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Abstract: This work analyzes the existence of solution and approximate controllability for higher or-
der non-linear fractional integro-differential systems with Riemann-Liouville derivatives in Banach spaces.
Firstly, the definition of mild solution for the system is derived. Then a set of sufficient conditions for
the existence of mild solution and approximate controllability of the system is obtained. The discussions
are based on fixed point approach, and the theory of convolution and fractional resolvent. To illustrate
the feasibility of developed theory, an example is given.
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1 Introduction

Let V and V' be Banach spaces, and Z = L, ([0, A]; V) and U = L,([0, A\]; V') be function spaces. Consider
the non-linear fractional system

Dy=(t) = A=(t) + Bu(t) + f (t,zof), / ¢<t,s,z<s>>ds), te (0,
- _ 0 (1.1)
(It Z(t))tzo =Y €V,

Df_lz(t))t:() =€ ‘/7

(
where 1 < x <2, p < ﬁ (when k # 2) and D} stands for s-order Riemann-Liouville derivative.
The control u € U, the state 2 € Z; A : D(A) C V — V is the generator of a Riemann-Liouville
fractional k-order resolvent g, (t), where D(A) is dense in V. B : U — Z is a linear map. The operators
f:0,AN xVxV =5 Vandyp:AxV —V are non-linear, here A = {(¢,5) : 0 < s <t < A}

In many physical, biological and engineering problems, differential systems of fractional order are found
to be suitable models. Therefore, in last twenty years, they attracted more attention from researchers.
In fact, for the illustration of memory and hereditary properties, fractional derivatives give a better
instrument. For this reason, they have been broadly applied in the areas of physics, electrodynamics,
economics, aerodynamics, control theory, viscoelasticity and heat conduction. In recent years, noteworthy
achievements of fractional systems have been made in the theory as well as applications [2H14].

In many areas such as nuclear reactor dynamics and thermoelasticity, it is required to reflect the
systems’ memory effect in the model. In the modeling of such systems, if differential equations are used,
which involve functions at any specific time and space, the impact of history result is omitted. Therefore,
to incorporate the memory effect in these systems, a term of integration is added in the differential system,
which turns to integro-differential system. The integro-differential systems have been broadly applied in
viscoelastic mechanics, fluid dynamics, thermoelastic contact, control theory, heat conduction, industrial
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mathematics, financial mathematics, biological models, chemical kinetics and aerospace systems, etc.
(see [16H22]).

The existence and controllability results for various types of systems are proved by many researchers
[?,/15,[21H42L /4454, [56L/57]. In recent years, the controllability properties of Caputo fractional systems
have been extensively studied. However, the work on the controllability of Riemann-Liouville fractional
systems is still in the initial phase. Liu and Li [38] studied the approximate controllability of Riemann-
Liouville fractional systems of the form Dfz(t) = Az(t) + f(t, 2(t)) + (Bu)(t) (0 < k < 1) with the
integral initial condition (Itl*“z(t)) +—o = Yo in Banach spaces using the theory of Cy-semigroup together
with the probability density function. Ibrahim et al. [34] determined the existence and controllability
results for the same system with the initial condition lim,_,o+ I'(x)t'~%2(t) = yo using the concept of
k-order resolvent rather than Cp-semigroup. Mahmudov and McKibben |32] determined the approximate
controllability of fractional systems with generalized Riemann-Liouville derivatives. Yang and Wang [31]
investigated the approximate controllability of fractional differential inclusions with Riemann-Liouville
derivatives.

However, as for as we know, the controllability for fractional integro-differential systems of order
k € (1,2] using Riemann-Liouville fractional resolvent have not been discussed in the literature. In order
to fill this gap, we determine the existence and uniqueness of solution and approximate controllability of
the Riemann-Liouville fractional integro-differential system .

Main contributions of the paper are:

e The definition of mild solution in terms of resolvent operator is derived using the theory of convo-
lution.

e Existence and uniqueness of mild solutions is proven using generalized fixed point theorem.

e Approximate controllability of the non-linear system is proven using sequence method. For this,
some additional results are derived in Lemma 5.4 for proposed system under some hypotheses.

e The concept of Riemann-Liouville fractional resolvent is used rather than fractional cosine family.

2 Preliminaries

In this section, some definitions and preliminaries are presented which are used throughout the paper.
Denote by L£(V') the space of linear and bounded operators from V to V.

