Capturing Surface Complementarity in Proteins using Unsupervised Learning and Robust Curvature Measure 
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ABSTRACT
The structure of a protein plays a pivotal role in determining its function. Often, the protein surface's shape and curvature dictate its nature of interaction with other proteins and biomolecules.  However, marked by corrugations and roughness, a protein's surface representation poses significant challenges for its curvature-based characterization. In the present study, we employ unsupervised machine learning to segment the protein surface into patches. To measure the surface curvature of a patch, we present an algebraic sphere fitting method that is fast, accurate, and robust. Moreover, we use local curvatures to show the existence of “shape complementarity” in protein-protein, antigen-antibody, and protein-ligand interfaces. We believe that the current approach could help understand the relationship between protein structure and its biological function and can be used to find binding partners of a given protein.
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INTRODUCTION
Protein performs its function through interaction with other molecules such as ligands, DNA, and other proteins. The three-dimensional structure of a protein provides the necessary shape and physicochemical texture to facilitate many of these interactions. The comparison of protein structures may lead to identifying functional relationships between proteins, even when no apparent sequence similarity is detected1. The molecular surface(MS) of the protein is a higher-level representation of its structure that models a protein as a continuous shape with geometric and chemical features. One of the molecular surface's important characteristics is its curvature, which measures how much a surface deviates from being flat.2 Surface curvature is invariant under transformations like translation and rotation; it is an intrinsic property of a stable structure. The intuitive description of surface curvature is a major player in the molecular stereospecificity3, characterization of protein-protein, protein-nucleic acid interaction hotspots, membrane-protein interactions4, drug binding pockets5–7, and analysis of molecular solvation.8 Moreover, protein surface curvature may influence the hydrophobic effect, which is essential in understanding protein folding9–13. Local surface curvature can be used as a key descriptor for surface shape complementarity between proteins and their interacting partners. Currently, there are a few methods to measure surface curvature. One of the classic and well-known methods is Connolly’s solid-angle approach14. In this method, the centre of a sphere is placed at the molecular surface(Conolly surface15) (Fig. 1a). The solid angle, measured as the ratio of the sphere's surface area lying inside the protein surface to the sphere's total surface area, provides us with an estimate of the surface curvature. However, this method cannot discriminate between surfaces with the same solid angle but actually different curvatures16. As illustrated in Fig. 1a, it ignores the protein surface's topology that lies inside the sphere16. It only considers the points where the placed sphere and the protein surface intersect for surface curvature calculation. 

[bookmark: _Hlk71369372]  The second class of methods employs the differential geometry approach, where the greatest and smallest curvatures, known as the principal curvatures of the surface, are calculated. The principal curvatures are then averaged to yield the mean curvature or multiplied together to yield Gaussian curvature of the protein surface. Differential geometry-based approaches have been used to study why biomolecules assume complex structures and why biomolecular complexes admit convoluted interfaces between different parts.17 Depending on the nature of the representation used for molecular surface, its smoothness varies. These methods assume a continuous and differential representation of the surface, which is dependent on the nature of representation used for protein's molecular surface.  Some surface representations of a protein are rugged, with torus cusps and creases resulting from the intersection of molecular surface elements.18 To model the protein surface, Duncan and Olson used a Gaussian representation of protein atoms in part to overcome this problem19. An alternative approach, formulated by Tsodikov and co-workers, involves partitioning the surface into the continuous section and then calculating the average of each section's curvatures (FastSurf and SurfRace)20. Several approaches use a functional based representation of molecular surface and then use iterative optimization to improve it. Bates et al.21 defined a hypersurface function with atomic constraints from biomolecular structural information and minimized the mean curvature of the hypersurface function through an iterative procedure. After minimization, a level surface is extracted from the steady-state hypersurface function to obtain the minimal molecular surface (MMS). A yet another approach, namely alpha shapes by Albou et al.22, classifies a protein's surface into knobs and clefts. They describe a novel conception of a surface patch (composed of 20 residues) by travelling along the surface from a central residue or atom.  Recently, Gainza et al.23 used a mesh-based representation of solvent excluded surface (SES) generated by the MSMS24 program and used a distant-dependent curvature as one of the features in their geometric deep learning approach. Here, the protein mesh was decomposed into a set of overlapping patches of fixed geodesic radius (r=9Å or r=12Å). Notably, they regularize the mesh after computing the MSMS surface, which is an expensive operation and one of the bottlenecks in their data preparation pipelines. 

