Declaration of Competing Interest
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.
References
Barnard,
R.L., Blazewicz, S.J., Firestone, M.K., 2020. Rewetting of soil:
Revisiting the origin of soil CO2 emissions. Soil Biol.
Biochem. 147, 107819.
https://doi.org/10.1016/j.soilbio.2020.107819
Barnard,
R.L., Osborne, C.A., Firestone, M.K., 2013. Responses of soil bacterial
and fungal communities to extreme desiccation and rewetting. ISME J. 7,
2229–2241. https://doi.org/10.1038/ismej.2013.104
Barnard,
R.L., Osborne, C.A., Firestone, M.K., 2015. Changing precipitation
pattern alters soil microbial community response to wet-up under a
Mediterranean-type climate. ISME J. 9, 946–957.
https://doi.org/10.1038/ismej.2014.192
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S.,
Kätterer, T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V.,
Chenu, C., 2010. Quantifying and isolating stable soil organic carbon
using long-term bare fallow experiments, Biogeosciences, 7, 3839–3850.
https://doi.org/10.5194/bg-7-3839-2010
Berg,
B., McClaugherty, C., 2008. Decomposition, humus formation, carbon
sequestration. Plant litter. 2nd ed. Berlin Heidelberg: Springer-Verlag.
https://doi.org/10.1007/978-3-030-59631-6
Birch,
H.F., 1958. The effect of soil drying on humus decomposition and
nitrogen availability. Plant Soil 10, 9–31.
https://doi.org/10.1007/BF01343734
Blazewicz,
S.J., Schwartz, E., Firestone, M.K., 2014. Growth and death of bacteria
and fungi underlie rainfall-induced carbon dioxide pulses from
seasonally dried soil. Ecology 95, 1162–1172.
https://doi.org/10.1890/13-1031.1
Borken,
W., Matzner, E., 2009. Reappraisal of drying and wetting effects on C
and N mineralization and fluxes in soils. Glob. Change Biol. 15,
808–824. https://doi.org/10.1111/j.1365-2486.2008.01681.x
Bouyoucos,
G.J., 1962. Hydrometer method improved for making particle size analyses
of soils. Agron. J. 54, 464–465.
https://doi.org/10.2134/agronj1962.00021962005400050028x
Butterly,
C.R., Bünemann, E.K., McNeill, A.M., Baldock, J.A., Marschner, P., 2009.
Carbon pulses but not phosphorus pulses are related to decreases in
microbial biomass during repeated drying and rewetting of soils. Soil
Biol. Biochem. 41, 1406–1416.
https://doi.org/10.1016/j.soilbio.2009.03.018
Butterly,
C.R., McNeill, A.M., Baldock, J.A., Marschner, P., 2011. Changes in
water content of two agricultural soils does not alter labile P and C
pools. Plant Soil 348, 185–201.
https://doi.org/10.1007/s11104-011-0931-7
Canarini,
A., Kiær, L.P., Dijkstra, F.A., 2017. Soil carbon loss regulated by
drought intensity and available substrate: A meta-analysis. Soil Biol.
Biochem. 112, 90–99.
https://doi.org/10.1016/j.soilbio.2017.04.020
Chowdhury, T.R., Lee, J.-Y., Bottos, E.M., Brislawn, C.J., White, R.A.,
Bramer, L.M., Brown, J., Zucker, J.D., Kim, Y.-M., Jumpponen, A., Rice,
C.W., Fansler, S.J., Metz, T.O., McCue, L.A., Callister, S.J., Song,
H.-S., Jansson, J.K., 2019. Metaphenomic responses of a native prairie
soil microbiome to moisture perturbations. mSystems 4, e00061-19.
https://doi.org/10.1128/mSystems.00061-19
Conant,
R.T., Drijber, R.A., Haddix, M.L., Parton, W.J., Paul, E.A., Plante,
A.F., Six, J., Steinweg, J.M., 2008. Sensitivity of organic matter
decomposition to warming varies with its quality. Glob. Change Biol. 14,
868–877. https://doi.org/10.1111/j.1365-2486.2008.01541.x
Dai,
A., 2013. Increasing drought under global warming in observations and
models. Nat. Clim. Change 3, 52–58.
https://doi.org/10.1038/nclimate1633
Davidson,
E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change. Nature 440, 165–173.
https://doi.org/10.1038/nature04514
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M.,
Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M.,
Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser,
J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial
networks are less stable under drought than fungal networks. Nat.
