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ABSTRACT. In this research paper, we investigate generalized fractional integrals to obtain mid-
point type inequalities for the co-ordinated convex functions. First of all, we establish an identity
for twice partially differentiable mappings. By utilizing this equality, some midpoint type inequal-
ities via generalized fractional integrals are proved. We also show that the main results reduce
some midpoint inequalities given in earlier works for Riemann integrals and Riemann-Liouville
fractional integrals. Finally, some new inequalities for k-Riemann-Liouville fractional integrals
are presented as special cases of our results.

1. INTRODUCTION

The inequalities, introduced by C. Hermite and J. Hadamard for convex functions, are significant
issue in the literature. These inequalities state that if f : I — R is a convex function on the interval
I of real numbers and a,b € I with a < b, then the following double inequality

(1.1) f <a+b> < /bf(x)dx <@+

2 b—a 2

is valid. If f is concave, then both inequalities in (1.1) hold to the reverse direction. With the hep
of the convex functions, Dragomir and Agarwal [12] first obtained an upper bound for

b
f@+i®) 1
- [

which is the right-hand side of inequality (1.1). In addition to this, Kirmaci [20] first obtained

upper bound for
b
1 a+b
= [t -1 (552),

which is the left-hand side of inequality (1.1). These inequalities are called by trapezoid type
inequality and midpoint type inequality, respectively. Many researchers have been studied ex-
tensively the trapezoid inequalities and midpoint inequalities for various types of convex func-
tions [3, 21, 28, 33, 35,45]. In 2013, Sarikaya et al. first proved Hermite-Hadamard inequalities
for Riemann-Liouville fractional integrals and the authors also gave some corresponding trapezoid
type inequalities [39]. With the help of the results of Sarikaya et al., some fractional midpoint type
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inequalities for convex functions were established in [17]. Thereupon, many researchers obtained
fractional midpoint inequalities and trapezoid inequalities using different kind of fractional inte-
grals and different kind of convex classes [1,2,4,5,8,11,27,29,32,36,37,46]. On the other hand,
Dragomir first proved Hermite-Hadamard inequalities for co-ordinated convex mappings in [13].
The midpoint and trapezoid type inequalities for co-ordinated convex functions were established in
the papers [23] and [38], respectively. Furthermore, the Hermite-Hadamard inequalities for func-
tions with two variables by utilizing Riemann-Liouville fractional integrals were obtained in [40].
Although Sarikaya gave the corresponding fractional trapezoid inequalities for co-ordinated convex
functions in [40], Tung et al. presented fractional midpoint type inequalities for co-ordinated convex
functions in [43]. In the literature, there are great number of papers about to Hermite-Hadamard
inequalities for several type co-ordinated convex functions. Because of these reasons, the reader
is referred to [9,10,19,22,24, 30,31, 42] and the references therein for additional information and
unexplained subjects about these topics.

The generalized fractional integrals, which will be used frequently throughout this paper, were
introduced by Sarikaya and Ertugral in [41]. In the same paper, the authors also established
Hermite-Hadamard inequalities and introduced several trapezoids and midpoints type inequalities
for this kind fractional integrals. In addition to this, Turkay et al. defined the generalized fractional
integrals for functions with two variables in [44]. These authors presented Hermite-Hadamard and
trapezoid type inequalities for this kind of fractional integrals.

The purpose of this paper is to establish some generalized midpoint type inequalities for co-
ordinated convex functions involving generalized fractional integrals. The general structure of our
article contains four parts, including the introduction. The rest of the paper continues as follows: In
Section 2, the definitions of generalized fractional integrals are given. Moreover, relations between
generalized fractional integrals and other type fractional integrals are introduced. In Section 3,
we first prove an equality involving for twice partially differentiable functions. Then, we establish
several generalized midpoint type inequalities whose partially derivatives in absolute value are co-
ordinated convex. We show that our main results are reduced to inequalities from earlier studies by
looking at their particular case. Furthermore, some new midpoint type inequalities for k-Riemann-
Liouville fractional integrals are given. Finally, some results and further aspects of research are
discussed in the last section.