  The third class of methods uses least-squares fitting (LSF) to fit an object with a known curvature to a given surface. The LSF class of methods has the differential geometry method's advantages while also providing a quantitative curvature measure that is straightforward to apply and has a direct physical interpretation. Coleman et al. generated the least-squares fitted sphere to a surface patch and used the reciprocal of the sphere's radius as the curvature measurement16. Notably, the advantage of fitting a sphere to a surface patch is that a sphere can be fitted to any surface. It hence avoids the issues caused by differential geometry requirements for a smooth, differentiable surface19. Moreover, the surface of a sphere has the same curvature everywhere and hence offers a straightforward way to compare curvature values of different patches on a protein surface. Coleman et al. transformed the sphere-fitting problem into a solvable plane-fitting problem using a geometric transformation known as inversion.16
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Figure 1: (a) Schematic illustration of the solid-angle curvature calculation method, (b) Schematic illustration of the LSF sphere method (Adapted from Coleman et al. 2005), (c) Two instances of the non-optimal division of a protein surface into patches. The blue coloured circles highlight sampling of the surface with a fixed patch of larger radius. The small, dotted circles highlight sampling of the surface with a fixed patch of smaller radius. A patch of larger radius fails to capture smaller cavities, and the patch of smaller radius fails to capture larger cavities. (d) Schematic figure showing the importance of geodesic distance. Here, both  and surface parts are enclosed within the sphere of a particular radius centred at K when Euclidean distance is used. However, the points of  have greater geodesic distances than the predefined threshold ; thus they are discarded.25
  However, Coleman’s approach requires a fixed size radius to partition the protein surface, which results in a non-optimal division of the protein’s surface, leading to inaccurate curvature measurement, as shown in Fig. 1c. Moreover, this approach further relied on an additional filtering criterion based on geodesic distance (shortest path on the surface connecting two points) from the centre to discard small unconnected surface parts enclosed within the sphere26. Surface points with a distance greater than a predefined threshold were excluded from the surface26. 

 In the present work, we have focussed on developing a fast, robust method for calculating the surface curvature of a given surface representation, which in our case is the SES surface generated by MSMS. We obviate the need for using such ad-hoc filtering by employing hierarchical clustering, a form of unsupervised learning, with the farthest neighbour approach27, to segment the protein surface into contiguous patches efficiently. It gives us patches of varying size and ensures that each patch retains its intrinsic nature without discontinuities and retaining the nuances of surface topographies, i.e., an entire cavity or an entire protrusion will belong to a particular patch. Subsequently, we devised a fast, accurate, and numerically robust least square fitting method by extending the ‘Hyperaccurate Algebraic fitting’28 method for circle fitting to fit spheres on arbitrary surface patch. Note that, the term  “hyperaccurate”  is used in the context of sphere fitting algorithm, popularized by the authors of “Error analysis of circle fitting algorithms”28 We developed a scoring function based on the curvature and showed the existences of surface complementarity in various protein-protein and protein-ligand interactions, along with subtle changes in local curvature in proteins upon complexation with ligands that would not be otherwise detectible. This surface complementarity function will help detect a protein’s active site's binding partners. 

