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Abstract

The goal of the present paper is to obtain and analyze new exact travelling wave solutions

and bifurcation behavior of modified Zakharov-Kuznetsov (mZK) equation with higher

order dispersion term. For this purpose, first and second simple methods are used to

build soliton solutions of travelling wave solutions. Furthermore, bifurcation behavior

of traveling waves including new type of quasiperiodic and multi-periodic traveling wave

motions have been examined depending on the physical parameters. Multistability for

the nonlinear mZK equation has been investigated depending on fixed values of physical

parameters with various initial conditions. The suggested methods for the analytical so-

lutions are powerful and benefical tools to obtain the exact travelling wave solutions of

nonlinear evolution equations (NLEEs). Two and three-dimensional plots are also pro-

vided to illustrate the new solutions. Bifurcation and multistability behaviors of traveling

wave solution of the nonlinear mZK equation with higher order dispersion will add some

value in the literature of mathematical and plasma physics.

Keywords: Modified Zakharov-Kuznetsov equation; Quasiperiodic motion; First sim-

ple method; Second simple method; Bifurcation.
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1 Introduction

NLEEs involve nonlinear complex physical phenomena and play an outstanding role while

characterizing complicated phenomena rooting in different branches of science for example

fluid flow, wave propagations, fluid mechanics, nonlinear optics, optical fibres, chemical

kinematics, chemical physics, plasma physics, solid-state physics, hydrodynamic, non-

linear transmission lines, plasma physics, geochemistry, biology and soil consolidations.

Therefore, obtaining exact solutions of such nonlinear equations are a rich area of re-

search for the scientists because the resulting solutions can describe physical behaviour

of concerned problems in the best way [1, 2, 3]. These solutions define various phenom-

ena in nature, such as vibrations, solitons and propagation with a finite speed [4]. In

the recent past, many researcher developed a wide range of methods and still trying to

construct new methods to establish analytical and solitary traveling wave solutions of the

NLEEs. Some of these methods are: inverse scattering method [5, 6], Backlund transfor-

mation method [7], modified simple equation method [8], homogeneous balance method

[9], direct algebraic method [10], Hirota bilinear transformation method [11], tanh–sech

method [12, 13], extended tanh method [14, 15, 16], Jacobi elliptic function expansion

method [17, 18, 19] , generalized Riccati equation method [20], sine–cosine method [21],

F-expansion method [22, 23], homogeneous balance method [24], Exp function method

[25, 26, 27], Cole-Hopf transformation method [28], Adomian decomposition method [29],

homotopy analysis method [30], homotopy perturbation method [31], first and second

simple metod [32, 33], bifurcation method [34, 35] and first integral method [36].

The nonlinear Zakharov-Kuznetsov (NZK) equation is an another alternative version

of nonlinear model describing (2+1)-dimensional modulation of a KdV soliton equation

in fluid mechanics [37, 38]. In two-and three-dimensional spaces, the NZK equation is

given by

ut + auux + buxxx + cuxyy = 0, (1)

and

ut + auux + buxxx + c(uxyy + uxzz) = 0, (2)

respectively, where a is known as the coefficient of nonlinear term and b, c are called the

coefficients of dispersion terms. Here x, y, z are space variables, t is time and u is acoustic

wave potential. This equation was first derived to model the propagation of weakly non-

linear ion-acoustic waves in plasma, which involves cold ions and hot-isothermal electrons

in a medium with a uniform magnetic field. The equation is also used to define different
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types of acoustic waves in magnetized plasmas [39]. It has been shown the equation is

not integrable by means of the inverse scattering transform method. It was found that

the solitary-wave solutions of the ZK equation are inelastic. Hesam et al. [40] developed

differential transform method for Zakharov equation. The nonlinear ZK equation with

higher order dispersion term is given by

ut + auux + buxxx + c(uxyy + uxzz) + duxxxxx = 0, (3)

where a, b, c are same as Eq. (2) and d is the coefficient of fifth order dispersion. With

an appropriately modified form of the electron number density given in [41], Munro

and Parkes [37] demonstrated that reductive perturbation can induce following modified