Definition 2.1. The Riemann-Liouville integral of order k is given by

IFo(t) = ﬁ/o (t— )" p(s)ds, K >0,

where I" is the gamma function.
Definition 2.2. The Riemann-Liouville derivative of order k is given by

1 d”n
L(m — k) dt™

t
Dyg(t) = / (t— )™ lp(s)ds, x>0,

where m = [k] + 1.

Definition 2.3. The Mittag-Leffler function E, z is given by

E.z(§) = Z ﬁ

j=0



For k = 1, it is denoted by Fi.

Theorem 2.4. [/3]. Suppose k > 0, ¢1(t) is non-negative and locally integrable over 0 < t < X and
2(t) is a non-negative, non-decreasing continuous bounded function over 0 < t < . If £(t) be locally
integrable and non-negative over 0 < t < X\ satisfying

) < pr(t) + ea(t) [ (¢ =9 6(s)ds.
0
Then
! S 2 O (k “ ak—1
<o)+ | (Z (R ws)) ds.

a=1

Corollary 2.5. [43]. Under the assumption of Theorem[2.4), if p1(t) is non-decreasing, then

£(t) < e1(t) Ex (p2(6)t"T ().

Definition 2.6. [1|]. A family {p.(t) | t > 0} C L(V) is said to be Riemann-Liouville k-order fractional
resolvent, if

(7)) fory eV, pu()y € C((0,00),V) and
lim T(k — Dt* " p.(t)y =y,

t—0t
(#7) pr(s) and . (t) commute for s,t >0,

(93) for s,t >0
sn72 tm72

O ()7 9r(t) = I50n(8)pn(t) = m— I pu(t) — I(k—1)

T 1) I pk(s).

Definition 2.7. The operator A given by

tQ_K@H(t)y - F(,.il_l) Yy

Ay =T(2k —1) lim fory € D(A),
t—0+ tr
where ) 0 .
7 0s(0)Y — T Y
D(A) = {y €V : lim LD epists ,
t—0+ tr

is known as the generator of Riemann-Liouville k-order fractional resolvent p.(t).

Remark 2.8. Since p,.(-) has singularity at t = 0 (when k # 2). Therefore we can not assume the
uniform boundedness of ©.(t) on any interval (0,7] (r > 0). However, t*~%p,(t) is uniformly bounded
on every bounded interval contained in RT.

Lemma 2.9. [i|]. Let A be the generator of a Riemann-Liouville k-order fractional resolvent p(t), then
(1) ox(t)y € D(A) and Apx(t)y = px(t)Ay for y € D(A),

(i) foryeV,t>0,
K—2

t
() y = =—y+ Al p.(t)y,
Pr(t)y Tmon? HAe (t)y
(#ii) fory e D(A), t>0,
t/$72

my + 179w (t) Ay.

o (t)y =

Throughout this article we assume that there is a constant I, > 0 such that [[t2~%p, (t)]| < .



3 Definition of mild solutions

In this section, we derive the definition of mild solution of (1.1)). For this, we consider the system

sz(t):Az(t)+£(t)a te (Ov>‘]a

where £ € L,([0, A]; V).
By a mild solution of (3.1)) we mean a function z € C'((0, \]; V) satisfying

tnf2 Kk—1

0= =% T

y1 + AIfz(t) + IFE(). (3.2)

From the definition of convolution, it is not difficult to prove the next lemma

Lemma 3.1. Let ¢; and o be any two functions such that 1 * ¢o exists. Then for t > 0, the integral
fg(gl * G2 )(t) dt makes sense and

t ) )
/0(<1*<2><t)dt: (/O <1<t)dt*<2> (t) = <<1*/0 gg(t)dt> (0).

Using above lemma, we prove that (3.2]) is equivalent to the integral equation

0= ontmot [ ottt [ [ outorets)do s (33)
0
Theorem 3.2. A function z € C((0,\]; V) is a mild solution of (3.1) ff it satisfies (3.3).
Proof. Let g.(t) = % and 7, (t) = t;(;; By (i4) of Lemma one has

gn(t) = pn(t) - (Ann * pm) (t)

Now

%*ZZ(KJK—AW*%)*Z

:pﬁ*z—m% ( dt) )

_W<<ﬁy0+/o yldt+/0 dt*f)

cﬁ*<myo+/0()m>y1dt+/o' ()dt*§>7
.



t—s
= px(t )y0+/ o (t y1dt+// s)do ds.