METHODS
A schematic representation of our methodology is presented in Fig. 2, followed by a detailed description.
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Figure 2: Illustration of our approach: (a) Ribbon representation of 2HNP protein, (b) illustration of the hierarchical clustering with the farthest neighbor approach for segregating the molecular surface of the protein's (2HNP). (c) Representative demonstration of final segregation of protein’s surface into contiguous patches. (d) A representative surface patch (red dots) fitted a sphere (blue dots) using the ‘Hyperaccurate algebraic fit’ approach.
The steps involved are described in detail below. 
a. Surface representation
[bookmark: _Hlk71370425] For surface representation, we have used solvent-excluded molecular surface24,29. The solvent-excluded molecular surface (SES) is defined as the boundary of the solvent-excluded molecular volume. The earliest methods for calculating the SES used the ‘rolling ball’ numerical integration method, in which a spherical probe of diameter as the size of water is rolled over the exposed contact surface of each atom29. Currently, numerous algorithms exist for SES and solvent-accessible surface (SAS) calculations30. We have used the MSMS program that provides a fast, analytical approach for calculating molecular surface24. There are several programs for calculating SES. PQMS by Connolly et al. computes SES surfaces, but the surfaces generated by it had self-intersecting elements18. MSMS program uses the reduced surfaces and attempts to address the singularities present in the computed SES. MSMS consists of four algorithms.  The first computes the reduced surface of a molecule from which the second algorithm builds an analytical representation of the solvent-excluded surface that may be self-intersecting. The third algorithm removes all self-intersecting parts. The last algorithm produces a triangulation of the SES.24 The SES generated by MSMS of Sanner et al. resolves all singularity issues associated with SES. The SES program by Connolly (PQMS), on the other hand, suffers from non-radial singularities, which cannot be differentiated24. This program inputs a PDB file containing atom coordinates and radii and produces a triangulated solvent-excluded surface. The surface hence obtained is ‘dot molecular surface’ (DMS surface), whose triangulation density (number of vertices per ) could be adjusted for the desired accuracy. In our approach, we have used a density value of 3.0 (points/)  and a water probe radius of 1.5 Å.  
b. Construction of surface patches using Complete-linkage clustering
 A protein surface representation is non-uniform; it has cavities and protrusions of varying shapes and sizes. Previous approaches picked points within a local radius to define the patch for curvature measurement14,16. However, this approach may only work for surfaces with relatively simple topology31 as it would always provide convex-shaped patches, which poorly represent the local topology of the protein surface [Fig. 1c]. 
 Therefore, to capture the nuances of surface topography, we employed the unsupervised clustering approach, which attempts to combine “similar” elements into a particular group. This similarity criterion depends on the problem of interest. Here we assume that surface points belonging to a particular topography will be closer. 
 Among various unsupervised clustering methods such as k-means, hierarchical clustering, DBSCAN, mixture modelling, etc.32, we have employed hierarchical clustering27 with farthest neighbour approach (complete-linkage clustering)33 that would work on both convex and concave datasets. Francetič et al. 34 assessed the performance of different clustering methods when using concave sets of data and found that complete-linkage clustering (farthest neighbour clustering) gave the highest percentage (87.8%) of correctly assigned group membership with the lowest degree of data separation. It performs equally well in the case of the highest degree of data separation. Another advantage of this hierarchical approach is the automatic selection of the appropriate number of clusters, unlike k-means which requires the user to define the number of clusters beforehand32. Therefore, hierarchical clustering will naturally segregate a protein’s surface into relevant number of patches. Moreover, it has a threshold parameter, i.e., ‘resolution’, that can be adjusted to select the desired features. The threshold parameter corresponds to the minimum geodesic distance connecting two points on the surface. Figure S1 and S2 in the supplementary information (SI) illustrate how the threshold is used to partition the protein surface.  Clustering tends to capture micro features, such as small ligand-binding pockets, at the lower threshold values; the generated patches are smaller in size and more significant in number. On the other hand, a larger threshold captures more prominent features like shape complementarity between proteins at the protein-protein interface. As the threshold increases, the patches grow larger in size and correspondingly fewer in number. An optimal resolution is important to get meaningful values in protein surface patches. We varied these threshold parameters 10 to 20 (Figure 3) and observed that the curvature values and patch sizes do not vary significantly within the range between 10 to 15. However, at the threshold value of 20, the effect of an increase in patch size on curvature values is more pronounced. Therefore, we have used 15 as an optimum value for subsequent curvature calculations.