Commun. 9, 3033. https://doi.org/10.1038/s41467-018-05516-7
Demyan,
M.S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., Cadisch, G.,
2012. Use of specific peaks obtained by diffuse reflectance Fourier
transform mid-infrared spectroscopy to study the composition of organic
matter in a Haplic Chernozem. Eur. J. Soil Sci. 63, 189–199.
https://doi.org/10.1111/j.1365-2389.2011.01420.x
Denef,
K., Six, J., Bossuyt, H., Frey, S.D., Elliott, E.T., Merckx, R.,
Paustian, K., 2001. Influence of dry–wet cycles on the
interrelationship between aggregate, particulate organic matter, and
microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611.
https://doi.org/10.1016/S0038-0717(01)00076-1
Donat,
M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., 2016.
More extreme precipitation in the world’s dry and wet regions. Nat.
Clim. Change 6, 508–513. https://doi.org/10.1038/nclimate2941
Ernakovich,
J.G., Wallenstein, M.D., Calderón, F.J., 2015. Chemical indicators of
cryoturbation and microbial processing throughout an Alaskan permafrost
soil depth profile. Soil Sci. Soc. Am. J. 79, 783–793.
https://doi.org/10.2136/sssaj2014.10.0420
Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment
of soil microbial community structure by use of taxon-specific
quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120.
https://doi.org/10.1128/AEM.71.7.4117-4120.2005
Fierer,
N., Schimel, J.P., 2002. Effects of drying–rewetting frequency on soil
carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787.
https://doi.org/10.1016/S0038-0717(02)00007-X
Fierer,
N., Schimel, J.P., 2003. A proposed mechanism for the pulse in carbon
dioxide production commonly observed following the rapid rewetting of a
dry soil. Soil Sci. Soc. Am. J. 67, 798–805.
https://doi.org/10.2136/sssaj2003.7980
Guo,
X., Drury, C.F., Yang, X., Reynolds, W.D., Zhang, R., 2012. Impacts of
wet-dry cycles and a range of constant water contents on carbon
mineralization in soils under three cropping treatments. Soil Sci. Soc.
Am. J. 76, 485–493. https://doi.org/10.2136/sssaj2011.0315
Harrison-Kirk,
T., Beare, M.H., Meenken, E.D., Condron, L.M., 2013. Soil organic matter
and texture affect responses to dry/wet cycles: Effects on carbon
dioxide and nitrous oxide emissions. Soil Biol. Biochem. 57, 43–55.
https://doi.org/10.1016/j.soilbio.2012.10.008
Homyak,
P.M., Blankinship, J.C., Slessarev, E.W., Schaeffer, S.M., Manzoni, S.,
Schimel, J.P., 2018. Effects of altered dry season length and plant
inputs on soluble soil carbon. Ecology 99, 2348–2362.
https://doi.org/10.1002/ecy.2473
Hou,
Y., Chen, Y., Chen, X., He, K., Zhu, B., 2019. Changes in soil organic
matter stability with depth in two alpine ecosystems on the Tibetan
Plateau. Geoderma 351, 153–162.
https://doi.org/10.1016/j.geoderma.2019.05.034
IPCC,
2013. Climate change 2013: The physical science basis: Working Group I
contribution to the Fifth assessment report of the Intergovernmental
Panel on Climate Change. Cambridge Univ. Press.
Kim, D G., Vargas, R., Bond-Lamberty, B., Turetsky, M R., 2012. Effects
of soil rewetting and thawing on soil gas fluxes: a review of current
literature and suggestions for future research. Biogeosciences, 9,
2459-2483. https://doi.org/10.5194/bg-9-2459-2012
Li,
J., Wang, J., Zeng, D., Zhao, S., Huang, W., Sun, X., Hu, Y., 2018. The
influence of drought intensity on soil respiration during and after
multiple drying-rewetting cycles. Soil Biol. Biochem. 127, 82–89.
https://doi.org/10.1016/j.soilbio.2018.09.018
Lin,
J., Zhu, B., Cheng, W., 2015. Decadally cycling soil carbon is more
sensitive to warming than faster-cycling soil carbon. Glob. Change Biol.