Zakharov–Kuznetsov (mZK) equation

16(ut − kux) + 30u1/2ux + uxxx + uxyy + uxzz = 0, (4)

here k is a positive constant. The mZK equation have solutions that symbolize plane-

periodic and solitary traveling waves propagating. It is noted that the mZK equation

is a high dimensional nonlinear evolution equation and, thus, the study of its reduction

problem is of theoretical interest [42]. Park et al. [43] applied modified Khater method

to equation. The extended mapping method is developed to study the traveling wave

solution for a mZK equation by Peng [44]. In our manuscript, we study the following

nonlinear modified ZK equation with higher order dispersion term as

ut + au2ux + buxxx + c(uxyy + uxzz) + duxxxxx = 0. (5)

Multistability alludes to an interesting phenomenon where a dynamical system pro-

vides more than one numerical solution for a fixed values of the parameters at various

initial conditions [45, 46]. Arecchi et al. [47] performed experimental observation of mul-

tistability behavior in a Q-switch laser system. Natiq et al. [48] experienced coexisting

features involving chaotic and quasi-periodic phenomena and the coexistence of symmet-

ric Hopf bifurcations. Morfu et al. [49] reported multistability in Cellular Nonlinear

Network in image processing. Rahim et al. [50] investigated multistability behavior in

a hyperchaotic system. Li and Sprott [51] studied multistability phenomenon in the fa-

mous Lorenz system in a special parametric range space. In various fields of plasmas,

multistability behavior also known as coexisting features were extensively investigated in

discharge plasmas [52], plasma diodes [53], solar wind plasma [54], electron-ion plasma

[55], and in various quantum plasmas [56, 57].
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The aims of this study are twofold and will take place for the first time in the liter-

ature. Firstly, we introduce the soliton solutions of the mZK equation with higher order

dispersion term using different typies of two simple methods:

· First simple method was suggested by Nikolay A. Kudryashov [58], its applications

have also been shown in [32, 59] and

· Second simple method was suggested by Khalid K. Ali [33].

Secondly, we examined bifurcation behavior of traveling waves including quasiperiodic,

multi-periodic and multistability motion for mZK equation with higher order dispersion

depending on the physical parameters. Thus, we construct new exact and travelling wave

solutions in soliton.

The remnant of this paper is systematized as follows: an introduction is given in

Section 1. The main steps of the First and Second simple methods are specified in

Section 2. At the next section, in Section 3, we apply these methods in detail with

finding exact travelling wave solutions of the mZK equation. In Section 4, some figures

are presented in the two and three-dimensional to display the solutions given in Section 3.

Bifurcation behavior of travelling wave solution containing: Quasiperiodic, multi-periodic

and multistability wave motion of the mZK equation is investigated in Section 5. Finally

the paper end with a conclusion in Section 6.

2 Overview of the methods

2.1 First simple method [58]

Let’s consider the

F (u, ut, ux, uy, uz, utt, uxx, uyy, uzz, ...) = 0, (6)

nonlinear partial differential equation where u = u(x, y, z, t) is the unknown function.

Step 1: Use the following wave transformation:

u(x, y, z, t) = u(ξ), ξ = lx+my + nz − vt, (7)

where l,m, n are constants and v is velocity of the traveling wave.

P (u′, u′′, u′′′, ...) = 0, u′ =
du

dξ
. (8)

By using above terms, Eq.(6) is reduced to a non-linear ordinary differential equa-

tion.

4



Step 2: Assume solution of (8) takes form of a finite series

u(ξ) =
N∑
i=0

(Ai(Q(ξ))i, (9)

Ai(i = 0, 1, 2, ..., N), AN 6= 0, are unknowns with (Ai 6= 0) to be calculated. N is a

positive integer and will be computed by homogeneous balance algorithm.

Step 3: The function Q(ξ) satisfies auxiliary differential equation:

(Q′(ξ))2 = α2Q(ξ)2(1− ΩQ(ξ)2), (10)

(10) gives the following solution:

Q(ξ) =
4σ exp(−αξ)

4σ2 + Ω exp(−2αξ)
. (11)

Step 4: By substituting (9) and (10) into (8) and collecting all terms with the same power

of Q(ξ) together, (8) turn into a polynomial, taking each coefficient equal to zero,

a system of algebraic equations are obtained.

