References
Allen, S. K., Plattner, G. K., Nauels, A., Xia, Y., & Stocker, T. F. (2014). Climate Change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). In EGU General Assembly Conference Abstracts, 3544.
Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527-1539. https://doi.org/10.1890/11-1930.1
Bayer, A. D., Fuchs, R., Mey, R., Krause, A., Verburg, P. H., Anthoni, P., & Arneth, A. (2021). Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth System Dynamics, 12(1), 327-351. https://doi.org/10.5194/esd-12-327-2021
Bedia, J., Busqué, J., & Gutiérrez, J. M. (2011). Predicting plant species distribution across an alpine rangeland in northern Spain. A comparison of probabilistic methods. Applied Vegetation Science , 14(3), 415-432. https://doi.org/10.1111/j.1654-109X.2011.01128.x
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity.Ecology letters, 15(4), 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095. https://doi.org/10.7717/peerj.4095
Cun, Y. (2005). A Study on the Reproductive Ecology of Satyrium ciliatum Ldl . (Orchidaceae). Institute of Botany, Chinese Academy of Sciences.
Deblauwe, V., Droissart, V., Bose, R., Sonké, B., Blach-Overgaard, A., Svenning, J. C., Wieringa, J. J., Ramesh, B. R., Stévart, T., & Couvreur, T. L. P. (2016). Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Global Ecology and Biogeography, 25(4), 443-454. https://doi.org/10.1111/geb.12426
Deng, J., Wei, Q., Liang, M., He, S., & Zhang, H. (2019). Does heat pumps perform energy efficiently as we expected: Field tests and evaluations on various kinds of heat pump systems for space heating. Energy and Buildings , 182, 172-186. https://doi.org/10.1016/j.enbuild.2018.10.014
Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany , 108(8), 1391-1416. https://doi.org/10.1093/aob/mcr146
Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time.Annual Review of Ecology, Evolution, and Systematics ,40,677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species. Methods in ecology and evolution , 1(4), 330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Etherington, T. R. (2011). Python based GIS tools for landscape genetics: visualising genetic relatedness and measuring landscape connectivity. Methods in Ecology and Evolution , 2(1), 52-55. https://doi.org/10.1111/j.2041-210X.2010.00048.x
Feng, L., Sun, J., Shi, Y., Wang, G., & Wang, T. (2020). Predicting suitable habitats of Camptotheca acuminata considering both climatic and soil variables. Forests, 11(8), 891. https://doi.org/10.3390/f11080891
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models.Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088
Ghini, R., Hamada, E., Angelotti, F., Costa, L. B., & Bettiol, W. (2012). Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases.Tropical Plant Pathology, 37, 5-24. https://doi.org/10.1590/S1982-56762012000100002
Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84(11), 2809-2815. https://doi.org/10.1890/02-3114
Huang, S. Q., Lu, Y., Chen, Y. Z., Luo, Y. B., & Delph, L. F. (2009). Parthenogenesis maintains male sterility in a gynodioecious orchid. The American Naturalist , 174(4), 578-584. https://doi.org/10.1086/605378
Janitza, S., Strobl, C., & Boulesteix, A. L. (2013). An AUC-based permutation variable importance measure for random forests. BMC Bioinformatics, 14(1), 1-11. https://doi.org/10.1186/1471-2105-14-119
Jiang, Y., Wang, T., Wu, Y., Hu, R., Huang, K., & Shao, X. (2018). Past distribution of epiphyllous liverworts in China: The usability of historical data. Ecology and evolution , 8(15), 7436-7450. https://doi.org/10.1002/ece3.4274
Johnson, S. D., Peter, C. I., Ellis, A. G., Boberg, E., Botes, C., & van der Niet, T. (2011). Diverse pollination systems of the twin-spurred orchid genus Satyrium in African grasslands. Plant Systematics and Evolution, 292(1), 95-103. https://doi.org/10.1007/s00606-010-0411-1
Kumar, D., Rawat, S., & Joshi, R. (2021). Predicting the current and future suitable habitat distribution of the medicinal treeOroxylum indicum (L.) Kurz in India. Journal of Applied Research on Medicinal and Aromatic Plants, 23, 100309. https://doi.org/10.1016/j.jarmap.2021.100309
Li, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019). Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China. The Journal of Agricultural Science, 157(5), 375-381. https://doi.org/10.1017/S0021859619000686
Li, Y., Li, M., Li, C., & Liu, Z. (2020). Optimized maxent model predictions of climate change impacts on the suitable distribution ofcunninghamia lanceolata in China. Forests , 11(3), 302. https://doi.org/10.3390/f11030302
Liu, L., Guan, L., Zhao, H., Huang, Y., Mou, Q., Liu, K., Chen, T., Wang, X., Zhang, Y., Wei, B., & Hu, J. (2021). Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecological Informatics , 63, 101324. https://doi.org/10.1016/j.ecoinf.2021.101324
Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography , 17(2), 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Luo, C., Shen, Z., Li, Y., Han, J., Pausas, J. G., Xu, Q., Zhang, Z., & Jiang, Y. (2021). Determinants of post–fire regeneration demography in a subtropical monsoon–climate forest in Southwest China. Science of the Total Environment, 766, 142605. https://doi.org/10.1016/j.scitotenv.2020.142605