[image: ]
Figure 3: Surface curvature measurement at different levels of granularity for human protein tyrosine phosphatase (PDB: 2HNP). The figure shows the proteins with colour-coded curvature values where blue represents cavities and red represents protrusions. The colour intensity highlights the curvature of the surface. At the threshold value of 10, we observe many small regions of large positive and negative curvatures. These correspond to micro-level features like small pockets on a protein surface. With the increase in the threshold value, the clustering procedure tends to form larger patches. These are features like cleft and more prominent protrusions.  
c. Measurement of Surface Curvature of a patch by ‘Hyperaccurate’ algebraic sphere fitting:
 Once we identify and segregate the local surface patches of the protein, we needed to calculate the curvature of these patches. Typically, if we could fit the surface patches to a sphere, we could obtain the curvature from the sphere's radius. There are geometric fit algorithms for fitting28, but they are computationally expensive and suffer from issues of local minima, divergence, and strong dependency on initialization35. Moreover, they can only be implemented iteratively, and their convergence rate is non-deterministic.35 To address the above issues, we decided to use an algebraic fit algorithm that we developed by extending the “hyper-accurate algebraic” fit for circles. This approach has the least mean square error (MSE) and nearly zero bias.16 Here, we have extended that circle fitting algorithm into 3D to fit a sphere to a surface patch by modifying the objective function and the constraints. The extension maintains the non-iterative nature of the calculation with little MSE and bias, resulting in faster and more accurate curvature calculations, as shown in detail below. 
We have adopted a standard functional model in which data points are noisy observations of some true points,  ; i.e, 


where  represent isotropic Gaussian noise and are independent identically distributed normal random variables with mean zero and variance . We could describe a sphere by the general equation,

Therefore, our parameter vector is  and the corresponding data matrix can be written as,


where .
We defined the ‘matrix of moments’ as, . is a positive semi-definite matrix. The objective function is defined as,  To fit the data points to a sphere, we need to minimize the objective function , subject to a constraint , where the matrix  corresponds to the ‘Hyper-accurate’ fit.  

For solving the constrained minimization problem, we used Lagrange multiplier  and reduced the problem to an unconstrained minimization of the function,

Differentiating with respect to  and  gives

and 

Thus,  must be a generalized eigenvector for the matrix pair  which also satisfies  The above two equations may have several solutions. However, the right solution  will satisfy the following condition,

 Thus, for the purpose of minimizing  we should choose the solution with the smallest  (see the expression of  above). This objective function is convex, and hence we can use efficient convex optimization techniques36 such as the singular value decomposition (SVD) approach. The SVD of  is written as  . If its smallest singular value, represented by   ( is a 5x5 matrix), is less than a predefined tolerance (chosen here as ), then A (our parameter vector) is the corresponding right singular vector, i.e., the last column of . Otherwise, in regular cases when , we form  and find the eigenpairs of the symmetric matrix . Then, we select the eigenpair  with the smallest positive eigenvalue and computing  completes the solution. The components of the parameter vector hence calculated is then used to obtain radius and the centre of the fitted sphere for a patch. 

To decide whether a patch is predominantly a protrusion or a cavity, we measured the distance from the centroid of the protein to a point in a patch and compared this distance with the distance between the centre of LSF sphere and the centroid . If  for more than half of the points in a patch, we classified that patch as a protrusion. For a cavity, . 

e. Representation of Protein Surface Curvature Graphics:
To generate protein surface coloured by curvature, the surface representation, i.e., dot molecular surface (DMS surface), was written to the PDB file. The B-factors for each entity was replaced with corresponding curvature value. The curvature values were scaled up to a relevant factor (chosen as  to facilitate visualization and comparison. 
RESULTS 
a. Validation using analytical dataset and comparison of the runtime of our algorithm with the previous approach

 To establish our method's accuracy and speed, we used a synthetic dataset containing surface points of five hundred spheres of randomly varying radii (within the range between 0.1 Å and 10 Å, in increments of 0.02 Å), with surface points density ranging between 10 and 5000. Figure 4(a) shows some representative spheres of random size and point density. To add the effect of corrugations and uncertainty, the points on the sphere were perturbed by the addition of zero-mean Gaussian noise. Our method's speed and accuracy are shown in Fig. 4 b,c.  We have also compared our sphere fitting algorithm's runtime with the least square fitting (LSF) approach using inversion geometry proposed by Coleman et al.12, which has shown to be the best method till now. Figure 4b shows the time required to calculate the curvature for each sphere arranged according to the number of surface points. Therefore, more surface points require more time. Our approach takes far less time than that by Coleman’s method. Also, the fluctuation/variations in the time are also far less, indicating that our method's calculations' runtime is much more predictable. The reason for high fluctuation in Coleman’s method is because the geometric fitting algorithms involve iterative approximations, which are computationally intensive and subject to occasional divergence. Our approach is numerically robust, fast, and non-iterative. Figure 4c shows the fitting errors (calculated from the known mean radius), which are lesser with lesser fluctuation than Coleman’s method, indicating the approach's high accuracy and numerical stability.
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Figure 4: (a) Fitting sphere to surface points (b) Comparison of time taken by our approach to fit a given array of points perturbed slightly from an Ideal sphere with inversion geometry approach proposed by Coleman et al. (c) Comparison of error measured as the deviation from the actual radius of each sphere by our approach with Coleman et al. approach.

