References
Alberdi, A., Aizpurua, O., Bohmann, K., Gopalakrishnan, S., Lynggaard,
C., Nielsen, M., … Bik, H. M. (2017). Promises and pitfalls of
using high-throughput sequencing for diet analysis. Molecular
Ecology Resources , 98 (1), 1423–1428.
https://doi.org/10.1111/mec.13549
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018).
Scrutinizing key steps for reliable metabarcoding of environmental
samples. Methods in Ecology and Evolution , 9 (1), 134–147.
https://doi.org/10.1111/2041-210X.12849
Alonso, H., Granadeiro, J. P., Waap, S., Xavier, J., Symondson, W. O.
C., Ramos, J. A., & Catry, P. (2014). An holistic ecological analysis
of the diet of Cory’s shearwaters using prey morphological characters
and DNA barcoding. Molecular Ecology , 23 (15), 3719–3733.
https://doi.org/10.1111/mec.12785
Ando, H., Setsuko, S., Horikoshi, K., Suzuki, H., Umehara, S.,
Inoue-Murayama, M., & Isagi, Y. (2013). Diet analysis by
next-generation sequencing indicates the frequent consumption of
introduced plants by the critically endangered red-headed wood pigeon
(Columba janthina nitens ) in oceanic island habitats.Ecology and Evolution , 3 (12), 4057–4069.
https://doi.org/10.1002/ece3.773
Andújar, C., Arribas, P., Yu, D. W., Vogler, A. P., & Emerson, B. C.
(2018). Why the COI barcode should be the community DNA metabarcode for
the metazoa. Molecular Ecology , 27 (20), 3968–3975.
https://doi.org/10.1111/mec.14844
Balmer, D. E., Gillings, S., Caffrey, B. J., Swann, R. L., Downie, I.
S., & Fuller, R. J. (2013). Bird Atlas 2007–11: The breeding and
wintering birds of Britain and Ireland. Thetford: BTO Books.
Bijlsma, R. G. (1998). Breeding biology and population trend of
Hawfinches Coccothraustes coccothraustes in Flevoland.Limosa , 71 (4), 137–148.
Brown, D. S., Burger, R., Cole, N., Vencatasamy, D., Clare, E. L.,
Montazam, A., & Symondson, W. O. C. (2014). Dietary competition between
the alien Asian Musk Shrew (Suncus murinus ) and a re-introduced
population of Telfair’s Skink (Leiolopisma telfairii ).Molecular Ecology , 23 (15), 3695–3705.
https://doi.org/10.1111/mec.12445
Bryant, D. (2011). Multi-species groups of finches feeding on Wych Elm
fruits in spring. Scottish Birds , 31 , 311–314.
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and
extrapolation: standardizing samples by completeness rather than size.Ecology , 93 (12), 2533–2547.
https://doi.org/https://doi.org/10.1890/11-1952.1
Charman, E. C., Smith, K., Dodd, S., Gruar, D. J., & Dillon, I. A.
(2012). Pre-breeding foraging and nest site habitat selection by Lesser
Spotted Woodpeckers Dendrocopos minor in mature woodland blocks
in England. Ornis Fennica , 89 (3), 182–196.
Cholewa, M., & Wesołowski, T. (2011). Nestling Food of European
Hole-Nesting Passerines: Do We Know Enough to Test the Adaptive
Hypotheses on Breeding Seasons? Acta Ornithologica , 46 (2),
105–116. https://doi.org/10.3161/000164511X625874
Clare, E. L., Symondson, W. O. C., Broders, H., Fabianek, F., Fraser, E.
E., Mackenzie, A., … Reimer, J. P. (2014). The diet ofMyotis lucifugus across Canada: Assessing foraging quality and
diet variability. Molecular Ecology , 23 (15), 3618–3632.
https://doi.org/10.1111/mec.12542
Clare, E. L., Symondson, W. O. C., & Fenton, M. B. (2014). An
inordinate fondness for beetles? Variation in seasonal dietary
preferences of night-roosting big brown bats (Eptesicus fuscus ).Molecular Ecology , 23 (15), 3633–3647.
https://doi.org/10.1111/mec.12519
Clements, R. (2013). A UK population estimate for the Hawfinch.British Birds , 106 , 43–44.
