Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Barnard, R.L., Blazewicz, S.J., Firestone, M.K., 2020. Rewetting of soil: Revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819. https://doi.org/10.1016/j.soilbio.2020.107819
Barnard, R.L., Osborne, C.A., Firestone, M.K., 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241. https://doi.org/10.1038/ismej.2013.104
Barnard, R.L., Osborne, C.A., Firestone, M.K., 2015. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9, 946–957. https://doi.org/10.1038/ismej.2014.192
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer, T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V., Chenu, C., 2010. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments, Biogeosciences, 7, 3839–3850. https://doi.org/10.5194/bg-7-3839-2010
Berg, B., McClaugherty, C., 2008. Decomposition, humus formation, carbon sequestration. Plant litter. 2nd ed. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-030-59631-6
Birch, H.F., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10, 9–31. https://doi.org/10.1007/BF01343734
Blazewicz, S.J., Schwartz, E., Firestone, M.K., 2014. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172. https://doi.org/10.1890/13-1031.1
Borken, W., Matzner, E., 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824. https://doi.org/10.1111/j.1365-2486.2008.01681.x
Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
Butterly, C.R., Bünemann, E.K., McNeill, A.M., Baldock, J.A., Marschner, P., 2009. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol. Biochem. 41, 1406–1416. https://doi.org/10.1016/j.soilbio.2009.03.018
Butterly, C.R., McNeill, A.M., Baldock, J.A., Marschner, P., 2011. Changes in water content of two agricultural soils does not alter labile P and C pools. Plant Soil 348, 185–201. https://doi.org/10.1007/s11104-011-0931-7
Canarini, A., Kiær, L.P., Dijkstra, F.A., 2017. Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biol. Biochem. 112, 90–99. https://doi.org/10.1016/j.soilbio.2017.04.020
Chowdhury, T.R., Lee, J.-Y., Bottos, E.M., Brislawn, C.J., White, R.A., Bramer, L.M., Brown, J., Zucker, J.D., Kim, Y.-M., Jumpponen, A., Rice, C.W., Fansler, S.J., Metz, T.O., McCue, L.A., Callister, S.J., Song, H.-S., Jansson, J.K., 2019. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems 4, e00061-19. https://doi.org/10.1128/mSystems.00061-19
Conant, R.T., Drijber, R.A., Haddix, M.L., Parton, W.J., Paul, E.A., Plante, A.F., Six, J., Steinweg, J.M., 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 14, 868–877. https://doi.org/10.1111/j.1365-2486.2008.01541.x
Dai, A., 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58. https://doi.org/10.1038/nclimate1633
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173. https://doi.org/10.1038/nature04514
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033. https://doi.org/10.1038/s41467-018-05516-7
Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., Cadisch, G., 2012. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 63, 189–199. https://doi.org/10.1111/j.1365-2389.2011.01420.x
Denef, K., Six, J., Bossuyt, H., Frey, S.D., Elliott, E.T., Merckx, R., Paustian, K., 2001. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611. https://doi.org/10.1016/S0038-0717(01)00076-1
Donat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., 2016. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513. https://doi.org/10.1038/nclimate2941
Ernakovich, J.G., Wallenstein, M.D., Calderón, F.J., 2015. Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile. Soil Sci. Soc. Am. J. 79, 783–793. https://doi.org/10.2136/sssaj2014.10.0420
Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
Fierer, N., Schimel, J.P., 2002. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X
Fierer, N., Schimel, J.P., 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. 67, 798–805. https://doi.org/10.2136/sssaj2003.7980
Guo, X., Drury, C.F., Yang, X., Reynolds, W.D., Zhang, R., 2012. Impacts of wet-dry cycles and a range of constant water contents on carbon mineralization in soils under three cropping treatments. Soil Sci. Soc. Am. J. 76, 485–493. https://doi.org/10.2136/sssaj2011.0315
Harrison-Kirk, T., Beare, M.H., Meenken, E.D., Condron, L.M., 2013. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biol. Biochem. 57, 43–55. https://doi.org/10.1016/j.soilbio.2012.10.008
Homyak, P.M., Blankinship, J.C., Slessarev, E.W., Schaeffer, S.M., Manzoni, S., Schimel, J.P., 2018. Effects of altered dry season length and plant inputs on soluble soil carbon. Ecology 99, 2348–2362. https://doi.org/10.1002/ecy.2473
Hou, Y., Chen, Y., Chen, X., He, K., Zhu, B., 2019. Changes in soil organic matter stability with depth in two alpine ecosystems on the Tibetan Plateau. Geoderma 351, 153–162. https://doi.org/10.1016/j.geoderma.2019.05.034
IPCC, 2013. Climate change 2013: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press.
