References
1. Braman, S.S., The global burden of asthma. Chest, 2006. 130 (1 Suppl): p. 4S-12S.
2. Chung, K.F., et al.,International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J, 2014. 43 (2): p. 343-73.
3. Wenzel, S.E., Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med, 2012. 18 (5): p. 716-25.
4. Fahy, J.V., Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol, 2015. 15 (1): p. 57-65.
5. Woodruff, P.G., et al.,T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med, 2009. 180 (5): p. 388-95.
6. Busse, W.W., S. Banks-Schlegel, and S.E. Wenzel, Pathophysiology of severe asthma. J Allergy Clin Immunol, 2000. 106 (6): p. 1033-42.
7. Kostikas, K., E. Zervas, and M. Gaga, Airway and systemic eosinophilia in asthma: does site matter? Eur Respir J, 2014. 44 (1): p. 14-6.
8. Cosmi, L., et al., CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol, 2000. 30 (10): p. 2972-9.
9. Wambre, E., et al., A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med, 2017.9 (401).
10. Nagata, K., et al., CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett, 1999. 459 (2): p. 195-9.
11. Mjösberg, J. and H. Spits,Type 2 innate lymphoid cells-new members of the ”type 2 franchise” that mediate allergic airway inflammation. Eur J Immunol, 2012.42 (5): p. 1093-6.
12. Tsuda, H., et al., A novel surface molecule of Th2- and Tc2-type cells, CRTH2 expression on human peripheral and decidual CD4+ and CD8+ T cells during the early stage of pregnancy. Clin Exp Immunol, 2001. 123 (1): p. 105-11.
13. Hirai, H., et al.,Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med, 2001. 193 (2): p. 255-61.
14. Murata, T. and T. Maehara,Discovery of anti-inflammatory role of prostaglandin D. J Vet Med Sci, 2016. 78 (11): p. 1643-1647.
15. Wenzel, S.E., et al.,Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control groups. An alteration in the ratio of bronchoconstrictive to bronchoprotective mediators. Am Rev Respir Dis, 1989. 139 (2): p. 450-7.
16. Xue, L., et al.,Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J Immunol, 2005.175 (10): p. 6531-6.
17. Xue, L., A. Barrow, and R. Pettipher, Novel function of CRTH2 in preventing apoptosis of human Th2 cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol, 2009. 182 (12): p. 7580-6.
18. Satoh, T., et al.,Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol, 2006.177 (4): p. 2621-9.
19. Nomiya, R., et al., CRTH2 plays an essential role in the pathophysiology of Cry j 1-induced pollinosis in mice. J Immunol, 2008. 180 (8): p. 5680-8.
20. Lukacs, N.W., et al., CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am J Physiol Lung Cell Mol Physiol, 2008.295 (5): p. L767-79.
21. Huang, T., et al.,Depletion of major pathogenic cells in asthma by targeting CRTh2.JCI Insight, 2016. 1 (7): p. e86689.
22. Messi, M., et al., Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol, 2003. 4 (1): p. 78-86.
23. Bredo, G., et al.,Interleukin-25 initiates Th2 differentiation of human CD4(+) T cells and influences expression of its own receptor. Immun Inflamm Dis, 2015. 3 (4): p. 455-68.
24. Mojtabavi, N., et al.,Long-lived Th2 memory in experimental allergic asthma. J Immunol, 2002. 169 (9): p. 4788-96.
25. Fajt, M.L., et al.,Prostaglandin D₂ pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol, 2013.131 (6): p. 1504-12.
26. Palikhe, N.S., et al.,Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Exp Allergy, 2016. 46 (6): p. 825-36.
27. The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur Respir J, 2003. 22 (3): p. 470-7.
28. Schatz, M., et al., Asthma exacerbation rates in adults are unchanged over a 5-year period despite high-intensity therapy. J Allergy Clin Immunol Pract, 2014.2 (5): p. 570-4.e1.
29. Hill, J., et al., Factors associated with relapse in adult patients discharged from the emergency department following acute asthma: a systematic review. BMJ Open Respir Res, 2017. 4 (1): p. e000169.
30. Semik-Orzech, A., S. Skoczyński, and W. Pierzchała, Serum estradiol concentration, estradiol-to-progesterone ratio and sputum IL-5 and IL-8 concentrations are increased in luteal phase of the menstrual cycle in perimenstrual asthma patients. Eur Ann Allergy Clin Immunol, 2017. 49 (4): p. 161-170.
31. Phiel, K.L., et al.,Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol Lett, 2005. 97 (1): p. 107-13.
32. Cai, Y., J. Zhou, and D.C. Webb,Estrogen stimulates Th2 cytokine production and regulates the compartmentalisation of eosinophils during allergen challenge in a mouse model of asthma. Int Arch Allergy Immunol, 2012. 158 (3): p. 252-60.
33. Lambert, K.C., et al.,Estrogen receptor alpha (ERalpha) deficiency in macrophages results in increased stimulation of CD4+ T cells while 17beta-estradiol acts through ERalpha to increase IL-4 and GATA-3 expression in CD4+ T cells independent of antigen presentation. J Immunol, 2005.175 (9): p. 5716-23.
34. Shrestha Palikhe, N., et al.,Th2 cell markers in peripheral blood increase during an acute asthma exacerbation. Allergy, 2021. 76 (1): p. 281-290.
35. MacLean Scott, E., et al.,Activation of Th2 cells downregulates CRTh2 through an NFAT1 mediated mechanism. PLoS One, 2018. 13 (7): p. e0199156.