Conversely, we assume that ( is satisfied. Then one has

1

(5ot - r<1>> 12()

7 ono) = oy ) 1 (ontm+ [ eyt + / t / 7 pelo)e(s) do is)

(

= (82‘”@@(5) - 1“(»31—1)) (L?m(t)yo +I£‘/O ©r(t)yr dt + If (/O(.) pr(0) do *f) (t)>
(
i

()T oo — F(Hl_l)lfm(t)yo>

= (ool — s o
+ 57 ( /O Or(t)ys dt — i 1)15/ Pr(t)y dt)
+ 57 ( (/O( or(o dg*§> t)— F(S;:_Ql)ff </O(.) Pr(0) d0*§> (ﬂ)

R—

= (I’“m( )9 (t)yo — mfs On(s )yo)

(I’“m /Otm (t)yr dt — f?m() )
(Iﬁm /0( da*§> t) = Ipn(s) </O(‘) r(f__:) dt*§> (t))
Py i ()<( (t)yo+/ Pt yldt+/ / dods)

. (rf: i i 1)
= s 150(6) (300~ g0~ o

(K/ _ 1) Yo —
Therefore,

1
fgn — 1))

AIFz(t) = D(2k — 1) lim (Szwm(s) = 1)) Ir2(t)

5—0F sk
K—2 k—1
=T(2r— 1) lim 5" I g(s) (z<t> - F(Z gy - ’;(H) Y- I:f(t)) L (34)

Now, for any y € V

I'(2k—1)
(k)

D26 — 1) I (s)y — | = H / P2 (s 9) o, (0)y b — yH



]]2“‘1{/s”*u—ﬂ)*padeﬂ—4

2 -1
H KR / 9= 2 rc 1(319)2_“p,$(819)yd19
(QH — 1 / K—2 rk—1
Tre—1) J, 0 A= wd
< sup HF K — 1)(819) Pr(s0)y — y”
9€(0,1]
— lim T(2k — 1)s* 2 I%p.(s)y = y.
s—0t
Hence from (3.4)
tn72 tlﬁfl

AIfz(t) = 2(t) — Sy v I7E()
tn—2 k—1

Tr—1)% " T

Now we are in position to give the definition of mild solution of the original system in terms of p.
For this, we consider the Banach space Ca_,([0,\; V) = {z : t*7%2(t) € C([0,A};V)} with the norm
Izllca = supseo x{t* " 12(H)llv}-

Definition 3.3. A function z € Ca_,;([0,A]; V) is said to be a mild solution of (1.1)) if it satisfies

= z(t) = y1 + AL z(t) + IFE(L). O

2(t) = Um+/ () dt

/ / <Bu( )+ f (s z / (s, 0 z(ﬁ))dﬂ)) do ds. (3.5)

If we denote by z(t,u) the mild solution of (1.1) corresponding to a given u € U, then the set
Ra(f) = {z(\,u) € V : v € U} is known as the reachable set of (1.1). Further, the system (L.1) is
called approximately controllable on [0, A] if R\ (f) = V.

Remark 3.4. It should be noted that, for k # 2, Co_ ([0, A]; V) is dense subset of Z if p < %

4 Existence and uniqueness of mild solutions

To study the mild solution, we assume the following conditions:

(A1) there exist positive constants Iy and I, satisfying

(Z) Hf(taylvﬂl) - f(t7y23g2)|| S lf (”yl - y2|| + ||:I71 - g?”) vycwga S ‘/7 = 1727
(“) Hw(tasvyl) - 1/’(7578792)” < lw”:yl - yQ” Vyll € ‘/a a = 1327

(A2) there exist @1, 2 € Lp[0, A] and I} > 0 such that

(@) I1F (&5 D < @1(8) + Lt~ (llyll + 17]]) for a.e. t € [0,\] and all y, 7 € V,
(i2) [[9(t, 5, 9)|| < a(s) for (¢,5) € Aand y € V.

Theorem 4.1. Under assumptions (A1) and (A2), the non-linear system (L.1) admits exactly one mild
solution in Ca_,. ([0, A]; V) for each given v € U.



Proof. Define the operator Q : Co_ ([0, A]; V) = Ca—_x ([0, A]; V) by

(Q2)(t) = pu(tyo + / on(B)yn dt

+/Ot /Ots (o) <Bu(5)+f<s,z(5),/os¢(s,§,z(ﬂ))dﬂ>) do ds.

