, . . . , 4:










S′ = Λ(t)− µ(t)S − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b(t)− r(t)P )P + θ(t)η(t)PI

. (32)

Note that, for the model in (32), condition S1) is assumed, condition S2) is imme-
diate from the particular forms of the functions g and h, conditions S4) and S5)
follow from Lemmas 1 and 3 in [10] and condition S6) is a consequence of the fact
that, in this setting, systems (5) and (6) are uncoupled and small perturbations of
each of the equations in those systems is globally asymptotically stable by Lemmas
1 and 3 in [10]. Finally, condition S3) follows from Theorem 1 in [10]. We also note
that Ru

np(λ) and Rℓ
np(λ) coincide with the corresponding numbers in [10].

Another possible choice for the functions h and G is h(t, P ) = −(δ1(t)+ δ2(t)P ),
with δ1 and δ2 continuous and nonnegative functions and G(t, S) = k(t, S)S with k
a continuous and bounded function satisfying the conditions: ∂k/∂S(t, s) < 0, for
every t, s > 0; k(t, 0) > 0 for all t > 0; there is S1(t) > 0 such that k(t, S1(t)) = 0, for
every t > 0. This choice makes the underlying predator-uninfected prey subsystem
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in model (3.1) correspond to the model studied in section 3 of [3] with the function
f ≡ 0. System (3.1) becomes in this case:











S′ = k(t, S)S − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = −(δ1(t) + δ2(t)P )P + θ(t)η(t)PI

.

Notice that the study of the function k(t, S) in [3] allow us to conclude easily that
conditions S1) to S5) are satisfied for this model. Condition S6) is a consequence
of the fact that systems (5) and (6) are uncoupled and small perturbations of
each of the equations in those systems is globally asymptotically stable (the global
asymptotic stability of the first equation is consequence of Lemma 3.1 in [3] and
the global asymptotic stability of the second equation is trivial).

To do some simulation, in this scenario we assumed that G(t, S) = (0.7−0.6S)S;
β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1; h(t, P ) =
−0.2− 0.3P ; θ(t) = 0.9. We obtain the model:











S′ = (0.7− 0.6S)S − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (−0.2− 0.3P )P + 0.63(1 + 0.7 cos(π + 2πt))PI

,

When β0 = 0.01 we obtain Ru = −0.15 < 0 and we conclude that we have
extinction (figure 1). When β0 = 0.3 we obtain Rℓ = 1.3 > 0 and we conclude that
the infectives are uniform strong persistent (figure 2).

We considered the following initial conditions at t = 0: (S0, I0, P0) = (1, 0.5, 0.1),
(S0, I0, P0) = (0.1, 0.2, 1) and (S0, I0, P0) = (0.5, 0.5, 0.5).
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Figure 1. Extinction: β0 = 0.01.
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Figure 2. Uniform strong persistence: β0 = 0.3.
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3.2. Periodic coefficients. In this subsection we consider a family of models with
periodic parameters and predation on uninfected preys that, in general, is not
included in the general family of models considered in [9]. For periodic models, the
thresholds become easier to deal with.

Assume that there is ω > 0 such that all parameters in (1) are ω-periodic func-
tions. In this case, (7) and (8) become, respectively,

Rℓ(ω) =

∫ ω

0

β(s)x∗1(s)− η(s)g(x∗1(s), 0, z
∗
2(s))− c(s) ds,

and

Ru(ω) =

∫ ω

0

β(s)s∗(s)− η(s)g(s∗(s), 0, y∗(s))− c(s) ds.

Thus

Rℓ(ω) > 0 ⇔
βx∗1

ηg(x∗1, 0, z
∗
2) + c

> 1

and

Ru(ω) < 0 ⇔
βs∗

ηg(s∗, 0, y∗) + c
< 1.

where s∗(t) and y∗(t) are particular solutions, respectively, of (2) and (3), and
x∗1(t) and z

∗
2(t) still denote any particular solution of first and second equations in

systems (5) and (6), respectively, with positive initial conditions. Define

Rℓ
per =

βx∗1

ηg(x∗1, 0, z
∗
2) + c

and Ru
per =

βs∗

ηg(s∗, 0, y∗) + c
.

Under the hypotheses of Theorem 1, we have that if Ru
per < 1 then the infectives in

model (1) with periodic coefficients go to extinction, and under the hypotheses of
Theorem 2, if Rℓ

per > 1 then the infectives in model (1) with periodic coefficients
are uniform strong persistent.