2. GENERALIZED FRACTIONAL INTEGRALS

In this section, we will give the necessary definition of generalized fractional integrals introduced
by Sarikaya and Ertugral in [41]. Moreover, the relation between generalized fractional integrals
and other type integrals are considered.

Definition 1. Let f : [a,b] — R denote a integrable function. The left-sided and right-sided
generalized fractional integral operators are given by

(2.1 wlef@ = [ D i, w >
and

b
(2.2 Lot = [ S D ar, <o,

respectively. Here, the function ¢ : [0,00) — [0,00) satisfying the condition



GENERALIZED FRACTIONAL MIDPOINT TYPE INEQUALITIES 3

1
/ L(t)dt<oo.
0 t

Remark 1. With the help of the given Definition 1, the following cases are provided:

(1) If we choose ¢ (t) =t, the operators (2.1) and (2.2) reduce to the Riemann integral.

(2) Let us consider ¢ (t) = % and « > 0. Then, the operators (2.1) and (2.2) reduce to
the Riemann-Liouville fractional integrals J& f(x) and Ji* f(x), respectively. Here, I' is
Gamma function.

(3) Let us define ¢ (1) = 75 ( )tk and a, k > 0. Then, the operators (2.1) and (2.2) reduce to
the k-Riemann-Liowville fractional integrals J:‘Jﬁkf( z) and Ji* . f(x), respectively. Here,
Iy is k-Gamma function.

There are several papers on inequalities for generalized fractional integrals in the literature.
In [41], Sarikaya and Ertugral also proved Hermite-Hadamard inequalities for generalized fractional
integrals. In addition, Budak et al. proved midpoint type inequalities and extensions of Hermite-
Hadamard inequalities in the papers [6] and [7], respectively. In [14], Ertugral and Sarikaya pre-
sented some Simpson type inequalities for these fractional integral operators. For some of other
papers on inequalities for generalized fractional integrals, please refer to [15,16,18,25,26,34,47].

Generalized double fractional integrals are given by Turkay et al. in [44], as follows:

Definition 2. Let f : Q := [a,b] X [c d] — R be a integrable function. The generalized double

fractional integrals o4 c+ Iy, at,d— b—et+do s b—a—Lp . are defined by
— t —
(23) bt Lo f (2,1) / / 2ol yy_ D (k) dsdt.x > a,y >
— t —_
(2.4) at,d—Topf (x,y) / / xx—t — y)f(t7s)dsdt,x>a7y<d,
t — —
(2.5) b—etdouw f (T, y) / / t—xx v y_ss)f(t,s)dsdt,x<b7y>c,
and
P tet—2) Y (s —y)
(2.6) v—d—Lpu f (2, y) = / / f(t,s)dsdt,z < by < d.
e Jy t—7 s—y

Here, the function ¢ : [O o0) = [0,00) and the function ¢ : [0,00) — [0,00) satisfy the conditions
fol E0) dt < oo and f ¥0) s < oo, respectively.

S

Remark 2. By using the Definition 2, the following conditions are ensured:

(1) If we take ¢ (t) =t and ¢ (s) = s, then the operators (2.3), (2.4), (2.5), and (2.6) reduce
to the double Riemann integral.

(2) Let us consider ¢ (t) = %;), P(s) = % for a,8 > 0. Then, the operators (2.3),
(2.4), (2.5), and (2.6) reduce to the Riemann-Liouville fractional integrals J;ch-& (x,y),
Jgjr’gd fz,y), Jf‘;’gc+f (z,y), and J;f;?d7 (x,y), respectively.
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o

8
(3) Let us note that ¢ (t) = #k(a) and (s) = ﬁk(ﬁ) fora, B,k > 0. Then, the opergtkors (2.3),
(2.4), (2.5), and (2.6) reduce to the k-Riemann-Liowville fractional integrals J5 325 f (x,y),
a k a k o, B,k .
afd f(zy), J ?H_f (z,y), and Jb_{ad_f (z,y), respectively.
3. GENERALIZED MIDPOINT TYPE INEQUALITIES FOR CO-ORDINATED CONVEX FUNCTIONS

To make the presentation easier and compact to understand, we make some symbolic represen-

tation:

11=/§/%A1<t>A2<s>
I, =— //Al A2()§:8f

.

