References
Allen, S. K., Plattner, G. K., Nauels, A., Xia, Y., & Stocker, T. F.
(2014). Climate Change 2013: The physical science basis. An overview of
the working group 1 contribution to the fifth assessment report of the
Intergovernmental Panel on Climate Change (IPCC). In EGU General
Assembly Conference Abstracts, 3544.
Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of
bioclimatic envelope modeling. Ecology, 93(7), 1527-1539.
https://doi.org/10.1890/11-1930.1
Bayer, A. D., Fuchs, R., Mey, R., Krause, A., Verburg, P. H., Anthoni,
P., & Arneth, A. (2021). Diverging land-use projections cause large
variability in their impacts on ecosystems and related indicators for
ecosystem services. Earth System Dynamics, 12(1), 327-351.
https://doi.org/10.5194/esd-12-327-2021
Bedia, J., Busqué, J., & Gutiérrez, J. M. (2011). Predicting plant
species distribution across an alpine rangeland in northern Spain. A
comparison of probabilistic methods. Applied Vegetation
Science , 14(3), 415-432.
https://doi.org/10.1111/j.1654-109X.2011.01128.x
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp,
F. (2012). Impacts of climate change on the future of biodiversity.Ecology letters, 15(4), 365-377.
https://doi.org/10.1111/j.1461-0248.2011.01736.x
Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0:
the next generation Python-based GIS toolkit for landscape genetic,
biogeographic and species distribution model analyses. PeerJ, 5,
e4095. https://doi.org/10.7717/peerj.4095
Cun, Y. (2005). A Study on the Reproductive Ecology of Satyrium
ciliatum Ldl . (Orchidaceae). Institute of Botany, Chinese Academy of
Sciences.
Deblauwe, V., Droissart, V., Bose, R., Sonké, B., Blach-Overgaard, A.,
Svenning, J. C., Wieringa, J. J., Ramesh, B. R., Stévart, T., &
Couvreur, T. L. P. (2016). Remotely sensed temperature and precipitation
data improve species distribution modelling in the tropics. Global
Ecology and Biogeography, 25(4), 443-454.
https://doi.org/10.1111/geb.12426
Deng, J., Wei, Q., Liang, M., He, S., & Zhang, H. (2019). Does heat
pumps perform energy efficiently as we expected: Field tests and
evaluations on various kinds of heat pump systems for space
heating. Energy and Buildings , 182, 172-186.
https://doi.org/10.1016/j.enbuild.2018.10.014
Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H.
(2011). Geographical ecology of the palms (Arecaceae): determinants of
diversity and distributions across spatial scales. Annals of
Botany , 108(8), 1391-1416. https://doi.org/10.1093/aob/mcr146
Elith, J., & Leathwick, J. R. (2009). Species distribution models:
ecological explanation and prediction across space and time.Annual Review of Ecology, Evolution, and Systematics ,40,677-697.
https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling
range‐shifting species. Methods in ecology and evolution , 1(4),
330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Etherington, T. R. (2011). Python based GIS tools for landscape
genetics: visualising genetic relatedness and measuring landscape
connectivity. Methods in Ecology and Evolution , 2(1), 52-55.
https://doi.org/10.1111/j.2041-210X.2010.00048.x
Feng, L., Sun, J., Shi, Y., Wang, G., & Wang, T. (2020). Predicting
suitable habitats of Camptotheca acuminata considering both
climatic and soil variables. Forests, 11(8), 891.
https://doi.org/10.3390/f11080891
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the
assessment of prediction errors in conservation presence/absence models.Environmental Conservation, 24(1), 38-49.
https://doi.org/10.1017/S0376892997000088
Ghini, R., Hamada, E., Angelotti, F., Costa, L. B., & Bettiol, W.
(2012). Research approaches, adaptation strategies, and knowledge gaps
concerning the impacts of climate change on plant diseases.Tropical Plant Pathology, 37, 5-24.
https://doi.org/10.1590/S1982-56762012000100002
Graham, M. H. (2003). Confronting multicollinearity in ecological
multiple regression. Ecology, 84(11), 2809-2815.
https://doi.org/10.1890/02-3114
Huang, S. Q., Lu, Y., Chen, Y. Z., Luo, Y. B., & Delph, L. F. (2009).
Parthenogenesis maintains male sterility in a gynodioecious
orchid. The American Naturalist , 174(4), 578-584.
https://doi.org/10.1086/605378
Janitza, S., Strobl, C., & Boulesteix, A. L. (2013). An AUC-based
permutation variable importance measure for random forests. BMC
Bioinformatics, 14(1), 1-11.
https://doi.org/10.1186/1471-2105-14-119
Jiang, Y., Wang, T., Wu, Y., Hu, R., Huang, K., & Shao, X. (2018). Past
distribution of epiphyllous liverworts in China: The usability of
historical data. Ecology and evolution , 8(15), 7436-7450.
https://doi.org/10.1002/ece3.4274
Johnson, S. D., Peter, C. I., Ellis, A. G., Boberg, E., Botes, C., &
van der Niet, T. (2011). Diverse pollination systems of the twin-spurred
orchid genus Satyrium in African grasslands. Plant
Systematics and Evolution, 292(1), 95-103.
https://doi.org/10.1007/s00606-010-0411-1
Kumar, D., Rawat, S., & Joshi, R. (2021). Predicting the current and
future suitable habitat distribution of the medicinal treeOroxylum indicum (L.) Kurz in India. Journal of Applied
Research on Medicinal and Aromatic Plants, 23, 100309.
https://doi.org/10.1016/j.jarmap.2021.100309
Li, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019).