Note that the corollaries in [10], concerning the periodic case, are particular cases
of the corollaries above. In fact, in [10] we have f ≡ 0 and in this case, as argued
in the previous section, (s∗(t), y∗(t)) is a particular solution of (4), condition S1)
is assumed, condition S2) is immediate, conditions S3) to S6) follow from results
in [10]. Thus, when f ≡ 0, we get similar thresholds to the ones in the mentioned
paper:

Rℓ
per = Ru

per =
βs∗

ηy∗ + c
.

This threshold can also be obtained using the procedures in [11, 13].
We will focus now on a particular models with a function G that is different

from the corresponding function in [9]. We consider the following setting: G(t, S) =
(Λ − µS)S; a(t) = a; f(S, I, P ) = S; g(S, I, P ) = P ; h(t, P ) = b − rP ; γ(t) = γ.
We obtain the model:











S′ = (Λ− µS)S − aSP − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b− rP )P + γaSP + θ(t)η(t)PI

, (33)

For this model, condition S1) is assumed, condition S2) is immediate from the
particular forms of the functions g and h, conditions S4) and S5) hold for our
particular functions as already discussed in section 3.1. In this context, an endemic
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equilibrium for (6) is (Λ/µ, ẑε) , with ẑε = (bµ+ aγΛ+ εµ)/µr, and the endemic
equilibrium for (5) exists if Λr > ab+ aγΛ/µ:

(

Λ̂

µ
,
bµ+ aγΛ̂

µr

)

,

with Λ̂ = Λ − aẑε − ε. These subsystems can be discussed using [4]. In fact,
the global asymptotic stability result proved in section 3 of [4] implies that, if
Λr > ab + aγΛ/µ, condition S6) is satisfied. Finally, condition S3) is consequence
of the following lemma:

Lemma 1. There is a bounded region that contains the ω-limit of all orbits of (33).

Proof. Let ε > 0. Since, by the first equation in (33), S′ 6 (Λ−µS)S, we conclude
that

S(t) 6
Λ

µ
+ ε, (34)

for all t sufficiently large. Additionally, we get

sup
S∈R

(Λ− µS)S 6

(

Λ−
µΛ

2µ

)

Λ

2µ
=

Λ2

4µ
. (35)

Adding the first two equations in (33) and using (34) and (35) we have, for all t
sufficiently large,

(S + I)′ = (Λ− µS)S − c(t)I

6
Λ2

4µ
+ c(t)S − c(t)(S + I)

6
Λ2

4µ
+ cu

Λ

µ
+ cuε− cℓ(S + I).

, (36)

Since ε > 0 is arbitrary, we conclude that

lim sup
t→+∞

(S + I)(t) 6
1

cℓ

(

Λ2

4µ
+ cu

Λ

µ

)

=: A.

Finally, by the third equation in (33) and (36), given ε > 0, we get

P ′ = (b − rP )P + γaSP + θ(t)η(t)PI

6 (b + γaA+ θuηuA− rP )P,
(37)

for sufficiently large t. Thus,

lim sup
t→+∞

P (t) 6
1

r
(b+ γaA+ θuηuA) =: B. (38)

Equations (36) and (37) show that the region

{(S, I, P ) ∈ R3 : 0 6 S + I 6 A and 0 6 P 6 B}

contains the ω-limit of any orbit. �
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To do some simulation, in this scenario we assumed that G(t, S) = (0.7−0.6S)S;
a = 0.9; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1;
b = 0.2; r = 0.6; γ = 0.1; θ(t) = 0.9. We obtain the model:











S′ = (0.7− 0.6S)S − 0.9SP − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (0.2− 0.6P )P + 0.09SP + 0.63(1 + 0.7 cos(π + 2πt))PI

.

When β0 = 0.1 we obtain Ru ≈ −0.217 < 0 (Ru
per ≈ 0.35 < 1) and we conclude

that we have extinction (figure 3). When β0 = 0.8 we obtain Rℓ ≈ 0.167 >
0 (Rℓ

per ≈ 1.483 > 1) and we conclude that the infectives are uniform strong
persistent (figure 4).

We considered the following initial conditions at t = 0: (S0, I0, P0) = (1, 0.5, 0.1),
(S0, I0, P0) = (0.1, 0.2, 1) and (S0, I0, P0) = (0.5, 0.5, 0.5).
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Figure 3. Extinction: β0 = 0.1.
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Figure 4. Uniform strong persistence: β0 = 0.8.