2

/Al YAz (s

u:/é / Ar (£) As (s)

=/0;/05A1<t>A2<

/Oé/;Al(t)Ag(s)
1/05A1<t>A2<

18:/;/;A1(t)A2(

[ [ none 2t
Iwz/%/lm(tmg(s)

111—//A1 )Aa (s

Ilzfé/éAl(t)Ag(s)g;‘];
113=—/j/0éA1<t>A2<s>
114=/0;/;A1<tm2<
115—/;/0éA1<t>A2<s>

o f
0tos

(ta+ (1 —t)b, sc+ (1 — s)d) dsdt,

(ta+ (1 —t)b,sc+ (1 — s)d) dsdt,

8t; (ta+ (1 —1)b, sc+ (1 — s)d) dsdt,
6'158]; (ta+ (1= t)b, sc + (1 — s)d) dsdt,
gif (th+ (1 — t)a, sd + (1 — s)c) dsdt,
;;J; (tb+ (1 —t)a,sd+ (1 — s)c) dsdt,
8taf (tb+ (1 —t)a, sd + (1 — s)c) dsdt,
§2<9f (tb+ (1 —t)a,sd + (1 — s)c) dsdt,

(ta+ (1 —t)b,sd + (1 — s)c) dsdt,

o2 f

5105 (ta+ (1 —t)b, sd + (1 — s)c) dsdt,
3 8f (ta+ (1 —t)b, sd + (1 — s)c) dsdt,

(ta+ (1 —t)b,sd + (1 — s)c) dsdt,

0% f
OtOs
0% f
3 0s
0% f
Otos

(tb+ (1 —t)a,sc+ (1 — s)d) dsdt,

(tb+ (1 —t)a,sc+ (1 — s)d) dsdt,

(tb+ (1 —t)a,sc+ (1 — s)d) dsdt,



GENERALIZED FRACTIONAL MIDPOINT TYPE INEQUALITIES 5

11 2
Iig = 7/1 /1 Aq (t) As () o/ (tb+ (1 — t)a,sc+ (1 — s)d) dsdt,

Otds
where
{ A (t) = fot w((b;a)u) du,
Ao(s) = [y LU=l gy,
and

{ Aq(t) = ﬂl «’((b;a)U)du7

f w(( c")du

In order to prove our main results, we need the following Lemma.

Lemma 1. Let f : Q — R be a partial differentiable mapping on 0 and let aataf € L(QY). Then,
the following equality holds:

a+b c+d 1 c+d c+d
o 1555l [ (55 55

1 at+b a+b
BTGy [C*I’”f ( 2 ’d> ta-Tuf ( 2 ﬂ

1
+m lat.ct Lo f(b,d) tar.a— Lo f(b,c) to e+ Loy fla,d) +o—a- Iy fla,c)]

16

B (b—a)(d—rc)
- I Am =

Proof. With the help of the integration by parts, we obtain

32 L = /Oi/OEAl(t)Ag( 8t8f (ta+ (1= Db, sc+ (1 — s)d) dsd

1

2

B 1 of
/O A (t){A2 (5) 9% (ta+ (1~ )b, sc -+ (1 - 5)d)

0

_C_ / ¥ ((d—c) f(ta+(1_t)bsc+(1—s)d)ds}dt

- / Ay (ta+(1—t)b,cgd)dt

c—d/w = /A1 0 (1t (1= )b, se+ (1~ 9)d) duds
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Ay (2) [Ay (3

2(3) | M) (ath exd) / (1=, ) at
c—d | a—=b 2 2 a—2>b 2
1 /%w((d—c)s) M), atb (g

c—d J, s a—b 2 7

_aib/oitp((b—a)t)af m‘i‘(l—t)hsc-&-(l—s)d)dt] B
- s (@) (5) ()

—4 (;) /()égp((b;a)t)f(t +(1— )b, J2“d>dt

—A <;)/0§w((ds—c)s)f(a—2|—b’80+(1_s)d>d8

Prrp(b-a)) e ((d-o)s) B _
+/0/0 ; . fta+ (1 —=1t)b,sc+ (1 s)d)dsdt}.