Cuff, J. P., Drake, L. E., Tercel, M. P. T. G., Stockdale, J. E.,
Orozco-terWengel, P., Bell, J. R., … Symondson, W. O. C. (2021).
Money spider dietary choice in pre- and post-harvest cereal crops using
metabarcoding. Ecological Entomology , 46 (2), 249–261.
https://doi.org/https://doi.org/10.1111/een.12957
da Silva, L. P., Mata, V. A., Lopes, P. B., Lopes, R. J., & Beja, P.
(2020). High-resolution multi-marker DNA metabarcoding reveals sexual
dietary differentiation in a bird with minor dimorphism. Ecology
and Evolution , 10 (19), 10364–10373.
https://doi.org/10.1002/ece3.6687
da Silva, L. P., Mata, V. A., Lopes, P. B., Pereira, P., Jarman, S. N.,
Lopes, R. J., & Beja, P. (2019). Advancing the integration of
multi-marker metabarcoding data in dietary analysis of trophic
generalists. Molecular Ecology Resources , 19 (6),
1420–1432. https://doi.org/https://doi.org/10.1111/1755-0998.13060
De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac,
E., & Taberlet, P. (2014). DNA metabarcoding multiplexing and
validation of data accuracy for diet assessment: Application to
omnivorous diet. Molecular Ecology Resources , 14 (2),
306–323. https://doi.org/10.1111/1755-0998.12188
de Vere, N., Rich, T. C. G., Ford, C. R., Trinder, S. A., Long, C.,
Moore, C. W., … Wilkinson, M. J. (2012). DNA barcoding the native
flowering plants and conifers of wales. PLoS ONE , 7 (6),
1–12. https://doi.org/10.1371/journal.pone.0037945
Drake, L., Cuff, J., Young, R., Marchbank, A., Chadwick, E., &
Symondson, W. (2021). Post-bioinformatic methods to identify and reduce
the prevalence of artefacts in metabarcoding data. Authorea Preprints.
https://doi.org/10.22541/au.161830201.18684167/v1
Dunn, J. C., Stockdale, J. E., Moorhouse-Gann, R. J., McCubbin, A.,
Hipperson, H., Morris, A. J., … Symondson, W. O. C. (2018). The
decline of the Turtle Dove: Dietary associations with body condition and
competition with other columbids analysed using high-throughput
sequencing. Molecular Ecology , 27 (16), 3386–3407.
https://doi.org/10.1111/mec.14766
Evens, R., Conway, G., Franklin, K., Henderson, I., Stockdale, J.,
Beenaerts, N., … Artois, T. (2020). DNA diet profiles with
high-resolution animal tracking data reveal levels of prey selection
relative to habitat choice in a crepuscular insectivorous bird.Ecology and Evolution , 10 (23), 13044–13056.
https://doi.org/10.1002/ece3.6893
Forin-Wiart, M.-A., Poulle, M.-L., Piry, S., Cosson, J.-F., Larose, C.,
& Galan, M. (2018). Evaluating metabarcoding to analyse diet
composition of species foraging in anthropogenic landscapes using Ion
Torrent and Illumina sequencing. Scientific Reports , 8,17091. https://doi.org/10.1038/s41598-018-34430-7
Freeman, B. (2014). Sexual niche partitioning in two species of New
Guinean Pachycephala whistlers. Journal of Field
Ornithology , 85 (1), 23–30. https://doi.org/10.1111/jofo.12046
Holland, J. M., Hutchison, M. A. S., Smith, B., & Aebischer, N. J.