b. Measurement of the surface curvature of patches in a protein 

Once we validated our approach on a known analytical dataset, we wanted to test it on real systems, i.e., protein surfaces. For that, we have chosen human protein tyrosine phosphatase in both unbound (PDB ID: 2HNP) and bound (complexed with two phosphotyrosine molecules; PDB ID: 1PTY) states. This protein binds with tyrosine phosphatases (PTPs). It constitutes a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains37. We have calculated the curvatures of the protein’s surface patches. Figure 5 shows the protein patches with different curvatures for the unbound tyrosine phosphatase (Fig. 5a) and the same in complexation with two phosphotyrosine molecules (Fig. 5b). The curvatures are colour-coded, with blue being the deepest cavity while red is the protrusion. Figure 5c, d show the distribution of curvatures of the patches for the uncomplexed and complexed proteins, respectively. This distribution captures the overall structure of the surface of the protein. We can see that the curvature distribution changes even for the binding of a small ligand. This is clearer in Figure 5e, which shows the curvature values of the residues where the ligand binds. There is a noticeable change in the curvature values when we go from the unbound (2HNP) state to the bound state (1PTY), indicating that our approach can capture the change in the protein’s curvature upon complexation with the small molecules. (Note that we did not consider the ligand molecules while calculating the curvature of the bound structure. Therefore, although the two phosphotyrosine molecules bind in two deep clefts present in 2HNP, the small change in the curvature is captured through our calculations. This indicates that the present method could be used as a model to study how local binding of a ligand induces a global change in the structure of a protein using curvature as the metric, in conjunction with network analysis, which uses parameters such as cliques, clusters, and communities to study the effect of local ligand binding on the global structure of a protein38.
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[bookmark: _Hlk61713967]Figure 5: (a) Curvature colored molecular surface of human protein tyrosine phosphatase 1B (PDB ID:2HNP),  (b) the same receptor complexed with two phosphotyrosine molecules (PDB ID: 1PTY). We have used BWR as the colouring gradation -  blue represents cavities, and red represents protrusions. The colour intensity highlights the curvature of the surface. The near planar surface is represented with white colour. (c) Histogram of curvature values for human protein Tyrosine phosphate 1B in the unbound state – PDB ID 2HNP (d) PDB ID 1PTY shows the bound state (e) Distribution of curvature values for the exposed residues in the unbound (2HNP) and bound state(1PTY) 

c. Using Curvature complementarity to quantify shape complementarity between different interacting systems
In most biological processes, proteins interact with other molecules to perform their functions. These interactions include both electrostatic and dispersive nature.39 However, shape complementarity has long been recognized as a significant factor in interactions involving protein aggregation and complex formation with small ligands39–41.  Biological complexes typically exhibit intermolecular interfaces of high shape complementarity, and it is one of the most fundamental ingredients of the scoring functions for protein-protein docking42. Consequently, shape complementarity has been used as a prime consideration in docking approaches that consider entire molecular surfaces rather than strictly active site regions43. Recently, Gainza et al.23 employed the classical “shape index” and “curvedness”2, defined in terms of principal curvatures (and ) to measure shape complementarity. Like the previous approaches, they use patches of fixed size.   Here we use our surface curvature estimation to quantify the degree of shape complementarity between the interacting partners. We take two ‘bound’ complexes and generate their respective molecular surfaces. The surface curvatures of patches in each of the two systems A and B are calculated by our methodology described above. Then, we take the cartesian product of curvature values of each point on the dot molecular surface of the two systems, as shown in Fig. 6. We then define a Gaussian fall-off function as shown below,

Here  is the Euclidean distance between points  and  on A and B, respectively.
 is the average distance between a point  on surface A and all points on surface B. We used  as the penalty function for a pair of points in the two systems' non-interface region. It is scaled to lie in between 0.0 and 1.0. The points that are close to the interface will have values close to 1, and the far-off points that are not in the interface region will have smaller values. Using the above approach, we can quickly rule out the pair of points that do not lie in the two systems' interface and do not contribute towards the interaction at the interfacial region. 
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Figure 6: Schematic illustration of shape complementarity measured in terms of surface curvature complementarity. A and B represent the two interacting partners.  is the distance between two points -  and  that lie on the surface of A and B, respectively.