Similarly, by using integration by parts it follows that

o sk OO
( (1 —1¢)b, ;d>dt

[ et
/ v < c+(1—s)d)ds

34) I, = (b_al 5 {A1<;>A2

A (;) O w((d;C)S)f <a+b,sc+(1 s)d> ds
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A, (;) /; Mf <m+ (1 t)b,”2d> dt
A, (;) 11 w((ds_c)s)f (“;b,sw (1- s)d) ds

L rlo(b—a)t)y v ((d—c)s)
+/; /ﬁ t T fta+ (L -t)bsc+ (1~ s)d) dsdt] ,

smaaa M)~ () (505

iwf <tb+(1t)a,c+d> dt

/1
/ w«ds—c)s)f(wb
®

2

B ,Sd-i-(l—s)c)ds
b o(0—a)t)w((d—0)s)
+/0 /0 3 f(tb—f—(l—t)a,sd—i—(l—s)c)dsdt},

vmaa—s M (3) > () (5 5)
1

+ [\

QU
N——

U

Py

3 ,Sd-i-(l—s)c) ds
Lrip(-a)t)¢(d—o)s)
+/% /0 5 f{tb+(1—t)a,sd+ (1—s)c) dsdt] ,

b= <b—a>1<d—c> {Al @)A(Df(;b;d)

(1) [ O (- 5
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“A, (;) /;w((dsc)s)f<a;rb,sd+(1s)c) ds

Pte(b—a)t) ¢ ((d—c)s)
+/§ / ; S fb+ (1 —t)a,sd+ (1 - s)c) dsdt] ,

e [Al G) A G) / <;b ;d>
%Mf (ta—i—(l—t)b,c—gci) dt

t

/1
/02¢((d8—6)8)f(a+b
%) a

(3.10) I, =

5 ,sd—l—(l—s)c) ds

I R = CEr [Al G)A (Df(a;b’cgd)
éW((b_a)t)f(ta+(1—t)b,c—;d)dt
< ,sd+(1—s)c)ds
—|—/02/;W((bt_a)ﬂw((ds_c)s)f(ta—i-(1—t)b,sd+(1—s)c)dsdt],
s 0= g [ (3)% (31 (54 55°)
(3] P o)

A (;) /O ¢<(d;6)8)f(“;b,sdﬂl—s)c) ds

PP eb—a)t ¥ (d=c)s) B )
Jr/é/o P B fta+ (1 —1t)b,sd+ (1 s)c)dsdt],

(3.13) he = &z a)l(d ™ (i) fe <;) d (a;b Céd)

“As (;) /; p(b=a)t) (ta—i—(l—t)b, C;d) dt
1
2
)J

! —C)S a
i)
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Lrto(b—a)t) v ((d—c)s) B -
+// ; S f(ta+ (1 —1)b,sd + (1 s)c)dsdt},

(3.14) Ly = m [Al @) A <;) f (a2+bc+2d)
Oé plb=a)t), <tb+ (1 t)a,c+d> dt

/[ 2
/ow«d—@s)f(aw
'

5 ,sc+(1—s)d> ds

’ a —0)s)
+/0 /0 t S f(tb+ (1 —t)a, sc—i—(l—s)d)dsdt] )

T (N )

2
%)t)f (tb+ (1 —t)a, C;d) dt

e e ()
1 _
2 ¢

and
0 ne = g [2(5) @ () (5 )
—A2(;>[@((bt_ )t)f<tb+(1—t) C;)dt
A, (;)/;W(d_ ) )f(a;b +(1—s)d)ds
1 1
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By using the equations (3.2)-(3.17), the change of the variable x = ta+ (1 —¢)b, and y = sc+(1—s)d
for t,s € [0,1], it can be rewritten as follows

(3.18) I1 + In+---+ I

4A4 (1) Ao (1) a+b c+d
(b—a)(d—c)f( 2 7 2 >

wmaag o+ (55 e (25

“wmaaa o () e (7))

1
o7 [a+,c+I<P1wf(b’ d) +a+,d— Lpﬂlif(bv C) To—c+ I%wf(av d) +b—,d— Ispﬂlif(av C)} .
(b—a)(d—c)
Multiplying the both sides of (3.18) by %, we get equation (3.1). This ends the proof of
Lemma 1. (]

Next, we start to state the first theorem containing the Hermite-Hadamard type ineqaulity for
fractional integrals.