Lou, W., Sun, S., Wu, L., & Sun, K. (2015). Effects of climate change on the economic output of the Longjing-43 tea tree, 1972–2013. International Journal of Biometeorology , 59(5), 593-603. https://doi.org/10.1007/s00484-014-0873-x
Mahendran, G., & Bai, V. N. (2009). Mass propagation of Satyrium nepalense D.Don. - A medicinal orchid via seed culture. Scientia Horticulturae, 119(2), 203-207. https://doi.org/10.1016/j.scienta.2008.07.029
McIntyre, S., Rangel, E. F., Ready, P. D., & Carvalho, B. M. (2017). Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasites & vectors , 10(1), 1-15. https://doi.org/10.1186/s13071-017-2093-9
Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Miranda, J. D. D., Armas, C., Padilla, F. M., & Pugnaire, F. I. (2011). Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian Southeast. Journal of Arid Environments , 75(12), 1302-1309. https://doi.org/10.1016/j.jaridenv.2011.04.022
Mishra, A. P., & Saklani, S. (2012). Satyrium nepalense: a rare medicinal orchid of western Himalaya (India); phytochemical screening, antimicrobial evaluation and conservation studies. Indonesian Journal of Pharmacy, 23(3), 162-170. http://doi.org/10.14499/indonesianjpharm23iss3pp162-170
Mishra, A. P., Saklani, S., Salehi, B., Parcha, V., Sharifi-Rad, M., Milella, L., Iriti, M., Sharifi-Rad, J., & Srivastava, M. (2018). Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: chemical profile and biological activities of tuber extracts.Cellular and Molecular Biology (Noisy-le-Grand, France) , 64(8), 35-43. http: //doi.org/10.14715/cmb/2018.64.8.6
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in ecology and evolution , 5(11), 1198 - 1205. https://doi.org/10.1111/2041-210X.12261
Pan, J., Fan, X., Luo, S., Zhang, Y., Yao, S., Guo, Q., & Qian, Z. (2020). Predicting the Potential Distribution of Two Varieties ofLitsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests, 11(11), https://doi.org/10.3390/f11111159
Parisien, M. A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs , 79(1), 127-154. https://doi.org/10.1890/07-1289.1
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend, P. A. (2007). ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological modelling , 213(1), 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Phillips, R. D., Brown, A. P., Dixon, K. W., & Hopper, S. D. (2011). Orchid biogeography and factors associated with rarity in a biodiversity hotspot, the Southwest Australian Floristic Region. Journal of Biogeography , 38(3): 487-501. https://doi.org/10.1111/j.1365-2699.2010.02413.x
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poff, K. E., Sharma, J., & Richards, M. (2016). Cold-moist stratification improves germination in a temperate terrestrial orchid.Castanea , 81(4), 292-301. https://doi.org/10.2179/16-098
Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of biogeography , 41(4), 629-643. https://doi.org/10.1111/jbi.12227
Riahi, K., Vuuren, D. P. v., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., & Humpenöder, F. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Teoh, E. S. (2016). Genus: Satyrium to Sunipia .Medicinal Orchids of Asia , Chapter 20, 639-658. https://doi: 10.1007/978-3-319-24274-3_20.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega, H. M. A., Peterson, T. A., Philips, O.L., & (2004). Extinction risk from climate change. Nature, 427(6970), 145-148. https://doi.org/10.1038/nature02121
Wang, R., Jiang, C., Liu, L., Shen, Z., Yang, J., Wang, Y., Hu, J., Wang, M., Hu, J., Lu, X., & Li, Q. (2021). Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Global Ecology and Conservation,29, e01733. https://doi.org/10.1016/j.gecco.2021.e01733
Warren, D. L., Dornburg, A., Zapfe, K., & Iglesias, T. L. (2021). The effects of climate change on Australia’s only endemic Pokémon: Measuring bias in species distribution models. Methods in Ecology and Evolution, 12(6), 985-995. https://doi.org/10.1111/2041-210X.13591
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological applications , 21(2), 335-342. https://doi.org/10.1890/10-1171.1
Xu, D., Zhuo, Z., Wang, R., Ye, M., & Pu, B. (2019). Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling.Global Ecology and Conservation, 19, e00691. https://doi.org/10.1016/j.gecco.2019.e00691
Yan, X., Wang, S., Duan, Y., Han, J., Huang, D., & Zhou, J. (2021). Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecology and Evolution , 11(22), 16099-16112. https://doi.org/10.1002/ece3.8288
Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological engineering , 51, 83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004
Yue, Y., Yan, D., Yue, Q., Ji, G., & Wang Z. (2021). Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric Research , 264, 105828. https://doi.org/10.1016/j.atmosres.2021.105828
Zhao, Y., Deng, X., Xiang, W., Chen, L., & Ouyang, S. (2021). Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics , 64, 101393. https://doi.org/10.1016/j.ecoinf.2021.101393
Zhou, G., & Wang, Y. (2000). Global change and climate-vegetation classification. Chinese Science Bulletin , 45(7), 577-585. https://doi.org/10.1007/BF02886031
Zhou, Y., Zhang, Z., Zhu, B., Cheng, X., Yang, L., Gao, M., & Kong, R. (2021). MaxEnt Modeling Based on CMIP6 Models to Project Potential Suitable Zones for Cunninghamia lanceolata in China.Forests, 12(6), 752. https://doi.org/10.3390/f12060752