Step 5: By using the Mathematica program, we can obtain the exact solution of (8).

2.2 Second simple method [33]

We illustrate modified Kudryashov method in this section as follows:

Step 1: Assume a solution of (8) given in a series form:

u(ξ) =
N∑
i=0

(Ai(Q(ξ))i, (12)

where Ai is the same as in First simple method.

Step 2: Function Q(ξ) fulfills the differential equation:

(Q′(ξ))2 = α2(log(C))2Q(ξ)2(1− ΩQ(ξ)2), (13)

the solution of (13) is introduced by:

Q(ξ) =
4σC(−αξ)

4σ2 + ΩC(−2αξ) . (14)

5



Step 3: Putting (12) and (13) into (8), we procure a polynomial of Q(ξ). Setting all the

coefficients of the like powers of Q(ξ) to zero, a system of algebraic equations are

obtained.

Step 4: System of equations are solved by Mathematica program. Consequently, we can

obtain exact solution of (8).

3 Implementations of the methods

We employ the transformation (7) with l2 +m2 + n2 = 1. Then, the Eq. (5) becomes

−(v − alu2)uξ + (bl3 + clm2 + cln2)uξξξ + dl5uξξξξξ = 0. (15)

Integrating equation (15) according to ξ,

−(v − alu2

3
)u+ (bl3 + clm2 + cln2)uξξ + dl5uξξξξ = c1, (16)

is obtained and here c1 is an integrating constant. Applying the boundary conditions

u → 0, uξ → 0, uξξ → 0, uξξξ → 0, uξξξξ → 0 as ξ → ±∞ in equation (16), one can

obtain c1 = 0. Then Eq. (16) becomes

−(v − alu2

3
)u+ (bl3 + cl(1− l2))uξξ + dl5uξξξξ = 0. (17)

Balancing u3 with uξξξξ in (17), following relation is obtained:

3N = N + 4⇒ N = 2. (18)

3.1 First simple method

From (9) and (18), the solution of (17) is written in the form:

u(ξ) = A0 + A1Q(ξ) + A2Q
2(ξ), (19)

By setting above solution in Eq. (17) and equating factors of each power of Q(ξ) in

resulting equation to zero, we reach following nonlinear algebraic system:

1

3
aA3

0l − A0v = 0,

aA2
0A1l + α2A1l

(
bl2 − cl2 + c+ α2dl4

)
− A1v = 0,
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aA0A
2
1l + aA2

0A2l + 4α2A2l
(
bl2 − cl2 + c+ 4α2dl4

)
− A2v = 0,

1

3
A1l

(
aA2

1 − 6α2Ω
(
bl2 − cl2 + c+ 10α2dl4

))
+ 2aA0A1A2l = 0,

aA0A
2
2l + aA2

1A2l − 6α2A2bl
3Ω + 6α2A2cl

3Ω− 6α2A2clΩ− 120α4A2dl
5Ω = 0,

aA1A
2
2l + 24α4A1dl

5Ω2 = 0,

1

3
aA3

2l + 120α4A2dl
5Ω2 = 0.

Solving the previous system, we obtain the following solutions:

A0 = 0, A1 = 0, A2 = ∓
3
√

5
2

√
vΩ

2
√
a
√
l
,

d = − v

64α4l5
, b = − c

l2
+ c+

5v

16α2l3
.

(20)

Substituting (20) in (19) with (11) and (7), we get the following solutions of (5):

u1,2(x, y, z, t) = ∓
3
√

5
2

√
vΩ

2
√
a
√
l

(
4σ exp(−α(lx+my + nz − vt))

4σ2 + Ω exp(−2α(lx+my + nz − vt))

)2

. (21)

3.2 Second simple method

From (12) and (18), the solution of (17) is written in the form:

u(ξ) = A0 + A1Q(ξ) + A2Q
2(ξ). (22)

By setting above solution (22) in (17) and equating coefficients of like powers of Q(ξ), we

obtain following set of non-linear algebraic equations:

1

3
aA3

0l − A0v = 0,

aA2
0A1l + α2A1l log2(C)

(
bl2 − cl2 + c+ α2dl4 log2(C)