2

Theorem 1. Suppose f: Q) — R is a partial differentiable mapping on 2. Suppose also ’%‘ is a

convez function on the co-ordinates on €. Then, the following inequality
a+ b c+d 1 c+d c+d
(505 - oo (4 5) oo (557

1 a+b a+b
T2, (1) [G*W ( 2 d) ta-tyf ( 2 )]

1
4Ay (1) Az (1)

+ [a+,c+Lp,wf(ba d) +a+,d7 Igo,l/)f(ba C) +b7,c+ Igo,lbf(aa d) +b7,d7 Lp,wf(aa C)]

(b—a)(d—c)
Ay (1) Ay (1) [A1 + Ag] [B1 + Ba]

IN

>’f *f >’f *f
X <’8t85 (a: ) + ’8t8 (b,) +’8t85 <a’d)’ ‘8156 ®, d)D
18 valid. Here,
fo |A1 |dt7 fo ‘A2 |d8,

Ay = fl Ay (8)] dt, By = fl IAs (5)] ds.
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Proof. Lemma 1 yields the following inequality

a+b c+d 1 c+d c+d
019) |1 (45 555) = g [ovtes (0. 55%) om0t (5]

1 b b
“2R, (1) [”W<a+ d) fa- W<a+ )]

1
+m lat. et Lo f(b,d) +ata— Lo f(by¢) oot I f(a,d) +o— a— Ipyf(a,c)

(b—a)(d—c)
S A (WA ()

{4+ [La] + -+ + |I16]} -

By using co-ordinated convexity of ‘81&8 ‘ function on Q and calculating the integrals in above
inequality, the following inequalities hold:

(3200 0| < //|A1 182 () | (1 (1= 1) s+ (1 = ) s
< [ [ oo o] 2L wal <00 2w
H(1-9)| 5L @) + -9 -0 | Lt} dsar
- \ 2T (a0 / L 011 6 s
v / / 1A (0)] A2 (5)] (1 ~ )t
H 2L ' [ [ o @re - syas
oAy \/ [ 0182 6010 o1y,
(3.21) b s [ | [ s 1 9 s

‘81288 ‘ / / |A1 (8)| A2 (s)] 5(1 — t)dsdt

’31&8 ad‘/ / [A1 (8)||A2 (s)] t(1 — s)dsdt
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o2 f
* 1 50s

1o
. d)\ / / Ay (8)] A ()] (1 — 8)(1 — t)dsd,

o0 f

T
(3.22) L] < %(a,c) 1 / A1 (8)] |As (s)] tsdsd
81‘8 (b, c) // [A1 ()] [A2 (s)] (1 —t)dsdt
‘Mbd‘// A1 ()] 142 ()] (1 — 8)(1 — )dsdt,
1 1
(3.23) TN A / / AL (1)) As (s)] tsdsdt
+8tas ‘/ / A1 ()] 123 ()] (1 — #)dsd
Jrata ad‘//ml 1A ()] £(1 — s)dsdt
4 ata ’/ / A1 (8)] 1A ()] (1 — 5)(1 — )dsdt,
(3.24) o< |2 0 /é/%A (8)] [As (5)| tsdsdt
' L= 1otas 1 2\8)tsas
v 2L / Ay ()] 1Az ()] (1 — )dsdt
o K §/§|A (0] 1Az (5)] 1 — s)dsde
atos € ! 288 548
+8t0 a,c) / / [A1 ()] A2 (s)] (1 = $)(1 — t)dsdt,
% f 3 rl
(3.25) Il < |3tas<b,d>| / / Ay (0] A ()] tsdsdt

61&8 a d ‘/ / |A1 | |A2 1 — t)dsdt



(3.26)