(2006). A review of invertebrates and seed-bearing plants as food for
farmland birds in Europe. Annals of Applied Biology ,150 (3), 403–403.
https://doi.org/https://doi.org/10.1111/j.1744-7348.2006.00039.x
Jedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular
scatology and high-throughput sequencing reveal predominately
herbivorous insects in the diets of adult and nestling Western Bluebirds
(Sialia mexicana ) in California vineyards. The Auk ,134 (1), 116–127. https://doi.org/10.1642/AUK-16-103.1
Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C. G., Davies, H.,
Forrest, L. L., … de Vere, N. (2021). Barcode UK: A complete DNA
barcoding resource for the flowering plants and conifers of the United
Kingdom. Molecular Ecology Resources , 21 (6), 2050–2062.
https://doi.org/https://doi.org/10.1111/1755-0998.13388
Kappes, H. (2006). Relations between forest management and slug
assemblages (Gastropoda) of deciduous regrowth forests. Forest
Ecology and Management , 237 (1), 450–457.
https://doi.org/https://doi.org/10.1016/j.foreco.2006.09.067
Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress,
W. J., Kuzmina, M. L., … Pringle, R. M. (2015). DNA metabarcoding
illuminates dietary niche partitioning by African large herbivores.Proceedings of the National Academy of Sciences , 112 (26),
8019–8024. https://doi.org/10.1073/pnas.1503283112
Kartzinel, T. R., & Pringle, R. M. (2020). Multiple dimensions of
dietary diversity in large mammalian herbivores. Journal of Animal
Ecology , 89 (6), 1482–1496.
https://doi.org/https://doi.org/10.1111/1365-2656.13206
King, R. A., Read, D. S., Traugott, M., & Symondson, W. O. C. (2008).
Molecular analysis of predation: A review of best practice for DNA-based
approaches. Molecular Ecology , 17 (4), 947–963.
https://doi.org/10.1111/j.1365-294X.2007.03613.x
Kirby, W. B., Bellamy, P. E., Stanbury, A. J., Bladon, A. J., Grice, P.
V., & Gillings, S. (2015). Breeding season habitat associations and
population declines of British Hawfinches Coccothraustes
coccothraustes . Bird Study , 62 (3), 348–357.
https://doi.org/10.1080/00063657.2015.1046368
Kirby, W. B., Stanbury, A. J., Lewis, J., Smith, D. L., Cross, A. V.,
Grice, P. V., & Bellamy, P. E. (2018). Nest survival, causes of failure
and productivity of British Hawfinches Coccothraustes
coccothraustes . Bird Study , 65 (3), 279–289.
https://doi.org/10.1080/00063657.2018.1506424
Kirby, W., Stanbury, A., Bellamy, P., & Lewis, J. (2019).
Double-brooding and renesting in British Hawfinches. British
Birds , 112 , 170–171.
Kratina, P., LeCraw, R. R. M., Ingram, T., & Anholt, B. R. (2012).
Stability and persistence of food webs with omnivory: Is there a general
pattern? Ecosphere , 3 (6), 1–18.
https://doi.org/10.1890/ES12-00121.1
Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L.
(2015). DNA barcodes for ecology, evolution, and conservation.Trends in Ecology and Evolution , 30 (1), 25–35.
https://doi.org/10.1016/j.tree.2014.10.008
Langston, R., Gregory, R., & Adams, R. (2002). The status of the
Hawfinch in the UK 1975-1999. British Birds , 95 (4),
166–173.
Lebl, K., Kürbisch, K., Bieber, C., & Ruf, T. (2010). Energy or
information? The role of seed availability for reproductive decisions in
edible dormice. Journal of Comparative Physiology B ,180 (3), 447–456. https://doi.org/10.1007/s00360-009-0425-6
Lima, S. L. (2009). Predators and the breeding bird: behavioral and
reproductive flexibility under the risk of predation. Biological
Reviews , 84 (3), 485–513.
https://doi.org/https://doi.org/10.1111/j.1469-185X.2009.00085.x
Mackenzie, J. A., Hinsley, S. A., & Harrison, N. M. (2014). Parid
foraging choices in urban habitat and their consequences for fitness.Ibis , 156 (3), 591–605.
https://doi.org/https://doi.org/10.1111/ibi.12166
Marshall, T. J., Dick, M. F., & Guglielmo, C. G. (2016). Seasonal
dietary shifting in yellow-rumped warblers is unrelated to macronutrient
targets. Comparative Biochemistry and Physiology Part A: Molecular
& Integrative Physiology , 192 , 57–63.