)
− A1v = 0,

aA0A
2
1l + aA2

0A2l + 4α2A2l log2(C)
(
bl2 − cl2 + c+ 4α2dl4 log2(C)

)
− A2v = 0,

1

3
aA3

1l + 2aA0A1A2l + 2α2A1l
3Ω(c− b) log2(C)

−2α2A1clΩ log2(C)− 20α4A1dl
5Ω log4(C) = 0,

aA0A
2
2l + aA2

1A2l − 6α2A2bl
3Ω log2(C) + 6α2A2cl

3Ω log2(C)

−6α2A2clΩ log2(C)− 120α4A2dl
5Ω log4(C) = 0,
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aA1A
2
2l + 24α4A1dl

5Ω2 log4(C) = 0,

1

3
aA3

2l + 120α4A2dl
5Ω2 log4(C) = 0.

Now, the following new exact solutions for (5) will be produced:

A0 = 0, A1 = 0, A2 = −
3
√

5
2

√
vΩ

2
√
a
√
l
,

d = − v

64α4l5 log4(C)
, b =

16α2cl3 log2(C)− 16α2cl log2(C) + 5v

16α2l3 log2(C)
.

(23)

Substituting (23) in (22) with (14) and (7), we get the following solutions of (5):

u1,2(x, y, z, t) = −
3
√

5
2

√
vΩ

2
√
a
√
l

(
4σC(−α(lx+my+nz−vt))

4σ2 + ΩC(−2α(lx+my+nz−vt))

)2

. (24)

4 Graphical illustrations

Now, some figures in two and three dimensional have been drawn to exemplify solutions

given above. The graph of (21) using the First simple method at c = 0.2, σ = 5, a =

4,Ω = 6, v = 0.5, l = 0.55,m = 0.35, n = 0.1, y = z = 2 is introduced in Fig. (1). Finally,

we shown the graph of (24) using the Second simple method at c = 0.2, a = 4, σ = 5, k =

0.001,Ω = 6, v = 0.5, l = 0.55,m = 0.35, n = 0.1, C = 0.4, y = z = 2 in Fig. (2).

5 Bifurcation analysis

We investigate bifurcation behavior of traveling wave solution of the nonlinear modified

ZK equation with higher order dispersion (5) for the first time in the literature. To

discover all possible traveling wave solutions of nonlinear modified ZK equation (5), we

form the following dynamical system [60-65] (with parameters a, b, c, d, l and v) from

equation (17): 
uξ = X,

Xξ = Y,

Yξ = Z,

Zξ = (v − al
3
u2) u

dl5
− (bl2+c(1−l2))Y

dl4
.

(25)
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Figure 1: Profile of (21) using the first simple method at c = 0.2, σ = 5, a = 4,Ω = 6, v =

0.5, l = 0.55,m = 0.35, n = 0.1.
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Figure 2: Profile of (24) using the second simple method at c = 0.2, a = 4, σ = 5, k =

0.001,Ω = 6, v = 0.5, l = 0.55,m = 0.35, n = 0.1, C = 0.4.
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Let
−→
F =

(
X, Y, Z, (v − al

3
u2) u

dl5
− (bl2+c(1−l2))Y

dl4

)
. Then divergence of

−→
F is:

−→
∇ ·
−→
F =

∂uξ
∂u

+
∂Xξ

∂X
+
∂Yξ
∂Y

+
∂Zξ
∂Z

= 0. (26)

Thus one can make a conclusion on the conservativeness of the dynamical system (25).

The singular points of the system (25) are given by solutions of the following set of

equations: 
X = 0,

Y = 0,

Z = 0,

(v − al
3
u2) u

dl5
− (bl2+c(1−l2))Y

dl4
= 0.

(27)

The dynamical system (25) has three equilibrium points at P1(u1, 0, 0, 0), P2(u2, 0, 0, 0)

and P3(u3, 0, 0, 0), where u1 = 0, u2 =
√

3v
al

, and u3 = −
√

3v
al

.