(3.27)

(3.28)

|| < ’

15|

Lo

_|_

+

+

8t8 (a;¢)

o f
a5 Y

8t8

9% f
9195 00

(LC

8t8
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Al AQ t 1 — s)dsdt
NLeaiTs / A ()18 (9] (1 )

1 monssc

(1—s)(1—t)dsdt,

()] |Az2 ()] tsdsdt

/|A1 ||A2

1 /5 |A1 ()] A2 (s)| (1 — s)dsdt

1L

| s(1 — t)dsdt

(1 —s)(1 —t)dsdt,

% ® d>' / / A (8)] 145 (s)  Esdsdt

6ta (b,0) //|A1 ) Az (s
8t8 (a;¢) //|A1 1A (s
0% f

atas(a’d)

ata ‘/ / [A1 ()] A2 (s

0%f
Otds (a,¢)

8t8 ‘//Al ||Az (s

|s(1—t)dsdt

t(1 — s)dsdt

(1—s)(1—t)dsdt,

s ol1as 9 essar

s(1 —t)dsdt

¥ [ I 011a @)1~ s

atas ‘/ / (A @] [A2 (s)| (1 = 5)(1 = t)dsdt,

13
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/\A1 14s ()] s(1 — £)dsdt

/ / |A1 | ‘AQ |t 1 — S)det

+8t85 ‘//m1 1149 ()] (1= 5)(1 — t)dsdt,

+

8t8

CLC

8158

<
(3.30) [I11] < 8t85 ad‘// 1AL (8)] A (5)] tsdsdt
| o >//§\A (0112 (3)] (1 — t)dsc
otds N 1 2(8)|s s
* 8t8 (8)] [As (s)[ #(1 — s)dsdt

+6tc’) '// 1AL ()] [As ()] (1 — s)(1 — £)dsdt,

% ‘//ml (8)] |2 (5)| Esdsdt

(3.31) Ia| <

4 M ‘/ / A (8)] [ As ()] (1 — £)dsdt
I i /|A ()] | 2s ()] £(1 — s)dsdt
%m,c AR
4 81585 (b,¢) //|A1 1A ()] (1 = s)(1 — t)dsdt,
% / Ay (8)] 1A (s)] (1 — £)dsdt
2 0 §/§|A (1)1 |Aa ()] (1 — s)dsdt
atas ’ 0 0 ! 218 5)as
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8t6 ‘/ / |A1 ()] |A2 (s)] (1 — s)(1 — t)dsdt,

(3.33) hal < 8t8 ' / / IAx (1)) 1A (s)] tsdsdt

/|A1 1Az (s)] s(1 —t)dsdt

8t8

8158 ‘/ / [A1 ()] |Az (s)| t(1 — s)dsdt

" 6t8 '/ / (AL (D] A2 (s)] (1 = 5)(1 - t)dsdt,
(3.34) 15| < ‘81‘65 ’/ / |A1 (1) |Ag (s)] tsdsdt
* ata |Al A2 (s)] s(1 — t)dsdt

ata ‘// A1 ()] A2 ()] t(1 — s)dsdt

" 8ta '/ / [A1 ()] [A2 (s)] (1 = s)(1 — t)dsdt,

and
82]0 1 1
. <
(3.35) el < ‘atas (b,c)/l/l|A1(t)|\A2(s)|tsdsdt
vl /|A1 )18z (5)] 5(1 — t)dsdt
+ ata ‘/ / AL ()]s (5)| £(1 — 5)dsdt
vl ‘ /%|A1(t)|A2(3)|(1—s)(1—t)dsdt.
With the help of the inequalities (3.20)—(3.35), we get
(3.36)

2 82f
Otos

(b,c)| +

8t(98 8t88

o°f
< [A1 + A3] [By + Bo] (‘ (a,c) Otos

i

i

(a,d)‘ + ‘32f (b,d)D .

15
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If the inequality (3.36) is written into (3.19), then we get desired result. This finish the proof of
Theorem 1. (]

Remark 3. In Theorem 1, if we assign o(t) =t and ¥(s) = s for all (t,s) € Q, then Theorem 1
reduces to [23, Theorem 2].

