References
1. Braman, S.S., The global
burden of asthma. Chest, 2006. 130 (1 Suppl): p. 4S-12S.
2. Chung, K.F., et al.,International ERS/ATS guidelines on definition, evaluation and
treatment of severe asthma. Eur Respir J, 2014. 43 (2): p.
343-73.
3. Wenzel, S.E., Asthma
phenotypes: the evolution from clinical to molecular approaches. Nat
Med, 2012. 18 (5): p. 716-25.
4. Fahy, J.V., Type 2
inflammation in asthma–present in most, absent in many. Nat Rev
Immunol, 2015. 15 (1): p. 57-65.
5. Woodruff, P.G., et al.,T-helper type 2-driven inflammation defines major subphenotypes of
asthma. Am J Respir Crit Care Med, 2009. 180 (5): p. 388-95.
6. Busse, W.W., S. Banks-Schlegel, and
S.E. Wenzel, Pathophysiology of severe asthma. J Allergy Clin
Immunol, 2000. 106 (6): p. 1033-42.
7. Kostikas, K., E. Zervas, and M.
Gaga, Airway and systemic eosinophilia in asthma: does site
matter? Eur Respir J, 2014. 44 (1): p. 14-6.
8. Cosmi, L., et al., CRTH2 is
the most reliable marker for the detection of circulating human type 2
Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol,
2000. 30 (10): p. 2972-9.
9. Wambre, E., et al., A
phenotypically and functionally distinct human TH2 cell subpopulation is
associated with allergic disorders. Sci Transl Med, 2017.9 (401).
10. Nagata, K., et al., CRTH2,
an orphan receptor of T-helper-2-cells, is expressed on basophils and
eosinophils and responds to mast cell-derived factor(s). FEBS Lett,
1999. 459 (2): p. 195-9.
11. Mjösberg, J. and H. Spits,Type 2 innate lymphoid cells-new members of the ”type 2 franchise”
that mediate allergic airway inflammation. Eur J Immunol, 2012.42 (5): p. 1093-6.
12. Tsuda, H., et al., A novel
surface molecule of Th2- and Tc2-type cells, CRTH2 expression on human
peripheral and decidual CD4+ and CD8+ T cells during the early stage of
pregnancy. Clin Exp Immunol, 2001. 123 (1): p. 105-11.
13. Hirai, H., et al.,Prostaglandin D2 selectively induces chemotaxis in T helper type 2
cells, eosinophils, and basophils via seven-transmembrane receptor
CRTH2. J Exp Med, 2001. 193 (2): p. 255-61.
14. Murata, T. and T. Maehara,Discovery of anti-inflammatory role of prostaglandin D. J Vet Med
Sci, 2016. 78 (11): p. 1643-1647.
15. Wenzel, S.E., et al.,Spectrum of prostanoid release after bronchoalveolar allergen
challenge in atopic asthmatics and in control groups. An alteration in
the ratio of bronchoconstrictive to bronchoprotective mediators. Am Rev
Respir Dis, 1989. 139 (2): p. 450-7.
16. Xue, L., et al.,Prostaglandin D2 causes preferential induction of proinflammatory
Th2 cytokine production through an action on chemoattractant
receptor-like molecule expressed on Th2 cells. J Immunol, 2005.175 (10): p. 6531-6.
17. Xue, L., A. Barrow, and R.
Pettipher, Novel function of CRTH2 in preventing apoptosis of
human Th2 cells through activation of the phosphatidylinositol 3-kinase
pathway. J Immunol, 2009. 182 (12): p. 7580-6.
18. Satoh, T., et al.,Prostaglandin D2 plays an essential role in chronic allergic
inflammation of the skin via CRTH2 receptor. J Immunol, 2006.177 (4): p. 2621-9.
19. Nomiya, R., et al., CRTH2
plays an essential role in the pathophysiology of Cry j 1-induced
pollinosis in mice. J Immunol, 2008. 180 (8): p. 5680-8.
20. Lukacs, N.W., et al., CRTH2
antagonism significantly ameliorates airway hyperreactivity and
downregulates inflammation-induced genes in a mouse model of airway
inflammation. Am J Physiol Lung Cell Mol Physiol, 2008.295 (5): p. L767-79.
21. Huang, T., et al.,Depletion of major pathogenic cells in asthma by targeting CRTh2.JCI Insight, 2016. 1 (7): p. e86689.
22. Messi, M., et al., Memory
and flexibility of cytokine gene expression as separable properties of
human T(H)1 and T(H)2 lymphocytes. Nat Immunol, 2003. 4 (1): p.
78-86.
23. Bredo, G., et al.,Interleukin-25 initiates Th2 differentiation of human CD4(+) T
cells and influences expression of its own receptor. Immun Inflamm Dis,
2015. 3 (4): p. 455-68.