https://doi.org/https://doi.org/10.1016/j.cbpa.2015.11.014
Mata, V. A., Amorim, F., Corley, M. F. V, McCracken, G. F., Rebelo, H.,
& Beja, P. (2016). Female dietary bias towards large migratory moths in
the European free-tailed bat (Tadarida teniotis ). Biology
Letters , 12 (3). https://doi.org/10.1098/rsbl.2015.0988
Matthews, J. K., Ridley, A., Kaplin, B. A., & Grueter, C. C. (2020). A
comparison of fecal sampling and direct feeding observations for
quantifying the diet of a frugivorous primate. Current Zoology ,66 (4), 333–343. https://doi.org/10.1093/cz/zoz058
McClenaghan, B., Nol, E., & Kerr, K. C. R. (2019). DNA metabarcoding
reveals the broad and flexible diet of a declining aerial insectivore.Auk , 136 (1), 1–11. https://doi.org/10.1093/auk/uky003
Mitchell, L. J., Horsburgh, G. J., Dawson, D. A., Maher, K. H., &
Arnold, K. E. (2021). Metabarcoding reveals selective dietary responses
to environmental availability in the diet of a nocturnal, aerial
insectivore, the European Nightjar (Caprimulgus europaeus ).Ibis . https://doi.org/https://doi.org/10.1111/ibi.13010
Molokwu, M. N., Nilsson, J.-Å., & Olsson, O. (2011). Diet selection in
birds: trade-off between energetic content and digestibility of seeds.Behavioral Ecology , 22 (3), 639–647.
https://doi.org/10.1093/beheco/arr025
Moorhouse-Gann, R. (2017). Ecological replacement as a restoration
tool: Disentangling the impacts and interactions of Aldabra giant
tortoises (Aldabrachelys gigantea) using DNA metabarcoding[Unpublished doctoral dissertation]. Cardiff University.
Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N.,
Hipperson, H., & Symondson, W. O. C. (2018). New universal ITS2 primers
for high-resolution herbivory analyses using DNA metabarcoding in both
tropical and temperate zones. Scientific Reports , 8 .
https://doi.org/10.1038/s41598-018-26648-2
Morganti, M., Rubolini, D., Caprioli, M., Saino, N., & Ambrosini, R.
(2017). Rainfall, but not temperature, negatively affects the growth of
Blue Tit Cyanistes caeruleus nestlings. Bird Study ,64 (2), 159–167. https://doi.org/10.1080/00063657.2017.1309006
Mountford, G. (1957). The Hawfinch . Collins, London.
Newton, I. (1967). THE ADAPTIVE RADIATION AND FEEDING ECOLOGY OF SOME
BRITISH FINCHES. Ibis , 109 (1), 33–96.
https://doi.org/10.1111/j.1474-919X.1967.tb00005.x
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P.
(2017). Diet tracing in ecology: Method comparison and selection.Methods in Ecology and Evolution , 9 (2), 278–291.
https://doi.org/https://doi.org/10.1111/2041-210X.12869
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., … Wagner, H. (2019). vegan: Community Ecology
Package. R package version 2.5-6. Retrieved from
https://cran.r-project.org/package=vegan
Ortega-Jimenez, V. M., & Dudley, R. (2012). Flying in the rain:
hovering performance of Anna’s hummingbirds under varied precipitation.Proceedings of the Royal Society B: Biological Sciences ,279 (1744), 3996–4002. https://doi.org/10.1098/rspb.2012.1285
Perrins, C. (1991). Tits and their caterpillar food supply. Ibis ,133 (s1), 49–54.
https://doi.org/10.1111/j.1474-919X.1991.tb07668.x
Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman,
S. N., & Taberlet, P. (2012). Who is eating what: Diet assessment using
next generation sequencing. Molecular Ecology , 21 (8),
1931–1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x
Porter, T. M., & Hajibabaei, M. (2018). Over 2.5 million COI sequences
in GenBank and growing. PLOS ONE , 13 (9). Retrieved from
https://doi.org/10.1371/journal.pone.0200177
QGIS development team. (2021). QGIS Geographic Information System. QGIS
Geographic Information System.