21, 4602–4612. https://doi.org/10.1111/gcb.13071
Meisner,
A., Snoek, B.L., Nesme, J., Dent, E., Jacquiod, S., Classen, A.T.,
Priemé, A., 2021. Soil microbial legacies differ following
drying-rewetting and freezing-thawing cycles. ISME J. 15, 1207–1221.
https://doi.org/10.1038/s41396-020-00844-3
Miller,
A., Schime, J., Meixner, T., Sickman, J., Melack, J., 2005. Episodic
rewetting enhances carbon and nitrogen release from chaparral soils.
Soil Biol. Biochem. 37, 2195–2204.
https://doi.org/10.1016/j.soilbio.2005.03.021
Monger,
C., Sala, O.E., Duniway, M.C., Goldfus, H., Meir, I.A., Poch, R.M.,
Throop, H.L., Vivoni, E.R., 2015. Legacy effects in linked
ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ.
13, 13–19. https://doi.org/10.1890/140269
Moore-Kucera,
J., Dick, R.P., 2008. PLFA profiling of microbial community structure
and seasonal shifts in soils of a Douglas-fir chronosequence. Microb.
Ecol. 55, 500–511. https://doi.org/10.1007/s00248-007-9295-1
Moyano,
F.E., Manzoni, S., Chenu, C., 2013. Responses of soil heterotrophic
respiration to moisture availability: An exploration of processes and
models. Soil Biol. Biochem. 59, 72–85.
https://doi.org/10.1016/j.soilbio.2013.01.002
Muhr,
J., Goldberg, S.D., Borken, W., Gebauer, G., 2008. Repeated
drying-rewetting cycles and their effects on the emission of
CO2 , N2O, NO, and CH4in a forest soil. J. Plant Nutr. Soil Sci. 171, 719–728.
https://doi.org/10.1002/jpln.200700302
Najera,
F., Dippold, M.A., Boy, J., Seguel, O., Koester, M., Stock, S., Merino,
C., Kuzyakov, Y., Matus, F., 2020. Effects of drying/rewetting on soil
aggregate dynamics and implications for organic matter turnover. Biol.
Fertil. Soils 56, 893–905. https://doi.org/10.1007/s00374-020-01469-6
Parton,
W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors
controlling soil organic matter levels in Great Plains grasslands. Soil
Sci. Soc. Am. J. 51, 1173–1179.
https://doi.org/10.2136/sssaj1987.03615995005100050015x
Schimel,
J.P., 2018. Life in dry soils: Effects of drought on soil microbial
communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432.
https://doi.org/10.1146/annurev-ecolsys-110617-062614
Schimel,
J.P., Wetterstedt, J.Å.M., Holden, P.A., Trumbore, S.E., 2011.
Drying/rewetting cycles mobilize old C from deep soils from a California
annual grassland. Soil Biol. Biochem. 43, 1101–1103.
https://doi.org/10.1016/j.soilbio.2011.01.008
Schmidt,
M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens,
I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C.,
Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011.
Persistence of soil organic matter as an ecosystem property. Nature 478,
49–56. https://doi.org/10.1038/nature10386
Semenov, V.M., Kogut, B.M., Zinyakova, N.B., Masyutenko, N. P.,
Malyukova, L. S., Lebedeva, T. N., Tulina, A. S., 2018. Biologically
active organic matter in soils of European Russia. Eurasian Soil Sc. 51,
434–447. https://doi.org/10.1134/S1064229318040117
Shi,
A., Marschner, P., 2014. Drying and rewetting frequency influences
cumulative respiration and its distribution over time in two soils with
contrasting management. Soil Biol. Biochem. 72, 172–179.