For z,Z € C3_,.([0, A]; V), one has

277(Q2)(1) — (D))l

<o t / 7 o) (#(s:0. [ vts..2009 a0)
- f(s,?(s),/os w(s,ﬁ,g(ﬁ))dﬁ)) do||ds
S A (FERER
# [ 10G6,0,540) - w(s,0,50)) a0 ) ds
<ttt [ sy (720t - 20

+ 1y / 952927 2(9) — 2(19)|d19> ds

< tols - / (t— )" ( )dsnz—zucz K

_ ! lf $2-n “)F(“ 252 le( )L(k—1) 9.y o

i ( T(2k — T ren) Iz =Zle..
1)? LA ~

gzw%” (1+ . )|z—z||0“.

By inductions, one can obtain

£27E1(Q 2)(1) — (QUD)(B)]

I(k—1)" " - Ly A =
< (l@lftﬁ)nlﬂ(((il—i—l))&)—l) (H (1 + (z—i—f)m—l)) Iz = Zllc,-.
I(k—1) (Il AT (5 — 1) (1 + 1y\)"
- I((n+1)r-1)
Dk —1) ([l AT (K — 1) (1 + IyA)"
F{(n+ D= 1)

Iz = Zlle, .

= Q"2 = Q"Zlc,_, < Iz = Zlle, .-

It is known that the Mittag-Leffler series

i (1 lf)\”F k—1) (14 1pN)"

Ep o1 (LA T(k — 1) (1 4+ 1yN))
, 1(Pf (’i +1ZJ T(ak+ (k—1))

(Ll N T (h—1) (141 \)"
T'((n+1)k—1)
tion principle, Q has exactly one fixed point in Cy_, ([0, A]; V'), which is the mild solution of the original

system. O

is convergent. Therefore < F(Kl—l) for some integer n. Hence from Banach contrac-



5 Main results

Let us define the Nemytskii operator ©f : Co_([0, A]; V) = Z given by

t
OO = £(t:20), [ wit.5.50)) ds). 2 € CoorlDAY)
0
and the continuous linear map ® : Z — V given by

D(z) = /0)\ /OAS pr(0)z(s)dods, z € Z.

Remark 5.1. The reachable set Ry (f) is dense in V iff for givene >0 and a y € V, there is a uc € U
such that the mild solution z. corresponding to u. satisfies

A
7— oe(\yo - / o)y dt — D(O(=.)) — B(Bu.)

<e.

For further development, we assume the following conditions:

(As) there exist positive constants Z\f and Tw satisfying

@) 1f (v, 50) = Fye, 52l < Let> " (lyr = wall + 151 = B2l)) V¥arJa €V, a = 1,2,
(”) Hw(tvsvyl) - ¢(t787y2)” < leQ—HHyl - y2|| vyoé € Vv a = 1727

(Ay) for given € > 0 and z € Z, there exists a u € U satisfying

@2 — @(Bu)|lv < e and ||Bullz < bl|2] z,
where b > 0 is constant and it doesn’t dependent on z.

Remark 5.2. Note that (A1) is a weaker assumption than (Az) hence by Theorem[4.1], for a fizedu € U,
the system (1.1) has exactly one mild solution in Ca_, ([0, A]; V') if assumptions (A2) and (A3) are true.
First we derive the next lemma:

Remark 5.3. It is easy to verify that the assumption (Ay4) is satisfied if B(U) is dense in Z.

Lemma 5.4. Under assumptions (As) and (As), any mild solutions of (1.1)) satisfy the following
. LoV AT (1)

(@) 12Cwles <GB (MEF) Jorue U,

(i) llz2 () = 220, u2) e, < CaB (

7 \2
lg’lfRA_f(N)> |Buy — Busl|z for wui,us € U provided that
~n L1 ;AT
Kk —1) > Il LN B, (W)
where

A A2
Ci=ly <||on| +— vl +

p—1\'""
k—1\pr—1
and

> l/ 5—k—1
(IBullz + lle1lz,) +

p

MH@zHLp)
2—-1 ( p—1 1-3
C Hlp)\ P (m)
2= — = .
Kk — 1) — Lol Iy A~ B, (”f}jff“‘))



Proof. (i) If z € Cy_.([0, \]; V) is the mild solution of corresponding to u € U, then

2(t) = pw()yo + / on () dt

+/Ot /OtSp,@(o)(Bu(s)+f(s,z(s),/osw(s,ﬂ,z(ﬂ))dﬁ))dads.