Maxent modelling for predicting climate change effects on the potential
planting area of tuber mustard in China. The Journal of
Agricultural Science, 157(5), 375-381.
https://doi.org/10.1017/S0021859619000686
Li, Y., Li, M., Li, C., & Liu, Z. (2020). Optimized maxent model
predictions of climate change impacts on the suitable distribution ofcunninghamia lanceolata in China. Forests , 11(3), 302.
https://doi.org/10.3390/f11030302
Liu, L., Guan, L., Zhao, H., Huang, Y., Mou, Q., Liu, K., Chen, T.,
Wang, X., Zhang, Y., Wei, B., & Hu, J. (2021). Modeling habitat
suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt
under climate change in China. Ecological Informatics , 63,
101324. https://doi.org/10.1016/j.ecoinf.2021.101324
Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). AUC: a misleading
measure of the performance of predictive distribution
models. Global ecology and Biogeography , 17(2), 145-151.
https://doi.org/10.1111/j.1466-8238.2007.00358.x
Luo, C., Shen, Z., Li, Y., Han, J., Pausas, J. G., Xu, Q., Zhang, Z., &
Jiang, Y. (2021). Determinants of post–fire regeneration demography in
a subtropical monsoon–climate forest in Southwest China. Science
of the Total Environment, 766, 142605.
https://doi.org/10.1016/j.scitotenv.2020.142605
Lou, W., Sun, S., Wu, L., & Sun, K. (2015). Effects of climate change
on the economic output of the Longjing-43 tea tree,
1972–2013. International Journal of Biometeorology , 59(5),
593-603. https://doi.org/10.1007/s00484-014-0873-x
Mahendran, G., & Bai, V. N. (2009). Mass propagation of Satyrium
nepalense D.Don. - A medicinal orchid via seed culture. Scientia
Horticulturae, 119(2), 203-207.
https://doi.org/10.1016/j.scienta.2008.07.029
McIntyre, S., Rangel, E. F., Ready, P. D., & Carvalho, B. M. (2017).
Species-specific ecological niche modelling predicts different range
contractions for Lutzomyia intermedia and a related vector of Leishmania
braziliensis following climate change in South America. Parasites
& vectors , 10(1), 1-15. https://doi.org/10.1186/s13071-017-2093-9
Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide
to MaxEnt for modeling species’ distributions: what it does, and why
inputs and settings matter. Ecography, 36(10), 1058-1069.
https://doi.org/10.1111/j.1600-0587.2013.07872.x
Miranda, J. D. D., Armas, C., Padilla, F. M., & Pugnaire, F. I. (2011).
Climatic change and rainfall patterns: effects on semi-arid plant
communities of the Iberian Southeast. Journal of Arid
Environments , 75(12), 1302-1309.
https://doi.org/10.1016/j.jaridenv.2011.04.022
Mishra, A. P., & Saklani, S. (2012). Satyrium nepalense: a rare
medicinal orchid of western Himalaya (India); phytochemical screening,
antimicrobial evaluation and conservation studies. Indonesian
Journal of Pharmacy, 23(3), 162-170.
http://doi.org/10.14499/indonesianjpharm23iss3pp162-170
Mishra, A. P., Saklani, S., Salehi, B., Parcha, V., Sharifi-Rad, M.,
Milella, L., Iriti, M., Sharifi-Rad, J., & Srivastava, M. (2018).
Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan
region: chemical profile and biological activities of tuber extracts.Cellular and Molecular Biology (Noisy-le-Grand, France) , 64(8),
35-43. http:
//doi.org/10.14715/cmb/2018.64.8.6
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass,
J. M., Uriarte, M., & Anderson, R. P. (2014). ENM eval: An R package
for conducting spatially independent evaluations and estimating optimal
model complexity for Maxent ecological niche models. Methods in
ecology and evolution , 5(11), 1198 - 1205.
https://doi.org/10.1111/2041-210X.12261
Pan, J., Fan, X., Luo, S., Zhang, Y., Yao, S., Guo, Q., & Qian, Z.
(2020). Predicting the Potential Distribution of Two Varieties ofLitsea coreana (Leopard-Skin Camphor) in China under Climate
Change. Forests, 11(11), https://doi.org/10.3390/f11111159
Parisien, M. A., & Moritz, M. A. (2009). Environmental controls on the
distribution of wildfire at multiple spatial scales. Ecological
Monographs , 79(1), 127-154. https://doi.org/10.1890/07-1289.1
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend, P. A.