Remark 4. In Theorem 1, let us now note that p(t) = rt(:;) and YP(s) = F(B for all (t,s) € Q.
Then, Theorem 1 reduces to [43, Theorem 2.1].

a B8
Corollary 1. In Theorem 1, if we choose p(t) = Mfik( and P(s) = ﬁk(m for all (t,s) € Q, then
we obtain the following inequality

a+b c+d Trla+k) [ ., c+d c+d
(o) [ (55 )

U (500) i (555

-
+Fk} (a+ k)T B—Hz)
4(b—a)

(d—c)®
x [T F b, d) + TS b)) + T f a0 |

2" R

(b;¢)

0% f
Otds

O*f O*f O*f
x(‘atas(a,c) + +‘8tas (a,d)‘—i—'atas (b,d)D.

q
Theorem 2. Assume f : Q — R is a partial differentiable mapping on Q. Assume also ‘ﬁ

)

otos
q > 1 is a convex function on the co-ordinates on ). Then, one obtains the following inequality

() ma e () o (23]

1 a+b at+b
T, [C*W ( 2 d) ta-tof ( 2 )]

1 7
+m latet Lo f(b,d) Fata— Lo f(byC) Fo—cq I fla,d) +o— a— Iy f(a,c)

(b—a)(d—rc)
4A; (1) As (1)

IN

[C1 + C2] [D1 + Dy
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1
a0 3|k 0.0| + 3|8k @al +o |k v.a)
x 64
1
2 q 2 ) 2 q 2 9\ q
. 3 %(a,c) +9 gta’;(b,c)’ + gta’;(a,d)‘ +3 %(h,d)
64
2 q 2 q 2 q %
. 3|5k (.0 + |2k 0| +9|Zh )| +3] 2k 0.0
64
82f 32f 82f q %
4 9 8t83(a C)’ +3 Btﬁs(b’c)‘ (a‘ d)’ + m(bv d)‘
64 ’

where

(f(f A () dt)% (f(f A2 (s)[ d8>%7

=

1
1 I 1
Co= (S @Pdt)” . Do = ([} 182 (s)ds)”
1,1 _
Proof. With the help of the Holder’s inequality for double integrals and by using the co-ordinated

62f q .
function on €2, we have
Otds ’

(3.37) L < //\Al ) A2 (s

dsdt

8158 —t)b,sc+ (1 —s)d)

S (/ / |A1 ‘p |A2 )|p det)
5 [3 62f ) . . i qdd %
X /0 /o Gté‘s(ta+( —t)b,sc+ (1 —s)d)| dsdt
% % 62]" q a2f q
< : _
< ¢ D (/O /0 {ts oL@ +s0 t)‘atas(b,c)
92 q 92 q H
+t(1—s) 6t8f (a,d)] +(1—¢)(1— )‘aaf(b d) }dsdt)
‘gfaji(a C)‘ +3‘8t8.s va’ +3‘8t85 vd’ +9‘8t8.s bd)‘ !
< Ci-Dy

64 ’
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(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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|| < Cy