36. Johnson, M., Development of fluticasone propionate and comparison with other inhaled corticosteroids. J Allergy Clin Immunol, 1998. 101 (4 Pt 2): p. S434-9.
37. Melis, M., et al.,Fluticasone induces apoptosis in peripheral T-lymphocytes: a comparison between asthmatic and normal subjects. Eur Respir J, 2002.19 (2): p. 257-66.
38. Zhang, X., E. Moilanen, and H. Kankaanranta, Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur J Pharmacol, 2000. 406 (3): p. 325-32.
39. Lewis-Wambi, J.S. and V.C. Jordan, Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res, 2009. 11 (3): p. 206.
40. Grott, M., et al.,Progesterone and estrogen prevent cisplatin-induced apoptosis of lung cancer cells. Anticancer Res, 2013. 33 (3): p. 791-800.
41. Huber, S.A., J. Kupperman, and M.K. Newell, Estradiol prevents and testosterone promotes Fas-dependent apoptosis in CD4+ Th2 cells by altering Bcl 2 expression.Lupus, 1999. 8 (5): p. 384-7.
42. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86 (1): p. 147-57.
43. Cheng, E.H., et al., BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell, 2001. 8 (3): p. 705-11.
44. Ploner, C., et al., The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia, 2008. 22 (2): p. 370-7.
45. Gemou-Engesaeth, V., et al.,Inhaled glucocorticoid therapy of childhood asthma is associated with reduced peripheral blood T cell activation and ’Th2-type’ cytokine mRNA expression. Pediatrics, 1997. 99 (5): p. 695-703.
46. Jee, Y.K., et al.,Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment. J Biol Chem, 2005. 280 (24): p. 23243-50.
47. Zein, J.G. and S.C. Erzurum,Asthma is Different in Women. Curr Allergy Asthma Rep, 2015.15 (6): p. 28.
48. Salem, M.L., Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy, 2004. 3 (1): p. 97-104.
49. Schatz, M. and C.A. Camargo,The relationship of sex to asthma prevalence, health care utilization, and medications in a large managed care organization. Ann Allergy Asthma Immunol, 2003. 91 (6): p. 553-8.
50. Aw, M., et al., Effect of sex on group 2 innate lymphoid cells in the airways of mild and severe asthmatics. Allergy, 2019. 74 (7): p. 1397-1400.
51. Oehling, A.G., et al.,Suppression of the immune system by oral glucocorticoid therapy in bronchial asthma. Allergy, 1997. 52 (2): p. 144-54.
52. Cephus, J.Y., et al.,Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation. Cell Rep, 2017. 21 (9): p. 2487-2499.
53. Hunninghake, G.M. and D.R. Gold,Sexual dimorphism: Is it relevant to steroid resistance or asthma control? J Allergy Clin Immunol, 2009. 124 (4): p. 688-90.
54. Cvoro, A., et al., Cross talk between glucocorticoid and estrogen receptors occurs at a subset of proinflammatory genes. J Immunol, 2011. 186 (7): p. 4354-60.
55. West, D.C., et al., GR and ER Coactivation Alters the Expression of Differentiation Genes and Associates with Improved ER+ Breast Cancer Outcome. Mol Cancer Res, 2016. 14 (8): p. 707-19.
56. Miranda, T.B., et al.,Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer Res, 2013.73 (16): p. 5130-9.
57. Xue, L., et al.,Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol, 2014. 133 (4): p. 1184-94.
58. Lewis, R.A., et al.,Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J Immunol, 1982. 129 (4): p. 1627-31.
59. Obata, T., et al.,IgE-anti-IgE-induced prostaglandin D2 release from cultured human mast cells. Biochem Biophys Res Commun, 1996. 225 (3): p. 1015-20.
60. Wiley, R.E., et al.,Transient corticosteroid treatment permanently amplifies the Th2 response in a murine model of asthma. J Immunol, 2004. 172 (8): p. 4995-5005.
61. Southam, D.S., et al.,Goblet cell rebound and airway dysfunction with corticosteroid withdrawal in a mouse model of asthma. Am J Respir Crit Care Med, 2008.178 (11): p. 1115-22.
62. Klein, S.L. and K.L. Flanagan,Sex differences in immune responses. Nat Rev Immunol, 2016.16 (10): p. 626-38.
63. Shah, R. and D.C. Newcomb,Sex Bias in Asthma Prevalence and Pathogenesis. Front Immunol, 2018. 9 : p. 2997.
64. Laffont, S., et al.,Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med, 2017. 214 (6): p. 1581-1592.
65. Fuseini, H., et al.,Testosterone Decreases House Dust Mite-Induced Type 2 and IL-17A-Mediated Airway Inflammation. J Immunol, 2018. 201 (7): p. 1843-1854.
66. Keselman, A. and N. Heller,Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma. Front Immunol, 2015. 6 : p. 568.
67. Sorge, R.E., et al.,Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci, 2015. 18 (8): p. 1081-3.
68. Cephus, J.Y., et al.,Estrogen receptor-alpha signaling increases allergen-induced IL-33 release and airway inflammation. Allergy, 2021. 76 (1): p. 255-268.
69. Zein, J.G., et al.,Benefits of Airway Androgen Receptor Expression in Human Asthma.Am J Respir Crit Care Med, 2021.
70. Zein, J., et al., HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma.Proc Natl Acad Sci U S A, 2020. 117 (4): p. 2187-2193.