https://doi.org/10.1016/j.soilbio.2014.02.001
Slessarev,
E.W., Lin, Y., Jiménez, B.Y., Homyak, P.M., Chadwick, O.A., D’Antonio,
C.M., Schimel, J.P., 2020. Cellular and extracellular C contributions to
respiration after wetting dry soil. Biogeochemistry 147, 307–324.
https://doi.org/10.1007/s10533-020-00645-y
Townsend,
A.R., Vitousek, P.M., Desmarais, D.J., Tharpe, A., 1997. Soil carbon
pool structure and temperature sensitivity inferred using
CO2 and 13CO2incubation fluxes from five Hawaiian soils. Biogeochemistry 38, 1–17.
https://doi.org/10.1023/A:1017942918708
Vance,
E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for
measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707.
https://doi.org/10.1016/0038-0717(87)90052-6
Warren,
C.R., 2016. Do microbial osmolytes or extracellular depolymerisation
products accumulate as soil dries? Soil Biol. Biochem. 98, 54–63.
https://doi.org/10.1016/j.soilbio.2016.03.021
Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J.,
Xiong, Z., Xu, J., Cai Z., Jia Z., 2011. Autotrophic growth of
nitrifying community in an agricultural soil. ISME
J. 5, 1226–1236. https://doi.org/10.1038/ismej.2011.5
Xiang,
S.-R., Doyle, A., Holden, P.A., Schimel, J.P., 2008. Drying and
rewetting effects on C and N mineralization and microbial activity in
surface and subsurface California grassland soils. Soil Biol. Biochem.
40, 2281–2289. https://doi.org/10.1016/j.soilbio.2008.05.004
Xu,
G., Chen, J., Berninger, F., Pumpanen, J., Bai, J., Yu, L., Duan, B.,
2015. Labile, recalcitrant, microbial carbon and nitrogen and the
microbial community composition at two Abies faxoniana forest elevations
under elevated temperatures. Soil Biol. Biochem. 91, 1–13.
https://doi.org/10.1016/j.soilbio.2015.08.016
Yemadje,
P.L., Chevallier, T., Guibert, H., Bertrand, I., Bernoux, M., 2017.
Wetting-drying cycles do not increase organic carbon and nitrogen
mineralization in soils with straw amendment. Geoderma 304, 68–75.
https://doi.org/10.1016/j.geoderma.2016.06.023
Yuste,
J.C., Penuelas, J., Estiarte, M., Garcia-Mas, J., Mattana, S., Ogaya,
R., Pujol, M., Sardans, J., 2011. Drought-resistant fungi control soil
organic matter decomposition and its response to temperature. Glob.
Change Biol. 17, 1475–1486.
https://doi.org/10.1111/j.1365-2486.2010.02300.x
Zhang,
S., Yu, Z., Lin, J., Zhu, B., 2020. Responses of soil carbon
decomposition to drying-rewetting cycles: A meta-analysis. Geoderma 361,
114069. https://doi.org/10.1016/j.geoderma.2019.114069
Zhang,
X., Han, X., Yu, W., Wang, P., Cheng, W., 2017. Priming effects on
labile and stable soil organic carbon decomposition: Pulse dynamics
over two years. PloS One 12, e0184978.
https://doi.org/10.1371/journal.pone.0184978
Zhang, X., Zhu, B., Yu, F., Cheng, W., 2021. Plant inputs mediate the
linkage between soil carbon and net nitrogen mineralization. Sci. Total
Environ. 790, 148208.
https://doi.org/10.1016/j.scitotenv.2021.148208
Zhu,
B., Cheng, W., 2013. Impacts of drying–wetting cycles on rhizosphere
respiration and soil organic matter decomposition. Soil Biol. Biochem.
63, 89–96. https://doi.org/10.1016/j.soilbio.2013.03.027
Table 1 Physical and chemical properties of the soils. Values
represent means of three replicates with standard deviations in
parenthesis. Means within each row followed by different letters
represent a significant difference (P < 0.05). SOC,
soil organic carbon; WHC, water-holding capacity; DOC, dissolved organic
carbon. OF, old-field; BF, bare-fallow; BF+, bare-fallow+incubation.
These soils contain little inorganic carbon and soil total C is
dominated by SOC.