24. Mojtabavi, N., et al.,Long-lived Th2 memory in experimental allergic asthma. J Immunol,
2002. 169 (9): p. 4788-96.
25. Fajt, M.L., et al.,Prostaglandin D₂ pathway upregulation: relation to asthma
severity, control, and TH2 inflammation. J Allergy Clin Immunol, 2013.131 (6): p. 1504-12.
26. Palikhe, N.S., et al.,Elevated levels of circulating CD4(+) CRTh2(+) T cells
characterize severe asthma. Clin Exp Allergy, 2016. 46 (6): p.
825-36.
27. The ENFUMOSA
cross-sectional European multicentre study of the clinical phenotype of
chronic severe asthma. European Network for Understanding Mechanisms of
Severe Asthma. Eur Respir J, 2003. 22 (3): p. 470-7.
28. Schatz, M., et al., Asthma
exacerbation rates in adults are unchanged over a 5-year period despite
high-intensity therapy. J Allergy Clin Immunol Pract, 2014.2 (5): p. 570-4.e1.
29. Hill, J., et al., Factors
associated with relapse in adult patients discharged from the emergency
department following acute asthma: a systematic review. BMJ Open Respir
Res, 2017. 4 (1): p. e000169.
30. Semik-Orzech, A., S. Skoczyński,
and W. Pierzchała, Serum estradiol concentration,
estradiol-to-progesterone ratio and sputum IL-5 and IL-8 concentrations
are increased in luteal phase of the menstrual cycle in perimenstrual
asthma patients. Eur Ann Allergy Clin Immunol, 2017. 49 (4): p.
161-170.
31. Phiel, K.L., et al.,Differential estrogen receptor gene expression in human peripheral
blood mononuclear cell populations. Immunol Lett, 2005. 97 (1):
p. 107-13.
32. Cai, Y., J. Zhou, and D.C. Webb,Estrogen stimulates Th2 cytokine production and regulates the
compartmentalisation of eosinophils during allergen challenge in a mouse
model of asthma. Int Arch Allergy Immunol, 2012. 158 (3): p.
252-60.
33. Lambert, K.C., et al.,Estrogen receptor alpha (ERalpha) deficiency in macrophages
results in increased stimulation of CD4+ T cells while 17beta-estradiol
acts through ERalpha to increase IL-4 and GATA-3 expression in CD4+ T
cells independent of antigen presentation. J Immunol, 2005.175 (9): p. 5716-23.
34. Shrestha Palikhe, N., et al.,Th2 cell markers in peripheral blood increase during an acute
asthma exacerbation. Allergy, 2021. 76 (1): p. 281-290.
35. MacLean Scott, E., et al.,Activation of Th2 cells downregulates CRTh2 through an NFAT1
mediated mechanism. PLoS One, 2018. 13 (7): p. e0199156.
36. Johnson, M., Development of
fluticasone propionate and comparison with other inhaled
corticosteroids. J Allergy Clin Immunol, 1998. 101 (4 Pt 2): p.
S434-9.
37. Melis, M., et al.,Fluticasone induces apoptosis in peripheral T-lymphocytes: a
comparison between asthmatic and normal subjects. Eur Respir J, 2002.19 (2): p. 257-66.
38. Zhang, X., E. Moilanen, and H.
Kankaanranta, Enhancement of human eosinophil apoptosis by
fluticasone propionate, budesonide, and beclomethasone. Eur J
Pharmacol, 2000. 406 (3): p. 325-32.
39. Lewis-Wambi, J.S. and V.C.
Jordan, Estrogen regulation of apoptosis: how can one hormone
stimulate and inhibit? Breast Cancer Res, 2009. 11 (3): p. 206.
40. Grott, M., et al.,Progesterone and estrogen prevent cisplatin-induced apoptosis of
lung cancer cells. Anticancer Res, 2013. 33 (3): p. 791-800.
41. Huber, S.A., J. Kupperman, and
M.K. Newell, Estradiol prevents and testosterone promotes
Fas-dependent apoptosis in CD4+ Th2 cells by altering Bcl 2 expression.Lupus, 1999. 8 (5): p. 384-7.
42. Liu, X., et al., Induction
of apoptotic program in cell-free extracts: requirement for dATP and
cytochrome c. Cell, 1996. 86 (1): p. 147-57.
43. Cheng, E.H., et al., BCL-2,
BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and
BAK-mediated mitochondrial apoptosis. Mol Cell, 2001. 8 (3): p.
705-11.
44. Ploner, C., et al., The
BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic
leukemia. Leukemia, 2008. 22 (2): p. 370-7.
45. Gemou-Engesaeth, V., et al.,Inhaled glucocorticoid therapy of childhood asthma is associated
with reduced peripheral blood T cell activation and ’Th2-type’ cytokine
mRNA expression. Pediatrics, 1997. 99 (5): p. 695-703.
