References
1. Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I,
Jemal, A, & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185
countries. CA: A Cancer Journal for Clinicians , 71 (3),
209-249.
2. Nurgali, K.; Jagoe, R.T.; Abalo, R (2018). Editorial: Adverse effects
of cancer chemotherapy: Anything new to improve tolerance and reduce
sequelae? Frontiers in Pharmacology , 9 , 245.
3. Colleoni, M., & Giobbie-Hurder, A. (2010). Benefits and adverse
effects of endocrine therapy. Annals of Oncology , 21 (7),
107–111.
4. Pearce, A., Haas, M., Viney, R., Pearson, S. A., Haywood, P., Brown,
C., & Ward, R. (2017). Incidence and severity of self-reported
chemotherapy side effects in routine care: A prospective cohort study.PLoS ONE, 12 (10), e0184360.
5. Berlanda, N., Somigliana, E., Frattaruolo, M. P., Buggio, L., Dridi,
D., & Vercellini, P. (2017). Surgery versus hormonal therapy for deep
endometriosis: is it a choice of the physician? European Journal
of Obstetrics and Gynecology and Reproductive Biology , 209 ,
67–71.
6. Cross, D., & Burmester, J. K. (2006). Gene Therapy for Cancer
Treatment: Past, Present and Future. In Clinical Medicine &
Research , 4 , 218–27.
7. Gardner, J. (1847). Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. The Lancet ,49 (1234), 431–434.
8. Ahlquist, P. (2002). RNA-Dependent RNA Polymerases, Viruses, and RNA
Silencing. Science, 296, 1270–1273.
9. Zaboikin, M., Srinivasakumar, N., & Schuening, F. (2006). Gene
therapy with drug resistance genes. Cancer Gene Therapy ,13 , 335–345.
10. Hoy, S. M. (2018). Patisiran: First Global Approval. Drugs ,78 (15), 1625–1631.
11. Scott, L. J. (2020). Givosiran: First Approval. Drugs ,80 (3), 335–339.
12. Garrelfs, S. F., Frishberg, Y., Hulton, S. A., Koren, M. J.,
O’Riordan, W. D., Cochat, P., Deschênes, G., Shasha-Lavsky, H., Saland,
J. M., van’t Hoff, W. G., Fuster, D. G., Magen, D., Moochhala, S. H.,
Schalk, G., Simkova, E., Groothoff, J. W., Sas, D. J., Meliambro, K. A.,
Lu, J., …& Lieske, J. C. (2021). Lumasiran, an RNAi Therapeutic
for Primary Hyperoxaluria Type 1. New England Journal of
Medicine , 384 (13), 1216-1226.
13. Naik, S., Shreya, A. B., Raychaudhuri, R., Pandey, A., Lewis, S. A.,
Hazarika, M., Bhandary, S. V., Rao, B. S. S., & Mutalik, S. (2021).
Small interfering RNAs (siRNAs) based gene silencing strategies for the
treatment of glaucoma: Recent advancements and future perspectives.Life Sciences , 264 , 118712.
14. Park, D., Yong Lee, J., Kyoung Cho, H., Jin Hong, W., Kim, J., Seo,
H., Choi, I., Lee, Y., Kim, J., Min, S.-J., Yoon, S.-H., Sung Hwang, J.,
Jin Cho, K., & Woong Kim, J. (2018). Cell-Penetrating Peptide-Patchy
Deformable Polymeric Nanovehicles with Enhanced Cellular Uptake and
Transdermal Delivery. Biomacromolecules, 19, 2682–2690 .
15. Rizzuti, M., Nizzardo, M., Zanetta, C., Ramirez, A., & Corti, S.
(2015). Therapeutic applications of the cell-penetrating HIV-1 Tat
peptide. Drug Discovery Today , 20 (1), 76–85.
16. Yadav, D., Sandeep, K., Pandey, D., & Dutta, R. K. (2017).
Liposomes for Drug Delivery. Journal of Biotechnology &
Biomaterials , 7 (04), 276.
17. Lee, M. K. (2020). Liposomes for enhanced bioavailability of
water-insoluble drugs: In vivo evidence and recent approaches.Pharmaceutics , 12 (3), 264.