We add their respective curvature values to measure curvature compatibility between any two points on A and B's molecular surfaces. Intuitively, if a point  lies on a cavity patch on A then it has negative signed curvature. Similarly, if a point  lies in a protrusion patch on B, then it has positive signed curvature. For two points on A and B to be ‘shape compatible’, the sum of their respective signed curvature values should be minimum. We take the cartesian product of all points on the surface of A and B and store this metric  in a 2D array. Next, we scale all values with our above defined Gaussian fall-off function  as,  , where  is the shape complementarity measure and  is the sum of respective curvature values.  As mentioned above, if two interacting surfaces have a high degree of curvature complementarity, then the weighted pairwise sum () of curvature values should be near zero. We calculated  for the two types of interacting systems – binary complexation between two proteins and protein-ligand system  (Fig. 7 ) and ternary complexation (antigen-antibody interaction) Fig. 8)

Figure 7a shows the molecular structure of human Fibroblast stromelysin-1(Red) (PDB ID: 1SLN) and its inhibitor (Blue), along with a figure showing the weighted curvature values(Fig 7b). For surfaces that share a high degree of shape complementarity, we expect the distribution of  to be concentrated in the left region [Figure 7b]. As mentioned above, for surfaces having compatible surface curvatures, the pairwise sum of weighted curvature values near the interfacial region is close to zero. The greater the degree of surface curvature compatibility, the more is the number density of  with close to zero values. To quantify the degree of surface complementarity, we compute the measure of positive skewness. A positively skewed distribution has the most density concentrated in the left, with a long and fat tail on the right side (See section E below). Consequently, if interacting surfaces were rugged and irregular, then the distribution of  would shift towards the right.  
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Figure 7: (a) Molecular surface of the catalytic domain of human Fibroblast stromelysin-1(Red) (PDB ID: 1SLN) and its inhibitor (Blue). (b) Shape complementarity, as measured by our metric. The histogram is normalized. The peak in the left half indicates high shape complementarity at the interfacial region of the protein surface and its inhibitor (c) Molecular surface of homologous protein dimer [PDB ID: 1CDT] with chain A (Red) and chain B (Blue). (d) Shape complementarity, as measured by our metric. The histogram is normalized. The peak in the left half indicates high shape complementarity at the interfacial region of the protein dimers.

Similarly, Fig. 7c shows the molecular structure of a homologous dimer of cardiotoxin VII4 (PDB ID: 1CDT). Interestingly, the interface here is complementary - accordingly, our measurement of curvature, as shown in the Fig 8d.

 Figure 8 shows the results for a ternary complex of antigen-antibody interaction. Unlike protein-protein and protein-inhibitor interactions, the antigen-antibody interactions have lesser pronounced shape compatibility44. We show below the antibody-antigen system - 1A2Y, the hen egg-white lysozyme (D18A mutant), in complex with mouse monoclonal antibody D1.3. The shape complementarity is observed even in this ternary complex.
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Figure 8: (a) Molecular surface of antibody (A and B)-antigen(C) protein-protein complex [PDB ID: 1A2Y]. Chain A is the light chain, and chain B is the heavy chain. (b, c, and d) Shape complementarity, as measured by our metric. The histogram is normalized. The peak in the left half indicates high shape complementarity at the interfacial region of the complex.
D. Runtime Complexity of our approach
We now briefly discuss the overall computational complexity of our approach: (1) The molecular surface generation by MSMS is . (2) For hierarchical clustering, we use a fast implementation of agglomerative clustering using k-NN graphs45. It uses an approximate nearest neighbor graph for reducing the number of distance calculations. It significantly speeds up the naïve implementation from  to ; here,  denotes the number of nearest neighbor updates required at each iteration. For 3D dataset, like our point cloud data,   is found to be less than 845. For k-NN graph creation, we use a k-d tree that has a time complexity of . (3) For fitting, per patch we use truncated SVD in our hyperaccurate sphere fitting algorithm. Its complexity is . Here, n=3 is fixed for 3D data, and  represents the number of points per patch. 