46. Jee, Y.K., et al.,Repression of interleukin-5 transcription by the glucocorticoid
receptor targets GATA3 signaling and involves histone deacetylase
recruitment. J Biol Chem, 2005. 280 (24): p. 23243-50.
47. Zein, J.G. and S.C. Erzurum,Asthma is Different in Women. Curr Allergy Asthma Rep, 2015.15 (6): p. 28.
48. Salem, M.L., Estrogen, a
double-edged sword: modulation of TH1- and TH2-mediated inflammations by
differential regulation of TH1/TH2 cytokine production. Curr Drug
Targets Inflamm Allergy, 2004. 3 (1): p. 97-104.
49. Schatz, M. and C.A. Camargo,The relationship of sex to asthma prevalence, health care
utilization, and medications in a large managed care organization. Ann
Allergy Asthma Immunol, 2003. 91 (6): p. 553-8.
50. Aw, M., et al., Effect of
sex on group 2 innate lymphoid cells in the airways of mild and severe
asthmatics. Allergy, 2019. 74 (7): p. 1397-1400.
51. Oehling, A.G., et al.,Suppression of the immune system by oral glucocorticoid therapy in
bronchial asthma. Allergy, 1997. 52 (2): p. 144-54.
52. Cephus, J.Y., et al.,Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated
Airway Inflammation. Cell Rep, 2017. 21 (9): p. 2487-2499.
53. Hunninghake, G.M. and D.R. Gold,Sexual dimorphism: Is it relevant to steroid resistance or asthma
control? J Allergy Clin Immunol, 2009. 124 (4): p. 688-90.
54. Cvoro, A., et al., Cross
talk between glucocorticoid and estrogen receptors occurs at a subset of
proinflammatory genes. J Immunol, 2011. 186 (7): p. 4354-60.
55. West, D.C., et al., GR and
ER Coactivation Alters the Expression of Differentiation Genes and
Associates with Improved ER+ Breast Cancer Outcome. Mol Cancer Res,
2016. 14 (8): p. 707-19.
56. Miranda, T.B., et al.,Reprogramming the chromatin landscape: interplay of the estrogen
and glucocorticoid receptors at the genomic level. Cancer Res, 2013.73 (16): p. 5130-9.
57. Xue, L., et al.,Prostaglandin D2 activates group 2 innate lymphoid cells through
chemoattractant receptor-homologous molecule expressed on TH2 cells. J
Allergy Clin Immunol, 2014. 133 (4): p. 1184-94.
58. Lewis, R.A., et al.,Prostaglandin D2 generation after activation of rat and human mast
cells with anti-IgE. J Immunol, 1982. 129 (4): p. 1627-31.
59. Obata, T., et al.,IgE-anti-IgE-induced prostaglandin D2 release from cultured human
mast cells. Biochem Biophys Res Commun, 1996. 225 (3): p.
1015-20.
60. Wiley, R.E., et al.,Transient corticosteroid treatment permanently amplifies the Th2
response in a murine model of asthma. J Immunol, 2004. 172 (8):
p. 4995-5005.
61. Southam, D.S., et al.,Goblet cell rebound and airway dysfunction with corticosteroid
withdrawal in a mouse model of asthma. Am J Respir Crit Care Med, 2008.178 (11): p. 1115-22.
62. Klein, S.L. and K.L. Flanagan,Sex differences in immune responses. Nat Rev Immunol, 2016.16 (10): p. 626-38.
63. Shah, R. and D.C. Newcomb,Sex Bias in Asthma Prevalence and Pathogenesis. Front Immunol,
2018. 9 : p. 2997.
64. Laffont, S., et al.,Androgen signaling negatively controls group 2 innate lymphoid
cells. J Exp Med, 2017. 214 (6): p. 1581-1592.
65. Fuseini, H., et al.,Testosterone Decreases House Dust Mite-Induced Type 2 and
IL-17A-Mediated Airway Inflammation. J Immunol, 2018. 201 (7):
p. 1843-1854.
66. Keselman, A. and N. Heller,Estrogen Signaling Modulates Allergic Inflammation and Contributes
to Sex Differences in Asthma. Front Immunol, 2015. 6 : p. 568.
67. Sorge, R.E., et al.,Different immune cells mediate mechanical pain hypersensitivity in
male and female mice. Nat Neurosci, 2015. 18 (8): p. 1081-3.
68. Cephus, J.Y., et al.,Estrogen receptor-alpha signaling increases allergen-induced IL-33
release and airway inflammation. Allergy, 2021. 76 (1): p.
255-268.
69. Zein, J.G., et al.,Benefits of Airway Androgen Receptor Expression in Human Asthma.Am J Respir Crit Care Med, 2021.
70. Zein, J., et al., HSD3B1
genotype identifies glucocorticoid responsiveness in severe asthma.Proc Natl Acad Sci U S A, 2020. 117 (4): p. 2187-2193.