Kim, D G., Vargas, R., Bond-Lamberty, B., Turetsky, M R., 2012. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences, 9, 2459-2483. https://doi.org/10.5194/bg-9-2459-2012
Li, J., Wang, J., Zeng, D., Zhao, S., Huang, W., Sun, X., Hu, Y., 2018. The influence of drought intensity on soil respiration during and after multiple drying-rewetting cycles. Soil Biol. Biochem. 127, 82–89. https://doi.org/10.1016/j.soilbio.2018.09.018
Lin, J., Zhu, B., Cheng, W., 2015. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon. Glob. Change Biol. 21, 4602–4612. https://doi.org/10.1111/gcb.13071
Meisner, A., Snoek, B.L., Nesme, J., Dent, E., Jacquiod, S., Classen, A.T., Priemé, A., 2021. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J. 15, 1207–1221. https://doi.org/10.1038/s41396-020-00844-3
Miller, A., Schime, J., Meixner, T., Sickman, J., Melack, J., 2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol. Biochem. 37, 2195–2204. https://doi.org/10.1016/j.soilbio.2005.03.021
Monger, C., Sala, O.E., Duniway, M.C., Goldfus, H., Meir, I.A., Poch, R.M., Throop, H.L., Vivoni, E.R., 2015. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19. https://doi.org/10.1890/140269
Moore-Kucera, J., Dick, R.P., 2008. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microb. Ecol. 55, 500–511. https://doi.org/10.1007/s00248-007-9295-1
Moyano, F.E., Manzoni, S., Chenu, C., 2013. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002
Muhr, J., Goldberg, S.D., Borken, W., Gebauer, G., 2008. Repeated drying-rewetting cycles and their effects on the emission of CO2 , N2O, NO, and CH4in a forest soil. J. Plant Nutr. Soil Sci. 171, 719–728. https://doi.org/10.1002/jpln.200700302
Najera, F., Dippold, M.A., Boy, J., Seguel, O., Koester, M., Stock, S., Merino, C., Kuzyakov, Y., Matus, F., 2020. Effects of drying/rewetting on soil aggregate dynamics and implications for organic matter turnover. Biol. Fertil. Soils 56, 893–905. https://doi.org/10.1007/s00374-020-01469-6
Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
Schimel, J.P., 2018. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
Schimel, J.P., Wetterstedt, J.Å.M., Holden, P.A., Trumbore, S.E., 2011. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biol. Biochem. 43, 1101–1103. https://doi.org/10.1016/j.soilbio.2011.01.008
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386
Semenov, V.M., Kogut, B.M., Zinyakova, N.B., Masyutenko, N. P., Malyukova, L. S., Lebedeva, T. N., Tulina, A. S., 2018. Biologically active organic matter in soils of European Russia. Eurasian Soil Sc. 51, 434–447. https://doi.org/10.1134/S1064229318040117
Shi, A., Marschner, P., 2014. Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biol. Biochem. 72, 172–179. https://doi.org/10.1016/j.soilbio.2014.02.001
Slessarev, E.W., Lin, Y., Jiménez, B.Y., Homyak, P.M., Chadwick, O.A., D’Antonio, C.M., Schimel, J.P., 2020. Cellular and extracellular C contributions to respiration after wetting dry soil. Biogeochemistry 147, 307–324. https://doi.org/10.1007/s10533-020-00645-y
Townsend, A.R., Vitousek, P.M., Desmarais, D.J., Tharpe, A., 1997. Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2incubation fluxes from five Hawaiian soils. Biogeochemistry 38, 1–17. https://doi.org/10.1023/A:1017942918708
Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Warren, C.R., 2016. Do microbial osmolytes or extracellular depolymerisation products accumulate as soil dries? Soil Biol. Biochem. 98, 54–63. https://doi.org/10.1016/j.soilbio.2016.03.021
Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., Cai Z., Jia Z., 2011. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5,  1226–1236. https://doi.org/10.1038/ismej.2011.5
Xiang, S.-R., Doyle, A., Holden, P.A., Schimel, J.P., 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem. 40, 2281–2289. https://doi.org/10.1016/j.soilbio.2008.05.004
Xu, G., Chen, J., Berninger, F., Pumpanen, J., Bai, J., Yu, L., Duan, B., 2015. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 91, 1–13. https://doi.org/10.1016/j.soilbio.2015.08.016
Yemadje, P.L., Chevallier, T., Guibert, H., Bertrand, I., Bernoux, M., 2017. Wetting-drying cycles do not increase organic carbon and nitrogen mineralization in soils with straw amendment. Geoderma 304, 68–75. https://doi.org/10.1016/j.geoderma.2016.06.023
Yuste, J.C., Penuelas, J., Estiarte, M., Garcia-Mas, J., Mattana, S., Ogaya, R., Pujol, M., Sardans, J., 2011. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob. Change Biol. 17, 1475–1486. https://doi.org/10.1111/j.1365-2486.2010.02300.x
Zhang, S., Yu, Z., Lin, J., Zhu, B., 2020. Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis. Geoderma 361, 114069. https://doi.org/10.1016/j.geoderma.2019.114069
Zhang, X., Han, X., Yu, W., Wang, P., Cheng, W., 2017. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years. PloS One 12, e0184978. https://doi.org/10.1371/journal.pone.0184978
Zhang, X., Zhu, B., Yu, F., Cheng, W., 2021. Plant inputs mediate the linkage between soil carbon and net nitrogen mineralization. Sci. Total Environ. 790, 148208. https://doi.org/10.1016/j.scitotenv.2021.148208
Zhu, B., Cheng, W., 2013. Impacts of drying–wetting cycles on rhizosphere respiration and soil organic matter decomposition. Soil Biol. Biochem. 63, 89–96. https://doi.org/10.1016/j.soilbio.2013.03.027
Table 1 Physical and chemical properties of the soils. Values represent means of three replicates with standard deviations in parenthesis. Means within each row followed by different letters represent a significant difference (P < 0.05). SOC, soil organic carbon; WHC, water-holding capacity; DOC, dissolved organic carbon. OF, old-field; BF, bare-fallow; BF+, bare-fallow+incubation. These soils contain little inorganic carbon and soil total C is dominated by SOC.