3.3. Models with Gause-type uninfected subsystem. Amodel with Michaelis-
Menten (or Holling-type I) functional response of predator to infected prey and a
Holling-type II functional response of predator to susceptible prey is now consid-
ered. We consider the vital dynamics of uninfected prey as

G(t, S) = k(t, S)S,

where k : R × [0,+∞[→ R is continuous, T -periodic (T > 0) in the t-variable,
continuously differentiable in S and satisfying the following conditions:















k(t, S) is bounded from above and k(t, 0) > 0;

for every t there exists S1(t) > 0 such that k(t, S1(t)) = 0;
∂k

∂S
< 0 for every S ≥ 0.

(39)
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This type of vital dynamics was considered in [3] (see condition (k) in §3 in that
reference). We notice that the general assumptions (39) are satisfied by a logistic
growth of the prey population (with S1(t) equal to a constant). We also consider
a(t) = a > 0; f(S, I, P ) = S/(m + S + I), with m > 0; g(S, I, P ) = P ; h(t, P ) =
b− rP , with b, r > 0, γ(t) = γ > 0. Moreover, we assume β(t), η(t), c(t) and θ(t) to
be bounded, nonnegative and continuous real valued functions. Henceforth we are
considering the system











S′ = k(t, S)S − a SP
m+S+I − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b− rP )P + γa SP
m+S+I + θ(t)η(t)PI

, (40)

For model (40), conditions S1) and S2) follow immediate from hypothesis. The
following lemma ensures condition S3).

Lemma 2. There is a bounded region that contains the ω-limit of all orbits of (40).

Proof. By the first equation in (40) we have S′ 6 k(t, S)S. Notice that from (39) we
have k(t, S) > 0 for S < S1(t) and k(t, S) < 0 for S > S1(t). Thus [0,max[0,T ] S1(t)]
is an attractor and so

lim sup
t→+∞

S(t) 6 max
[0,T ]

S1(t) := Su
1 .

Additionally, writing ku = sup(t,S) k(t, S), we have

(S + I)′ ≤ k(t, S)S − c(t)I

≤ kuS − cℓI

≤ (ku + cℓ)(Su
1 + δ)− cℓ(S + I),

for some δ > 0 and all sufficiently large t, which lead us to

(S + I)(t) ≤
(ku + cℓ)(Su

1 + δ)

cℓ
=: C.

Finally, since for sufficiently large t

P ′ ≤ (b− rP + γa+ θuηuC)P,

we have

lim sup
t→+∞

P (t) ≤
1

r
(b+ γa+ θuηuC) =: D.

Thus the region

{(S, I, P ) ∈ R3 : 0 6 S + I 6 C and 0 6 P 6 D}

contains the ω-limit of any orbit. �

Notice that by [3, Lemma 3.1], equations s′ = k(t, s)s and y′ = (b − ry)y, with
positive initial condition, have a unique T -periodic solution which is bounded and
globally asymptotically stable, hence globally attractive, on ]0,+∞[. This ensures
conditions S4) and S5). For condition S6) we consider G1,ε(t, x) = G2,ε(t, x) =
k(t, x)x, h1,ε(t, z) = h2,ε(t, z) = (r−bz)z, v(ε) = ε and ρ(t) = 1. Clearly, conditions
S6.1) to S6.3) hold. The auxiliary subsystem (6) becomes

{

x′ = k(t, x)x

z′ = (b − rz)z + γa xz
m+x + εz.

(41)
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By [3, Lemma 3.1] there exists a T -periodic globally asymptotic stable solution
x∗2,ε(t) of the first equation of (41). Considering this solution in the second equation
we get

z′ =

(

b+ γa
x∗2,ε(t)

m+ x∗2,ε(t)
+ ε− rz

)

z,

which, again from [3, Lemma 3.1], has a T -periodic globally asymptotic stable
solution z∗2,ε(t). Using this solutions (x∗2,ε(t), z2,ε(t)

∗), and writing

k̃(t, x) = k(t, x)−
az∗2,ε(t)

m+ x
− ε

the auxiliary subsystem (5) becomes
{

x′ = k̃(t, x)x

z′ = (b − rz)z + γa xz
m+x+ε .

(42)

It is straightforward to verify that k̃(t, S) is bounded from above. Moreover, if

k(t, 0)−
az∗2,ε(t)

m
− ε > 0 (43)

for all sufficiently small ε > 0, then k̃(t, 0) > 0. Notice that we may find a bound
for z∗2,ε(t) independent of ε. Moreover, if

sup
(t,x)

{

∂k

∂x
(t, x) +

az∗2,ε(t)

(m+ x)2

}

< 0 (44)

we have
∂k̃

∂x
(t, x) =

∂k

∂x
(t, x) +

az∗2,ε(t)

(m+ x)2
≤ ζ < 0.