The stability of the singular point based on the character of eigenvalues of the Jaco-

bian matrix JP . After making linearisation of the dynamical system (25) at the singular

point P (u, X, Y, Z), the Jacobian matrix JP can be written as:

JP =


0 1 0 0

0 0 1 0

0 0 0 1
1
dl5

(v − alu2) 0 − 1
dl4

(bl2 + c(1− l2)) 0

 . (28)

One can acquire eigenvalues of the system (25) at P (u, X, Y, Z) by making solution

of the following equation:

|λI − JP | = 0. (29)

Then one can obtain the following characteristic equation as:

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0, (30)

where 
M1 = 0,

M2 = − 1
dl4

(bl2 + c(1− l2)),
M3 = 0,

M4 = 1
dl5

(alu2 − v).
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The singular point P (u, X, Y, Z) is considered as stable if all possible solutions of

equation (30) having real parts less than zero for the singular point or it will be considered

as unstable.

5.1 Quasiperiodic and multi-periodic traveling wave motions

Some new types of quasiperiodic and multi-periodic motions for the travelling wave solu-

tions of the modified ZK equation (5) are investigated through the conservative dynamical

system (25) based on suitable values of the parameters a, b, c, d, l, and v in Figures (3-7).

In Figure (3), we present phase space and variation of wave profile u for a quasiperiodic

motion of the modified ZK equation (5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.3 and

v = 6 with initial condition (3.1, 1.1,−0.1,−0.2). In this case, the phase space forms a

torus connected with two leafs faced to each other. In Figure (4), we present phase space

and variation of wave profile u for a quasiperiodic motion of the modified ZK equation

(5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.4 and v = 6 with initial condition

(3.1, 1.1,−0.1,−0.2). In this case, the phase space looks like a heart-shape. In Figure

(5), we present phase space and variation of wave profile u for a quasiperiodic motion of

the modified ZK equation (5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.48 and v = 6

with initial condition (3.1, 1.1,−0.1,−0.2). In this case, the phase space forms a torus

connected with two leafs faced to each other with multi-bends. In Figure (6), we present

phase space and variation of wave profile u for a quasiperiodic motion of the modified ZK

equation (5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6. with initial condition

(3.1, 1.1,−0.1,−0.2). In this case, the phase space forms a torus connected with two sets

of multi-torus structures faced to each other.

There exists a period-9 motion of the dynamical system (25) and corresponding phase

portrait is shown in Figure (7) for a = 0.01, b = 1, c = 1, d = 1, l = 0.5 and v = 6.

with initial condition (3.1, 1.1,−0.1,−0.2). It is important to note that all phase spaces,

presented in Figures (3-7), are symmetric with respect to Y -axis. Such phase spaces,

presented in Figures (3-7), are observed for the first time in the literature of nonlinear

modified ZK equation (5) with higher order dispersion term.

5.2 Multistability of traveling wave motion

Multistability behaviors for the travelling wave solutions of modified ZK equation (5) are

examined through conservative dynamical system (25) based on fixed values of the param-

eters a, b, c, d, l, and v in Figure (8) with different initial conditions: (a) (0.1, 1.1,−0.1,−0.2),

(b) (0.5, 1.1,−0.1,−0.2), (c) (0.1, 0.1,−0.1,−0.2), (d) (0.1, 0.1, 0.1,−0.2), (e) (0.1, 0.1, 0.1, 0.2),
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Figure 3: Phase space of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.3 and v = 6.
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Figure 4: Phase space of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.4 and v = 6.
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Figure 5: Phase space of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.48 and v = 6.
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Figure 6: Phase space of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6.
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Figure 7: Phase space of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.5 and v = 6.

and (f) (0.1, 1.1, 0.9, 0.2). All these phase spaces are qualitatively different from each other.

It is important to note that all phase spaces of Figure (8) are symmetric in nature with

respect to Y -axis. This kind of multistability behaviors for the travelling wave solutions

of the modified ZK equation (5) with higher order dispersion term are reported for the

first time in the literature.
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Figure 8: Phase spaces of the system (25) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6. with

different initial conditions: (a) (0.1, 1.1,−0.1,−0.2), (b) (0.5, 1.1,−0.1,−0.2), (c) (0.1, 0.1,−0.1,−0.2),

(d) (0.1, 0.1, 0.1,−0.2), (e) (0.1, 0.1, 0.1, 0.2), and (f) (0.1, 1.1, 0.9, 0.2).