R Core Team. (2020). R: A language and environment for statistical
computing, R Foundation for Statistical Computing. Vienna, Austria.
Retrieved from https://www.r-project.org
Ramakers, J. J. C., Gienapp, P., & Visser, M. E. (2019). Phenological
mismatch drives selection on elevation, but not on slope, of breeding
time plasticity in a wild songbird. Evolution , 73 (2),
175–187. https://doi.org/https://doi.org/10.1111/evo.13660
Ramsay, S. L., & Houston, D. C. (2003). Amino acid composition of some
woodland arthropods and its implications for breeding tits and other
passerines. Ibis , 145 (2), 227–232.
https://doi.org/https://doi.org/10.1046/j.1474-919X.2003.00133.x
Renaud, E., Baudry, E., & Bessa-Gomes, C. (2020). Influence of
taxonomic resolution on mutualistic network properties. Ecology
and Evolution , 10 (7), 3248–3259.
https://doi.org/10.1002/ece3.6060
Renner, S. C., Baur, S., Possler, A., Winkler, J., Kalko, E. K. V,
Bates, P. J. J., & Mello, M. A. R. (2013). Food Preferences of Winter
Bird Communities in Different Forest Types. PLOS ONE ,7 (12), e53121. Retrieved from
https://doi.org/10.1371/journal.pone.0053121
Rytkönen, S., Vesterinen, E. J., Westerduin, C., Leviäkangas, T., Vatka,
E., Mutanen, M., … Orell, M. (2019). From feces to data: A
metabarcoding method for analyzing consumed and available prey in a
bird-insect food web. Ecology and Evolution , 9 (1),
631–639. https://doi.org/10.1002/ece3.4787
Shutt, J., Burgess, M., & Phillimore, A. (2019). A Spatial Perspective
on the Phenological Distribution of the Spring Woodland Caterpillar
Peak. The American Naturalist , 194 .
https://doi.org/10.1086/705241
Shutt, J. D., Nicholls, J. A., Trivedi, U. H., Burgess, M. D., Stone, G.
N., Hadfield, J. D., & Phillimore, A. B. (2020). Gradients in richness
and turnover of a forest passerine’s diet prior to breeding: A mixed
model approach applied to faecal metabarcoding data. Molecular
Ecology , 29 (6), 1199–1213. https://doi.org/10.1111/mec.15394
Simon, L., Lalonde, M., & Bruns, T. D. (1992). Specific amplification
of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal
fungi colonizing roots. Applied and Environmental Microbiology ,58 (1), 291–295. Retrieved from
http://aem.asm.org/content/58/1/291.abstract
Smith, K. W., & Smith, L. (2013). The effect of supplementary feeding
in early spring on the breeding performance of the Great Spotted
Woodpecker Dendrocopos major . Bird Study , 60 (2),
169–175. https://doi.org/10.1080/00063657.2013.776004
Somervuo, P., Yu, D., Xu, C., Ji, Y., Hultman, J., Wirta, H., &
Ovaskainen, O. (2017). Quantifying uncertainty of taxonomic placement in
DNA barcoding and metabarcoding. Methods in Ecology and
Evolution , 8 (4), 398–407.
https://doi.org/10.1111/2041-210X.12721
Sottas, C., Reif, J., Kreisinger, J., Schmiedová, L., Sam, K., Osiejuk,
T. S., & Reifová, R. (2020). Tracing the early steps of
competition-driven eco-morphological divergence in two sister species of
passerines. Evolutionary Ecology , 34 (4), 501–524.
https://doi.org/10.1007/s10682-020-10050-4
Stenhouse, E.H., Bellamy, P., Kirby, W., Vaughan, I.P., Drake, L.E,
Marchbank, A., Workman, T., Symondson, W.O.C., & Orozco-terWengel, I.P.