18. Green, M., & Loewenstein, P. M. (1988). Autonomous functional
domains of chemically synthesized human immunodeficiency virus tat
trans-activator protein. Cell , 55 (6), 1179–1188.
19. Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat
protein from human immunodeficiency virus. Cell , 55 (6),
1189–1193.
20. Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-Penetrating
Peptides: From Basic Research to Clinics. Trends in
Pharmacological Sciences , 38 (4), 406–424.
21. Jones, S. W., Christison, R., Bundell, K., Voyce, C. J., Brockbank,
S. M. V, Newham, P., & Lindsay, M. A. (2005). Characterisation of
cell-penetrating peptide-mediated peptide delivery. British
Journal of Pharmacology , 145 , 1093–1102.
22. Park, J. W., Bang, E. K., Jeon, E. M., & Kim, B. H. (2012).
Complexation and conjugation approaches to evaluate siRNA delivery using
cationic, hydrophobic and amphiphilic peptides. Organic and
Biomolecular Chemistry , 10 (1), 96–102.
23. Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M.,
Klauschenz, E., Melzig, M., & Bienert, M. (1998). Cellular uptake of an
α-helical amphipathic model peptide with the potential to deliver polar
compounds into the cell interior non-endocytically. Biochimica et
Biophysica Acta - Biomembranes , 1414 (1–2), 127–139.
24. Walrant, A., Alves, I. D., & Sagan, S. (2012). Molecular partners
for interaction and cell internalization of cell-penetrating peptides :
how identical are they ? Nanomedicine , 7 , 133–143.
25. Ryu, Y. C., Kim, K. A., Kim, B. C., Wang, H. M. D., & Hwang, B. H.
(2021). Novel fusion peptide‐mediated siRNA delivery using
self‐assembled nanocomplex. Journal of Nanobiotechnology ,19 (1), 1–18.
26. Sharma, S., Kotamraju, V. R., Mö, T., Tobi, A., Teesalu, T., &
Ruoslahti, E. (2013). Tumor-Penetrating Nanosystem Strongly Suppresses
Breast Tumor Growth. Mol. Ther , 17 , 37.
27. Lu, R.-M., Chen, M.-S., Chang, D.-K., Chiu, C.-Y., & Lin, W.-C.
(2013). Targeted Drug Delivery Systems Mediated by a Novel Peptide in
Breast Cancer Therapy and Imaging. PLoS ONE , 8 (6), 66128.
28. Bourne, R. (2010). ImageJ. Fundamentals of Digital Imaging in
Medicine , 9 (7), 185–188.
29. Rathnayake, P. V. G. M., Gunathunge, B. G. C. M., Wimalasiri, P. N.,
Karunaratne, D. N., & Ranatunga, R. J. K. U. (2017). Trends in the
binding of cell penetrating peptides to siRNA: A molecular docking
study. Journal of Biophysics , 2017 (1), 1059216.
30. Mishra, A., Gordon, V. D., Yang, L., Coridan, R., & Wong, G. C. L.
(2008). HIV TAT forms pores in membranes by inducing saddle-splay
curvature: Potential role of bidentate hydrogen bonding.Angewandte Chemie - International Edition , 47 (16),
2986–2989.
31. Rothbard, J. B., Jessop, T. C., & Wender, P. A. (2005). Adaptive
translocation: The role of hydrogen bonding and membrane potential in
the uptake of guanidinium-rich transporters into cells. Advanced
Drug Delivery Reviews , 57 (4), 495–504.
32. Loscalzo, D. E. H. R. C. J. (2011). Water-Protein Interactions of an
Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by
Solid-State NMR Spectroscopy. Bone , 23 (1), 1–7.
33. Kou, L., Sun, J., Zhai, Y., & He, Z. (2013). The endocytosis and
intracellular fate of nanomedicines: Implication for rational design.Asian Journal of Pharmaceutical Sciences , 8 (1), 1–10.
34. Manzanares, D., & Ceña, V. (2020). Endocytosis: The nanoparticle
and submicron nanocompounds gateway into the cell. Pharmaceutics ,12 (4), 1–22.
35. Bursa, F., Yellowlees, A., Bishop, A., Beckett, A., Hallis, B., &
Matheson, M. (2020). Estimation of ELISA results using a parallel curve
analysis. Journal of Immunological Methods , 486 , 112836.