6 Conclusions

In this paper, by successfully implementing the First and Second simple method, traveling

wave solutions for the nonlinear (3+1) dimensional mZK equation have been obtained.

New soliton solutions are derived. For a clear understanding, solutions are illustrated with

details in 2D and 3D. These solutions have many applications and can supply a beneficial

contribution for researchers to examine and discover the waves features in several areas

of physics and applied sciences. Bifurcation behavior of travelling wave solutions of the

mZK equation was also analysed. A collections of new types of quasiperiodic motions

was reported for the first time in the literature of the mZK equation with higher order

dispersion term. Considering fixed values of the parameters, multistability behavior of

the mZK equation was shown at different initial conditions. As a conclusion, it can be

easily seen that the methods used in this paper may further be improved to solve and

analyse qualitative behaviour of nonlinear traveling wave solutions for other NLEEs in

mathematical and plasma physics.
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[7] Rogers C, Shadwick WF. Bäcklund Transformations and Their Applications, Math-

ematics in Science and Engineering. Academic Press, New York, NY, USA, 1982.

[8] Jawad AJM, Petkovic MD, Biswas A. Modified simple equation method for nonlinear

evolution equations. Appl. Math. Comput. 2010;217:869–877.

[9] Wang ML, Zhou YB, Li ZB. Application of a homogeneous balance method to exact

solutions of nonlinear equations in mathematical physics. Physics Letters Section A.

1996;216(1–5):67–75.

[10] Seadawy AR, El-Rashidy K.Travelling wave solutions for some coupled nonlinear

evolution equations by using the direct algebraic method. Math. Comput. Modelling.

2013;57:1371–1379.

17



[11] Hirota R. Exact solution of the korteweg-de vries equation for multiple collisions of

solitons. Physical Review Letters. 1971;27(18):1192–1194.

[12] Malfliet W, Hereman W. The tanh method. I: Exact solutions of nonlinear evolution

and wave equations. Physica Scripta. 1996;54(6):563-568.

[13] Wazwaz AM. The tanh method for travelling wave solutions of nonlinear equations.

Appl. Math. Comput. 2004;154(3):713-723.

[14] El-Wakil SA, Abdou MA. New exact travelling wave solutions using modified ex-

tended tanh-function method. Chaos Solitons and Fractals. 2007;1(4):840-852.

[15] Fan E. Extended tanh-function method and its applications to nonlinear equations.

Phys. Lett. A. 2000;277(4-5):212-218.

[16] Wazwaz AM. The extended tanh method for abundant solitary wave solutions of

nonlinear wave equations. Appl. Math. Comput. 2007;187(2):1131-1142.

[17] Liu S, Fu Z, Liu S, Zhao Q. Jacobi elliptic function expansion method and periodic

wave solutions of nonlinear wave equations. Physics Letters A. 2001;289(1-2):69–74.

[18] Al-Muhiameed ZIA, Abdel-Salam EAB. Generalized Jacobi elliptic function solu-

tion to a class of nonlinear Schrödinger-type equations. Mathematical Problems in

Engineering. 2011; 2011:11 pages.

[19] Gepreel KA, Shehata AR. Jacobi elliptic solutions for nonlinear differential difference

equations in mathematical physics. Journal of Applied Mathematics. 2012;2012:15

pages.

[20] Yan Z, Zhang H. New explicit solitary wave solutions and periodic wave solutions

for Whitham-Broer-Kaup equation in shallow water. Physics Letters A. 2001;285(5-

6):355–362.

[21] Wazwaz AM. A sine–cosine method for handling nonlinear wave equations. Math.

Comput. Model. 2004;40(5-6):499-508.

[22] Wang M, Li X. Applications of F-expansion to periodic wave solutions for a new

Hamiltonian amplitude equation. Chaos, Solitons and Fractals. 2005; 24(5):1257–

1268.

[23] Abdou MA. The extended F-expansion method and its application for a class of

nonlinear evolution equations. Chaos, Solitons and Fractals. 2007;31(1):95–104.

18



[24] Fan E, Zhang H. A note on the homogeneous balance method. Phys. Lett. A.