If (43) and (44) hold we have ∂k̃
∂x(t, x) ≤ ζ < 0 and k̃(t, 0) > 0. Since limx→+∞ k̃(t, x) =

−∞ we conclude that for all t there exists X1(t) such that k̃(t,X1(t)) = 0. Notice
that having simultaneously (43) and (44) can be achieved, for instance, if a is small
enough. Therefore, if (43) and (44) hold and ε > 0 is sufficiently small we are
in conditions to apply [3, Lemma 3.1] to conclude that the first equation in (42)
has a T -periodic solution x∗1,ε(t) which is globally asymptotically stable. Using this
solution in the second equation gives

z′ = (b− rz)z + γa
x∗1,ε(t)

m+ x∗1,ε(t) + ε
z =

(

b + γa
x∗1,ε(t)

m+ x∗1,ε(t) + ε
− rz

)

z,

which, proceeding as before, has a T -periodic solution z∗1,ε(t) that is globally asymp-
totically.

We have showed that conditions S6.4) and S6.5) also hold, so we may apply The-
orem 1 and Theorem 2 to conclude that if Ru < 1 then the infectives in model (40)
go to extinction, and if Rℓ > 1 then the infectives are uniform strong persistent.

Let us point out that in the particular case k(t, x) = Λ− µx, for some constants
Λ, µ > 0, we have the following globally asymptotically stable solution for (41)

{

x∗2,ε = Λ/µ

z∗2,ε =
(

b+ γa 1
mµ+1 + ε

)

/r
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and in this situation conditions (43) and (44) holds if

a

mr

(

b+
γa

mµ+ 1

)

< min{Λ,mµ}

and ε is sufficiently small.

To do some simulation, in this scenario we assumed that G(t, S) = (0.7−0.6S)S;
a = 0.9; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1;
b = 0.2; r = 0.6; m = 2; γ = 0.8; θ(t) = 0.9. We obtain the model:











S′ = (0.7− 0.6S)S − 0.9 SP
2+S+I − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (0.2− 0.6P )P + 0.9 SP
2+S+I + 0.6(1 + 0.7 cos(π + 2πt))PI

.

When β0 = 0.1 we obtainRu ≈ −0.217 < 0 and we conclude that we have extinction
(figure 5). When β0 = 0.9 we obtain Rℓ ≈ 0.757 > 0 and we conclude that the
infectives are uniform strong persistent (figure 6).

We considered the following initial conditions at t = 0: (S0, I0, P0) = (1, 0.5, 0.1),
(S0, I0, P0) = (0.1, 0.2, 1) and (S0, I0, P0) = (0.5, 0.5, 0.5).
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Figure 5. Extinction: β0 = 0.1.
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Figure 6. Uniform strong persistence: β0 = 0.9.

3.4. Models with ratio-dependent uninfected subsystem. The functional
response of predator to prey in the uninfected subsystem in the next example is
ratio-dependent. Ratio-dependent functional responses were considered to over-
come some paradoxes identified in Gause-type systems (see [6] and the references
therein).

We consider now the vital dynamics of uninfected prey as

G(t, S) = Λ− µS,
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for constants Λ, µ > 0, and a(t) = a > 0, f(S, I, P ) = S/(Pm+S+ I), with m > 0,
g(S, I, P ) = P ; h(t, P ) = b − rP , with b, r > 0, γ(t) = γ > 0, and β(t), η(t), c(t)
and θ(t) to be bounded, nonnegative and continuous real valued functions. With
this assumptions system (1) becomes











S′ = Λ− µS − a SP
mP+S+I − β(t)SI

I ′ = β(t)SI − η(t)PI − c(t)I

P ′ = (b − rP )P + γa SP
mP+S+I + θ(t)η(t)PI

. (45)

For model (45), conditions S1) and S2) follow immediate from hypothesis and the
particular forms of the functions g and h. Condition S3) is an immediate corollary
of the following.

Lemma 3. There is a bounded region that contains the ω-limit of all orbits of (40).

Proof. By the first equation in (45) we have S′ 6 Λ− µS which implies

lim sup
t→+∞

S(t) 6
Λ

µ
.