(2007). ORIGINAL ARTICLE: Predicting species distributions from small
numbers of occurrence records: a test case using cryptic geckos in
Madagascar. Journal of Biogeography, 34(1), 102-117.
https://doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver
operating characteristic analysis applications in ecological niche
modeling. Ecological modelling , 213(1), 63-72.
https://doi.org/10.1016/j.ecolmodel.2007.11.008
Phillips, R. D., Brown, A. P., Dixon, K. W., & Hopper, S. D. (2011).
Orchid biogeography and factors associated with rarity in a biodiversity
hotspot, the Southwest Australian Floristic Region. Journal of
Biogeography , 38(3): 487-501.
https://doi.org/10.1111/j.1365-2699.2010.02413.x
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling, 190(3-4), 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poff, K. E., Sharma, J., & Richards, M. (2016). Cold-moist
stratification improves germination in a temperate terrestrial orchid.Castanea , 81(4), 292-301. https://doi.org/10.2179/16-098
Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent
models of species distributions: complexity, overfitting and
evaluation. Journal of biogeography , 41(4), 629-643.
https://doi.org/10.1111/jbi.12227
Riahi, K., Vuuren, D. P. v., Kriegler, E., Edmonds, J., O’Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T.,
Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., &
Humpenöder, F. (2017). The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An
overview. Global Environmental Change, 42, 153-168.
https://doi.org/10.1016/j.gloenvcha.2016.05.009
Teoh, E. S. (2016). Genus: Satyrium to Sunipia .Medicinal Orchids of Asia , Chapter 20, 639-658. https://doi:
10.1007/978-3-319-24274-3_20.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J.,
Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A.,
Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G.
F., Miles, L., Ortega, H. M. A., Peterson, T. A., Philips, O.L., &
(2004). Extinction risk from climate change. Nature, 427(6970),
145-148. https://doi.org/10.1038/nature02121
Wang, R., Jiang, C., Liu, L., Shen, Z., Yang, J., Wang, Y., Hu, J.,
Wang, M., Hu, J., Lu, X., & Li, Q. (2021). Prediction of the potential
distribution of the predatory mite Neoseiulus californicus
McGregor in China using MaxEnt. Global Ecology and Conservation,29, e01733. https://doi.org/10.1016/j.gecco.2021.e01733
Warren, D. L., Dornburg, A., Zapfe, K., & Iglesias, T. L. (2021). The
effects of climate change on Australia’s only endemic Pokémon: Measuring
bias in species distribution models. Methods in Ecology and
Evolution, 12(6), 985-995.
https://doi.org/10.1111/2041-210X.13591
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in
Maxent: the importance of model complexity and the performance of model
selection criteria. Ecological applications , 21(2), 335-342.
https://doi.org/10.1890/10-1171.1
Xu, D., Zhuo, Z., Wang, R., Ye, M., & Pu, B. (2019). Modeling the
distribution of Zanthoxylum armatum in China with MaxEnt modeling.Global Ecology and Conservation, 19, e00691.
https://doi.org/10.1016/j.gecco.2019.e00691
Yan, X., Wang, S., Duan, Y., Han, J., Huang, D., & Zhou, J. (2021).
Current and future distribution of the deciduous shrub Hydrangea
macrophylla in China estimated by MaxEnt. Ecology and Evolution ,
11(22), 16099-16112. https://doi.org/10.1002/ece3.8288
Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S.
(2013). Maxent modeling for predicting the potential distribution of
medicinal plant, Justicia adhatoda L. in Lesser Himalayan
foothills. Ecological engineering , 51, 83-87.
https://doi.org/10.1016/j.ecoleng.2012.12.004
Yue, Y., Yan, D., Yue, Q., Ji, G., & Wang Z. (2021). Future changes in
precipitation and temperature over the Yangtze River Basin in China
based on CMIP6 GCMs. Atmospheric Research , 264, 105828.
https://doi.org/10.1016/j.atmosres.2021.105828
Zhao, Y., Deng, X., Xiang, W., Chen, L., & Ouyang, S. (2021).
Predicting potential suitable habitats of Chinese fir under current and
future climatic scenarios based on Maxent model. Ecological
Informatics , 64, 101393.
https://doi.org/10.1016/j.ecoinf.2021.101393
Zhou, G., & Wang, Y. (2000). Global change and climate-vegetation
classification. Chinese Science Bulletin , 45(7), 577-585.
https://doi.org/10.1007/BF02886031
Zhou, Y., Zhang, Z., Zhu, B., Cheng, X., Yang, L., Gao, M., & Kong, R.
(2021). MaxEnt Modeling Based on CMIP6 Models to Project Potential
Suitable Zones for Cunninghamia lanceolata in China.Forests, 12(6), 752. https://doi.org/10.3390/f12060752