1998;246(5):403-406.

[25] He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos, Solitons

and Fractals. 2006;30(3):700–708.

[26] Naher H, Abdullah FA, Akbar MA. New travelingwave solutions of the higher dimen-

sional nonlinear partial differential equation by the exp-function method. Journal of

Applied Mathematics. 2012;2012:14 pages.

[27] Mohyud-Din ST, Noor MA, Noor KI. Exp-function method for traveling wave so-

lutions of modified Zakharov-Kuznetsov equation. Journal of King Saud University.

2010; 22(4):213–216.

[28] Salas AH, Gomez CA. Application of the Cole-Hopf transformation for finding exact

solutions to several forms of the seventh-order KdV equation. Mathematical Problems

in Engineering. 2010;2010:14 pages.

[29] Ugurlu Y, Kaya D, Inan IE. Comparison of three semianalytical methods for solv-

ing (1 + 1)-dimensional dispersive long wave equations. Comput. Math. Appl.

2011;61(5):1278–1290.

[30] Dinarvand S. Khosravi S, Doosthoseini A, Rashidi MM. The homotopy analysis

method for solving the Sawada-Kotera and Laxs fifth-order KdV equations. Adv.

Theor. Appl. Mech. 2008;1:327–335.

[31] Biazar J, Badpeima F, Azimi F. Application of the homotopy perturbation method

to Zakharov-Kuznetsov equations. Comput. Math. Appl. 2009;58:2391–2394.

[32] Zafar A, Ali KK, Raheel M, Jafar N, Nisar KS. Soliton solutions to the DNA

Peyrard Bishop equation with beta-derivative via three distinctive approaches.

Eur.Phys.J.Plus. 135 (2020).

[33] Ali KK, Wazwaz AM, Mehanna MS, Osman MS. On short-range pulse propagation

described by (2 + 1)-dimensional Schrodinger’s hyperbolic equation in nonlinear

optical fibers. Physica Scripta. 2020;95(7) 075203.

[34] Wu X, Rui W, Hong X. Exact travelling wave solutions of explicit type, implicit

type and parametric type for K(m,n)equation. Journal of Applied Mathematics.

2012;2012:23 pages.

19



[35] Zhang R. Bifurcation analysis for a kind of nonlinear finance system with delayed

feedback and its application to control of chaos. Journal of Applied Mathematics.

2012;2012:18 pages.

[36] Tascan F, Bekir A, Koparan M. Travelling wave solutions of nonlinear evolution equa-

tions by using the first integral method. Commun. Nonlinear Sci. Numer. Simulat.

2009;14:1810–1815.

[37] Munro S, Parkes EJ. The derivation of a modified Zakharov-Kuznetsov equation and

the stability of its solutions. J. Plasma Phys. 1999;62:305-317.

[38] Munro S, Parkes EJ. Stability of solitary-wave solutions to a modified Zakharov-

Kuznetsov equation. J. Plasma Phys. 2000;64:411-426.

[39] Zakharov VE, Kuznetsov EA. On three-dimensional solitons. Soviet Physics.

1974;39:285288.

[40] Hesam S, Al. Nazemi, Haghbin A. Analytical solution for the Zakharov-Kuznetsov

equations by differential transform method. International Journal of Mathematical

and Computational Sciences. 2011;5(3): 496-501.

[41] Schamel H. A modified Korteweg–de Vries equation for ion acoustic waves due to

resonant electrons. J. Plasma Phys. 1973;9:377–387.

[42] Liu Y, Teng Q, Tai W, Zhou J, Wang Z. Symmetry reductions of the (3 + 1)-

dimensional modified Zakharov–Kuznetsov equation. Advances in Difference Equa-

tions. 2019;2019: 2-14.

[43] Park C, Khater MMA, Abdel-Aty AH, Attia RAM, Lu D. On new computational and

numerical solutions of the modified Zakharov–Kuznetsov equation arising in electrical

engineering. Alexandria Engineering Journal. 2020;59:1099–1105.

[44] Peng YZ. Exact Travelling Wave Solutions for a Modified Zakharov-Kuznetsov Equa-

tion. Acta Physica Polonica A. 2009;115(3):609-612.