|I3] < Co

|14 < Cs

|Is| < Cy

|Is| < Cy

|I7] < Co

|Is| < Cs -

|Ig| < Cy

|Io| < Ch

[T11] < Co

[I12] < Co

- Do

. D,

- Do

. D,

- Do

D,

. D,

- Dy

Dy

- Dy

2
3 gta];(“ C)‘ +9‘8t85 bc‘ ‘*“au% ad‘ +3’8t6 (b,d)
64
2 q 2
3|2k @) + |2k w0l +9]ZE@a)| +3| 2L 0.
64
2 2
9|2k (a,c) +3| 2L 00| +3| 2k @d)| + |2k .0
64
9|2 "3 2,0 43| 2L (0 d)| + [ LL(b,d
195 (0, 0)| +3 |55 (b.0)| + 3| 535 (a,d)| + |55 (b,d)
64
3|2 ! b, 9 D" +32Lw,a
‘atas(avc) +’8t83( C‘ + ‘atas a, )‘ + 3| 525 (0, )‘
64
3|2 "ol 2,0+ | L (a,d)] + 3] LL(b,d
S 0| +9|ZE 00| + | ke a)| +3] 5.0
64
0f 3| 2L, 3 d)| +9|2ZLb,d
‘atas(a C)‘ + ’8158 c‘ + ’6756 a, ‘ + ’8156 )‘
64
3|2 9|22 (b, )" d b,d
3195 (@, C) + 9|55 (b:0)| + atas(a ) ( )
64
o°f 3| 2L, o) +3 )" +9| 2L b, a)|"
5705 (@ C) + 6t63 9) + 6t65 (a, + atas )
64
9|2 (a,¢)|" +3| 2L b d|" + 2L v,d
5195 (a, ¢) 510 ( 70) (a ) + |55 (b, d)
64
3|28 (a,0)|" b 9| 2L (a,d)|" + 3| 2L b,d
7105 (@, 0)| + atas( c) + 6t65 a, + atas )

64

Q=

Q=

Q=

Q=

Q=

Q=

Q=

Q=

Q=

Q=

Q=
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Q=

3|8k (0| + | 2h 0| +9| 2k +3| 2L 0.0

4 I3 < -D
(3.49) |Ii3| < Ci- Dy 6 ;
1
2 q 2 q q
9‘&0];(“ C)‘ +3‘atasbc‘ +3’6t63 d)‘ ""gta];(b d) ’
(350) |Il4| < Cl . D2 64 )

Q=

2
’aatafs(a c)‘ +3‘8t6 bc) —|—3‘6t6 ad‘ —|—9‘6t6 bd)‘
64 ’

(3.51) |I15] < Co- D

and

Q=

3‘gt8é(a C)‘ +9’8t65bc‘ +‘atasad‘ +3‘6t6 bd)‘
64

(352) |116| < CQ . DQ

If the inequalities (3.37)-(3.52) are written into (3.19), then we obtain desired result. This is the
end of the proof of Theorem 2. O

e

Remark 5. In Theorem 2, let us consider that o(t) = If(a) and Y(s) = % for all (t,s) € Q.
Then, Theorem 2 reduces to [43, Theorem 2.2].
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Z =k
m

Corollary 2. In Theorem 2, if we take p(t) = Ft y and P(s) =
get the following inequality

(2255 [l s (59 (3

(5 (4309

)

Lp(a+K)Ck(8 + k)
4(b—a)f (d—o)F
x [J;f;i (b.d) + S F(b,¢) + T flagd) + R f(a,c)}

1
(b—a)(d—c) 1+ 1—2r%+t ”+ 1
4 2 2PEFL(p2 4+1) 205+ (p2 4+ 1)

ka(ﬁ) for all (t,s) € Q, then we

+

1
P

IN

~—

r 1 1
1 1— i+t 7 1 ’
“Net i) "\ oima
241 (pf +1) 2841 (pf +1)
2 2 q q
) (el 3l e o] +s|FEwal + [ e
64
52 32f q 32f q %
aws(a,c)‘ 2L, c)‘ + 3|20 (a,d)|" + 9| 2L (b, d)
- 64
1
52 q 2 q a2 q a2 a\ q
3|84 0)| + | Zd 00| +9|Zh@al +3| 2L 0.0
* 64
1
5 52 q 52 d\ ¢
3| k(@) +9| 2L 00| + |2k | +3| 2k 0.0
* 64

4. CONCLUSIONS

In this manuscript, we consider generalized fractional integrals to get midpoint type inequalities
for the co-ordinated convex functions. Firstly, it is established an identity for twice partially
differentiable mappings. By using the this identity, some midpoint type inequalities via generalized
fractional integrals are proved. Furthermore, the main results reduce some midpoint inequalities
given in earlier works for Riemann integrals and Riemann-Liouville fractional integrals. In addition
to this, it is introduced some new inequalities for k-Riemann-Liouville fractional integrals as special
cases of our results. We propose for forthcoming researchers that the methods and techniques used
in this study can be established similar inequalities for different kinds of co-ordinated convexity.
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