E. Quantifying the shape complementarity at the interface
Once we obtain the distribution of , we measure the skewness of the distribution to quantify the degree of shape complementarity. The more the number of curvature-compatible points on the two interacting systems' interface, the more is the degree of right-skewness (positive skewness). A positive-skewed distribution is characterized by the long and fat tail on the right side. The skewness of a random variable  is the third standardized moment:

where  is the mean, and  is the standard deviation.
Here we consider the interfacial points on the molecular surface of the interacting system. We have chosen the interfacial distance cut-off as 1.5 Å. In Table S1 of the SI, we used skewness to quantify the change in shape complementarity with the different orientations of an interacting systems (a protein-protein complex). This highlights the method’s ability to distinguish different docking orientations for a given pair of interacting molecules.  We Illustrate below (Figure 9) two different orientations of a homodimer 1CDT, one at the native state (0 degrees) and one rotated (along the Z-axis along the plane of the paper ) by 120 degrees. At the native state, we observe a high value of skewness, and hence high shape complementarity at the Interfacial region. However, rotating the chain B (blue) lowers the skewness value. The detailed comparison of skewness at different orientations is given in section B, table S1of SI. We also employed our approach to test the relationship between geometric shape complementarity as measured by our skewness function and the binding constant for two realistic systems (Figure S3, SI).
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Figure 9:  Skewness measured at the (a,b) native conformation (0 degree) and at (c,d) rotated (120 degrees) conformation for the homologous protein dimer [PDB ID: 1CDT] .

Discussion
In summary, we have designed a fast, robust non-iterative algorithm for surface curvature calculation and used it in the reinterpretation of “shape complementarity”. Our approach of employing surface curvature as the measure of shape complementarity provides a more straightforward and more intuitive way to interpret how different surfaces in a binding system interact with each other. Our approach does not have shortcomings of the previous approaches that used patches of a fixed size radius, leading to the non-optimal division of a protein surface. In our approach, however, the size of patches is automatically inferred by hierarchical clustering, and points are clustered together automatically using the farthest neighbor approach. We used the geodesic distance as the distance criteria and used a fast implementation of hierarchical clustering using k-NN graphs (elaborated in methods section and runtime complexity section). This addresses several issues related to using a patch of fixed size, particularly using radial patches using Euclidean distance or an ad-hoc fixed distance cut-off(Figure 1).  For protein surface representation, we used SES generated by the MSMS program24.   We designed an effective method for dividing this protein surface into patches using the farthest neighbour hierarchical clustering, an unsupervised machine learning approach. The patches hence obtained in the form of protrusions, cavities, and saddle surfaces of varying shape and sizes, carry vital structural information about the protein. We can vary the granularity of the surface patch by adjusting the threshold to apply when forming flat clusters. This allows measurement of curvature at different “resolutions”. For instance, a larger threshold value (t>20) could highlight macroscopic features such as deep clefts for side-chain recognition. In comparison, a smaller threshold value (t<10) allows the identification of a more nuanced atomic-level feature [Figure 3]. This implementation of varying patch size has a significant advantage over previous approaches. When using patches made by sampling points within a local radius, the true size that would capture desired features like cavities and protrusions accurately is unknown, as such features are present in varying size and shape, and one must rely on their intuition or visual inspection to get the ‘right’ size [Figure 1c]. 
 The surface of each patch is rugged and non-uniform. A pragmatic and straightforward way to measure the surface curvature is fitting a sphere to the surface patch of interest using least square fitting. We used a non-iterative method for fitting sphere to a surface patch, which is faster and more stable than the previous approaches. Further, unlike the solid-angle approach11, our method is sensitive to nuances in surface topology.  
The results above show that we can use this method to calculate protein’s local curvatures quickly and accurately. Thus, it can be employed for a quick selection of ligands with complimentary curvature for a known receptor. Moreover, it can be employed to understand curvature variation during dynamical motions of proteins, which may help open up newer possibilities of protein’s interaction with its environment – both solvent and other molecules.
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