[45] Natiq H, Said MRM, Ariffin MRK, He S, Rondoni L, Banerjee S. Self-excited and

hidden attractors in a novel chaotic system with complicated multistability. Eur.

Phys. J. Plus. 2018;133:557 .

[46] He S, Banerjee S, Sun K. Complex dynamics and multiple coexisting attractors in a

fractional-order microscopic chemical system. The European Physical Journal Special

Topics. 2019;228:195-207.

20



[47] Arecchi FT, Meucci R, Puccioni G, Tredicce J. Experimental Evidence of Subhar-

monic Bifurcations, Multistability, and Turbulence in a Q-Switched Gas Laser. Phys.

Rev. Lett. 1982;49:1217.

[48] Natiq H, Banerjee S, Misra AP, Said MRM. Degenerating the butterfly attractor in a

plasma perturbation model using nonlinear controllers. Chaos, Solitons and Fractals.

2019;122:58-68.

[49] Morfu S, Nofiele B, Marquie P. On the use of multistability for image processing.

Physics Letters A. 2007;367:192-198.

[50] Rahim MFA, Natiq H, Fataf NAA, Banerjee S. Dynamics of a new hyperchaotic

system and multistability. Eur. Phys. J. Plus. 2019;134:499.

[51] Li C, Sprott JC. Multistability in the Lorenz System: A Broken Butterfly. Int. J.

Bifurc. Chaos. 2014;24:1450131.

[52] Yong J, Haida W, Changxuan Y. Multistability Phenomena in Discharge Plasma.

Chinese Physics Letters. 1988;5:201-204.

[53] Hahn SJ, Pae KH. Competing multistability in a plasma diode. Physics of Plasmas.

2003;10:314.

[54] Prasad PK, Gowrishankar A, Saha A, Banerjee S. Dynamical properties and fractal

patterns of nonlinear waves in solar wind plasma. Physica Scripta. 2020;6(95):06560.

[55] Abdikian A, Tamang J, Saha A. Electron-acoustic supernonlinear waves and their

multistability in the framework of the nonlinear Schrödinger equation. Communica-

tion in Theoretical Physics. 2020; 72:075502.

[56] Pradhan B, Saha A, Natiq H, Banerjee S. Multistability and chaotic scenario in a

quantum pair-ion plasma. Zeitschrift für Naturforschung A. 2020;76(2):109-119.

[57] Saha A, Pradhan B, Banerjee S. Multistability and dynamical properties of ion-

acoustic wave for the nonlinear Schrödinger equation in an electron–ion quantum

plasma. Phys. Scr. 2020;5(95) 055602.

[58] Kudryashov NA. Highly dispersive solitary wave solutions of perturbed nonlinear

Schrodinger equations. Applied Mathematics and Computation. 2020;371:124972.

21



[59] Saha A, Ali KK, Rezazadeh H, Ghatani Y. Analytical optical pulses and bifurca-

tion analysis for the traveling optical pulses of the hyperbolic nonlinear Schrödinger

equation. Optical and Quantum Electronics. 2021;53:150.

[60] Lakshmanan M, Rajasekar S. Nonlinear Dynamics. Heidelberg. Springer-Verlag.

2003.

[61] Saha A. Bifurcation of travelling wave solutions for the generalized KP-MEW equa-

tions. Commun. Nonlinear Sci. Numer. Simulat. 2012;17:3539.

[62] Karakoc SBG, Saha A, Sucu D. A novel implementation of Petrov-Galerkin method

to shallow water solitary wave pattern and superperiodic traveling wave and its

multistability: generalized Korteweg-de Vries equation. Chinese Journal of Physics.

2020;68:605-617.

[63] Saha A. Bifurcation, periodic and chaotic motions of the modified equal width burgers

(MEW-Burgers) equation with external periodic perturbation. Nonlinear Dynamics.

2017;87:2193-2201.

[64] Saha A, Banerjee S. Dynamical Systems and Nonlinear Waves in Plasmas. CRC

Press-Boca Raton. 2021.

[65] Guckenheimer J, Holmes PJ. Nonlinear Oscillations, Dynamical Systems and Bifur-

cations of Vector Fields. New York, Springer-Verlag. (1983).

22