We have

(S + I)′ ≤ Λ− µS − c(t)I

≤ Λ−min{µ, cℓ}(S + I)

which implies

(S + I)(t) ≤
Λ

min{µ, cℓ}
+ δ =: C.

for some δ > 0 and all sufficiently large t. Finally, since for large t,

P ′ ≤ (b− rP + γa+ θuηuC)P

we have

lim sup
t→+∞

P (t) ≤
1

r
(b+ γa+ θuηuC) =: D.

Thus the region

{(S, I, P ) ∈ R3 : 0 6 S + I 6 C and 0 6 P 6 D}

contains the ω-limit of any orbit. �

Similarly to the previous example, each solution of s′ = Λ − µs and of y′ =
(b− ry)y, with positive initial condition is bounded, bounded away from zero, and
globally asymptotic stable (hence globally attractive) on ]0,+∞[, which ensures
conditions S4) and S5).

For condition S6) we consider now G1,ε(t, x) = G2,ε(t, x) = Λ − µx, h1,ε(t, z) =
h2,ε(t, z) = (r − bz)z, v(ε) = ε and ρ(t) = 1. As before, conditions S6.1) to S6.3)
are straightforward. The auxiliary subsystem (6) becomes

{

x′ = Λ− µx

z′ = (b− rz)z + γa xz
mz+x + εz.

(46)

The first equation of (46) has solution x∗2,ε(t) = Λ/µ. Considering this solution in
the second equation we get

z′ =

(

b+ γa
Λ/µ

mz + Λ/µ
+ ε− rz

)

z,
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which has solution

z∗2,ε(t)
∗ =

A+
√

A2 + 4ΛrmµB

2rmµ
:= z2,ε,

where

A = −Λr + bmµ+ εmµ and B = b+ ε+ aγ.

Proceeding as in previous example, from [3, Lemma 3.1] we conclude that (x∗2,ε(t), z
∗
2,ε(t))

is a globally asymptotically stable solution on {(x, y) ∈ R2 : x, y > 0}. Using this
solution (x∗2,ε(t), z

∗
2,ε(t)), the auxiliary subsystem (5) becomes

{

x′ = Λ− µx− az∗2,ε − εx

z′ = (b − rz)z + γa xz
zm+x+ε .

The first equation can be written as

x′ = Λ− az∗2,ε − (µ+ ε)x,

which, if

Λ > az∗2,ε (47)

it has solution

x∗1,ε(t) =
Λ− az∗2,ε
µ+ ε

=: x∗1,ε.

Using this solution in the second equation gives

z′ =

(

b+ γa
x∗1,ε

zm+ x∗1,ε + ε
− rz

)

z,

which in turn has solution

z∗1,ε(t) =
Ã+

√

Ã+ 4mrB̃

2mr

where Ã = bm− εr − rx∗1,ε and B̃ = bε+ bx∗1,ε + aγx∗1,ε.

z∗1,ε(t) =
Ã+

√

Ã+ 4rmB̃

2rm
,

where Ã = mb−rx∗1,ε and B̃ = (b+γa)x∗1,ε. Once more, proceeding as in the previ-
ous example, one can check that by [3, Lemma 3.1] we conclude that (x∗1,ε(t), z

∗
1,ε(t))

is a globally asymptotically stable solution on {(x, y) ∈ R2 : x, y > 0}.
We have showed that if (47) holds, which happens, for instance, for sufficiently

small a, then conditions S6.4) and S6.5) also hold, and we may apply Theorem 1
and Theorem 2 to conclude that if Ru < 1 then the infectives in model (45) go to
extinction, and if Rℓ > 1 then the infectives are uniform strong persistent.

To do some simulation, in this scenario we assumed that G(t, S) = 3 − 0.6S;
a = 0.9; β(t) = β0(1 + 0.7 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1;
b = 0.2; r = 0.6; m = 2; γ = 0.8; θ(t) = 0.9. We obtain the model:











S′ = 3− 0.6S − 0.9 SP
2P+S+I − β0(1 + 0.7 cos(2πt))SI

I ′ = β0(1 + 0.7 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I

P ′ = (0.8− 0.6P )P + 0.9 SP
2P+S+I + 0.6(1 + 0.7 cos(π + 2πt))PI

.
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When β0 = 0.01 we obtain Ru ≈ −0.283 < 0 and we conclude that we have
extinction (figure 7). When β0 = 0.3 we obtain Rℓ ≈ 0.073 > 0 and we conclude
that the infectives are uniform strong persistent (figure 8).