(2021). MOTU presence absence data . Retrieved from
Stockdale, J. E. (2018). Using high-throughput sequencing to track
habitat use by thrushes exploiting heterogeneous farmland landscapes[Unpublished doctoral dissertation]. Cardiff University.
Sullins, D. S., Haukos, D. A., Craine, J. M., Lautenbach, J. M.,
Robinson, S. G., Lautenbach, J. D., … Fierer, N. (2018).
Identifying the diet of a declining prairie grouse using DNA
metabarcoding. The Auk , 135 (3), 583–608.
https://doi.org/10.1642/AUK-17-199.1
Sunde, P., Bølstad, M. S., & Møller, J. D. (2003). Reversed sexual
dimorphism in tawny owls, Strix aluco , correlates with duty
division in breeding effort. Oikos , 101 (2), 265–278.
https://doi.org/10.1034/j.1600-0706.2003.12203.x
Svensson, L. (1992). Identification guide to European passerines(4th ed.). Sturegatan, Stockholm, Sweden: British Trust for Ornithology.
Symondson, W. O. C. (2002). Molecular identification of prey in predator
diets. Molecular Ecology , 11 (4), 627–641.
https://doi.org/10.1046/j.1365-294X.2002.01471.x
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018).Environmental DNA: For Biodiversity Research and Monitoring .
Oxford University Press.
Tercel, M. P. T. G., Symondson, W. O. C., & Cuff, J. P. (2021). The
problem of omnivory: A synthesis on omnivory and DNA metabarcoding.Molecular Ecology , 30 (10).
https://doi.org/https://doi.org/10.1111/mec.15903
Thompson, K. A., & Newmaster, S. G. (2014). Molecular taxonomic tools
provide more accurate estimates of species richness at less cost than
traditional morphology-based taxonomic practices in a vegetation survey.Biodiversity and Conservation , 23 (6), 1411–1424.
https://doi.org/10.1007/s10531-014-0672-z
Tomiałojć, L. (2012). Reproduction and Population Dynamics of HawfinchesCoccothraustes coccothraustes in the Primeval Forest of
Białowieża National Park (NE Poland). Acta Ornithologica ,47 (1), 63–78. https://doi.org/10.3161/000164512X653935
Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E.,
Pompanon, F., … Taberlet, P. (2009). New perspectives in diet
analysis based on DNA barcoding and parallel pyrosequencing: The trnL
approach. Molecular Ecology Resources , 9 (1), 51–60.
https://doi.org/10.1111/j.1755-0998.2008.02352.x
von Haartman, L. (1978). An account of a small population of Hawfinches.Ornis Fennica , 55 , 132–133.
Wang, Y., Naumann, U., Eddelbuettel, D., John, W., & Warton, D. (2012).
mvabund – an R package for model-based analysis of multivariate
abundance data. Methods in Ecology and Evolution , 3 (3),
471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x
Wesołowski, T., & Neubauer, G. (2017). Diet of Marsh Tit Poecile
palustris Nestlings in a Primeval Forest in Relation to Food Supply and
Age of Young. Acta Ornithologica , 52 (1), 105–118.
https://doi.org/10.3161/00016454AO2017.52.1.010
Westfall, P., & Young, S. (1993). Resampling‐Based Multiple
Testing. New York: John Wiley & Sons.
Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis .
New York: Springer-Verlagg. Retrieved from
https://ggplot2.tidyverse.org.
Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., & Ding,
Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid
biodiversity assessment and biomonitoring. Methods in Ecology and
Evolution , 3 (4), 613–623.
https://doi.org/10.1111/j.2041-210X.2012.00198.x
Zalewski, A., Szymura, M., Kowalczyk, R., & Brzeziński, M. (2021). Low
individual diet variation and high trophic niche overlap between the
native polecat and invasive American mink. Journal of Zoology ,314 (2), 151–161.
https://doi.org/https://doi.org/10.1111/jzo.12871
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F.,
… Taberlet, P. (2019). DNA metabarcoding—Need for robust
experimental designs to draw sound ecological conclusions.Molecular Ecology , 28 (8), 1857–1862.
https://doi.org/10.1111/mec.15060