t
27 @)l < 7" o (®yoll +t2”‘/ lon )y ]| dt
0

e /O t /O 7 (o) (Bu(s)+ f(s,z(s), /O Sz/)(s,ﬁ,z(ﬁ))d19>>da

t e gt e
<ty (Il + bl + =5 [ 9 Buts)as

Therefore

ds

t27m

+/<a—1

/Ot“ -8 (ms) s (o) + 1t e cw) ds>

A NTE p—1\'Tr
<l _— B
< p(yo||+ﬁ_1||yl||+ﬁ_1(m_1) (1Bl + o1z,
l/ )\5—25—% t l/ )\2*/& t
r o [ asteal, + L (t—s)ﬁ-lsz-ﬂlz<s>||vds>
l l/ )\2714 t
< 2 [ e s
k=1 J

From Corollary we obtain

Lol A2T (k)
272y < CLEx (p !
k—1
Lol A2T (k)
— |zllco-, <CiE <pi_1 :

(i7) Let zo € Co_x ([0, A]; V) be the mild solution of (1.1} corresponding to u, € U, a =1,2. Then

Za(t) = px(t)yo + /O o (t)y1 dt

+/Ot /OH pn(a)(Bua(s)+f(s,za(s),/osw(s,ﬁ,za(ﬁ))dé‘))dads.

27521 () = 22 () |lv

Lot ( / (= 8 | Bus(s) — Bus(s)] ds + / (- sy

k—1

Hf(sm(S), [ vt vama) - (s, | Sw<s,ﬁ,22w>>dz9)\

N (p1 N S AR
< (my) - Bl 22 -t

Therefore

<

.




@m@—@@ﬁ*@A%QWMM—QWNW)M

< l@A27% b~ 1 1_% B B ZKJ}A2_K ! t k—1_2—kK
W (ey) 1B Buale s ([

t
laa(6) = sa(lds 47y [ (0= 570" sl — sales. )
0

S LT T A5—x
< Bu, — B bolflyA™ "y
ST <p,€_1> || Buq ua|lz + (e — 1) llz1 — 22llcs..

t — )" 127521 (8) — 29(s)]| ds.
e [t ) — ) d

From Corollary we obtain

+

_1

. I (p—1\'%
ﬁl%ﬁ%wwmvé<‘l(p ) - Busle

K — pr—1
= ||lz1 — 22llc,_,. < (l@};\21’1’ (p};—11)1—11’ |Buy — Bus||z
+%ZP§W«—@m%)m<Wff@§

K[zp)\Q—% (p—l )1_% EK (lKJlAfAQF(/{))

pr—1 rk—1

||Bu1 — BUQHZ

= [lz1 — 22llc,, < = =
T Rl = 1) = LT (el

k—1
11 AT
= CeB (W) [Bui — Buz||z. -

Theorem 5.5. Under assumptions (Az)-(A4), the non-linear system (1.1)) is approzimately controllable
if

- Y 1—1 ~
RllbN (1 + 1,0 ) (22) 7 B, (B2
0<

— = <L (5.1)
Ak = 1) = Lol A+ B, (=220 )

k—1

Proof. We need to prove that D(A) C R, (f), that is, for given € > 0 and a y € D(A), there is a u. € U
such that

A
ﬁ>pamm—/‘mwmﬁ—@@ﬂ%»—éw%> <e
0 \%

where z.(t) = z(¢,u:). One can see that there exists a Z € Z such that ®z =, where § = § — o (N)yo —
fo)\ p(t)y1 dt, for example

Z(t) = LK; Dl <()\ —1)2C=R o (N =17 + 2t(\ — t)(2*“)% (A =1)*"pu(A - t)§)> .

)

Let u; € U. By assumption (Ay), there is a us € U such that

A
= ot = [ ottt 005 2)) — a(B00)| < 5.

10



where 21 (t) = z(t,u1). Denote 29(t) = z(t, us), again by assumption (A4) there is a we € U such that
€
12(O5(22) = O5(1)) — @(Bwa)l,, < 5

and

[Buwallz < b]|©4(22) — O4(21)]| ,

:b</0*

s L N
< bl ( / (t“||zQ<t>zl<t>||+lwt“ / ﬂ“zxﬁ)zlw)dﬂ) dt)

A P
< bly (/ (1+ Z¢A3‘”)pdt> 22 = z1llcs .
0

< BIAT (14 1A ) ||22 — 21l ey, - (5.2)

1

P P
dt
14

/ (t,z2<t>7 / tw<t,ﬁ,22w>>dw9) y (ml(t), / tw,wlw))dﬁ)

Since (b.1)) implies that k(k — 1) > lplAflAw)\E’_”E,{ (W) Therefore by previous lemma and (5.2,
we get

1L AT ()

| Bz < BIpAF (1+ 1y A>")Co By < —

) ||BU1 — BUQHZ

~ ~ 1—-1 ~
KoM (14 1yA3") (u) "B, (M

pr—1 rk—1

1, ) Bu; — Bus||z.
Kk — 1) — Ll N~ (M) | Bus ol 2

r—1

Now, if we define
U3(t) = UQ(t) — WQ(t), us c U,

then

A
Ha 0e o — [ (thy dt — 8O (z2)) ~ ¥(Bug)
0 \%

A
< Hy— DNy — / o)y dt — B(O (1)) — B(Bus)

 9(64e2) 051 — 0B,

1 1
S ?+§ E.