We considered the following initial conditions at t = 0: (S0, I0, P0) = (1, 0.5, 0.1),
(S0, I0, P0) = (0.1, 0.2, 1) and (S0, I0, P0) = (0.5, 0.5, 0.5).
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Figure 7. Extinction: β0 = 0.01.

0 5 10 15 20 25 30

t

0

0.5

1

1.5

2

2.5

3

3.5

4

S

0 5 10 15 20 25 30

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I

0 5 10 15 20 25 30

t

0

0.5

1

1.5

2

2.5

P

Figure 8. Uniform strong persistence: β0 = 0.3.

3.5. Iterative scheme for models with Holling-type I functional response.

In this subsection we consider a simple example in order to illustrate the procedure
in Section 2 which makes use of Theorem 3. This procedure can be extended
for more complex models and can constitute a procedure in order to improve a
threeshold for extinction.

We will consider G(t, S) = (Λ − µS)S; a(t) = a; β(t) = β; η(t) = η; θ(t) = θ;
c(t) = c; f(S, I, P ) = S; g(S, I, P ) = P ; h(t, P ) = b − rP ; γ(t) = γ. We obtain the
model:











S′ = (Λ− µS)S − aSP − βSI

I ′ = βSI − ηPI − cI

P ′ = (b− rP )P + γaSP + θηPI

, (48)

As discussed in section 3.1 conditions S1)-S2) hold for system (48). By Theorem 1,
if

Ru = Ru,0 = β
Λ

µ
− η

b

r
− c < 0

the infectives in (48) go to extinction.
Set now s1,ℓ(t) = 0 and consider the solution s1,u(t) = Λ/µ of equation (2).

Recall B from (38) given by

B =
1

r
(b+ γaA+ θηA) ,
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where A = Λ2

4µc +
Λ
µ . Set y

1,u(t) = B and consider the solution y1,ℓ(t) = b/r of equa-

tion (3). We define recursively the corresponding equations (24)-(26), respectively,
by setting for k ∈ N

(sk+1,u)′ = (Λ− ayk,ℓ − µsk+1,u)sk+1,u

(sk+1,ℓ)′ = (Λ− ayk,u − βb − µsk+1,ℓ)sk+1,ℓ

(yk+1,u)′ = (b+ γask+1,u + θηB − ryk+1,u)yk+1,u

(yk+1,ℓ)′ = (b+ γask+1,ℓ − ryk+1,ℓ)yk+1,ℓ,

and consider the corresponding particular solutions

sk+1,u = (Λ − ayk,ℓ)/µ

sk+1,ℓ = (Λ − ayk,u − βB)/µ

yk+1,u = (b + γask+1,u + θηB)/r

yk+1,ℓ = (b + γask+1,ℓ)/r.

It is easy to check that conditions S4k) and S5k) hold. We conclude that the
infectives go to extinction if

Ru,k(λ) = βsk,u − ηyk,ℓ − c < 0. (49)

Condition (49) can be used to improve a threshold for extinction.
In order to undertake some simulation we fix µ = 0.6; a = 0.8; c = 0.1; b = 0.2;

r = 0.9; γ = 0.1 and θ = 0.9. In the first situation we also fix η = 0.5 and analyse
the persistence and extinction threshold in therms of variables Λ and β.
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Figure 9. Persistence and extinction thresholds with respect to
parameters β and Λ.

We can see the region of parameters corresponding to persistence above the
line {(Λ, β) : Rℓ = 0}. If, for each k = 1, 2, 3 we set the region for extinction
Ek = {(Λ, β) : Λ ∈ [0, 1]∧Rk,u < 0}}, which can be easily seen in the picture as the
region below the corresponding line, one can see that E2 does not contain E1 but
we can improve the known region of extinction E1 by considering E1 ∪E2 instead.
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In general there is no guarantee that there is a real improvement in each iteration
as we can see by the region E3 which is contained in E1 ∪E2, and thus not adding
new information on the set of parameters leading to extinction.

We fix now Λ = 0.6 and analyse the persistence and extinction as a function of
parameters β and η.
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Figure 10. Persistence and extinction thresholds with respect to
parameters β and η.

Set now the regions for extinction Fk = {(η, β) : Λ ∈ [0, 0.3] ∧ Rk,u < 0}},
k = 1, 2, 3. In this example we have an improvement in each of the first iterations,
in the sense that F1 ( F2 ( F2 ∪ F3.

This example intends to illustrate the potential of this approach and en raises
several interesting questions.
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