By inductions, we have a sequence {u,} in U so that

v

- * 11 1

70— [ o0t~ 80 a) ~ @(Bun)| < (554 55+ + g )
1%

where z,(t) = z(t, up), and

_1 ~
Kl LD (14 Ty A3 (Ll)l * B, (el

pr—1 rk—1

[Bunt1 — Bun |z < ) | Btn, — Bun—1]|z.

5l — 1) — LI TN, (1)

r—1

11



Clearly, the sequence {Bu,} is Cauchy in Z. Completeness of Z and continuity of ® make it clear that
{®(Buy,)} is a Cauchy sequence in V' and hence for some positive integer ng, one has

13
||(I)(Buno+1) - (I)(Buno)HV < g
Now
A
Hy— 0N = [ o0 dt = 8(0(2n)) — BB,
0 1%
A
< Ha 0u Vo = [ (O dt = 9(©Oeny)) ~ BBy i)
1%
+ HCI)(BunoJrl) - (I)(Buno)”\/
(1,1 1 e
>~ 372+373+”.+W €+§
< E.
Hence Ry (f) = V. O
6 Example

Consider the following boundary value problem with x € (1,2] and 0 < o <1

D¢t 0) = 25¢(t,0) +v(t, o) + f (t,g(t,a),/o w(t,s,g(s,a))ds) L 0<t<l,

(IF77¢(t, 0)),_y = s0(0), 0<o<l,
(Df_ldtvg))t:o = §1(O'), 0<o<1.

Let V =V'=L5[0,1] and A: D(A) CV — V is defined as

d?y
Ay = —=2
4 do?

where

D(A) = {y € W*?[0,1] | y(0) = y(1) = 0}.
Then the k-order fractional resolvent g, (t) generated by A is given by

o0
(p(t)y)(0) = D> "2 E, o1 (—a?7t") yq sin(ano),
a=1
where sin(7o),sin(270), ... are eigenfunctions of A associated with the eigenvalues —n2, —2272, .. .; re-

spectively and y(o) = Y oo | ya sin(azo) (see [1]).
The abstract form of (6.1)) is

D?Z(t):AZ(tHBU(t)Jrf(t,z(t% / wu,s,z(s))ds) te (0,1,

(177" 2(t)) g = w0,
(Dfilz(t))t:() = Y1,
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where z(t) = ((t,-), u(t) = v(t,-), yo =<0(-), y1 = <1(-) and B is the identity operator.
If we take

QMﬂ:A¢W&d&®MS

and
f@@@@@@aﬁf&@@ay[w@a«awwﬁ

= (14 t?) + ot <C(t,o') + /Ot L (£ + %) s° cos(ts) sin(((s, o)) ds> ,

where
U(t,s,((s,0)) =11 (t* + s%) s° cos(ts) sin(((s, 0)).

Then (i) of (Az), and (A3) are satisfied with I}, = lAf = |lp| and lAd, = 2|ly].
Also,
”w(ta S, <(870'))H < |ll‘ (1 + 82) 83 = @2(5) € LP[07 1]

Hence (i7) of (Asg) is satisfied. If we select Iy and Iy sufficiently close to zero so that (5.1)) is satisfied, then
by Theorem [5.5 the approximately controllability of (6.1]) follows if k > %

7 Concluding remarks

In this paper, we have investigated the approximate controllability of higher order Riemann-Liouville
fractional integro-differential systems with integral initial conditions in Banach spaces. The results for
existence and uniqueness have been derived by using the theory of fixed point together with Lipschitz
continuity of non-linear functions. For this, the definition of mild solution in terms of fractional resolvent
©«(+) has been derived. Making use of these techniques, one can study the approximate controllability of
higher order Riemann-Liouville fractional integro-differential systems with non-instantaneous impulses.
Also, these results can be extended for non-autonomous systems with Riemann-Liouville derivatives.
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