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Abstract

In this paper, we mainly consider the well-posedness and long-time behavior of solutions for the nonlocal diffusion
porous medium equations with nonlinear term. Firstly, we obtain the well-posedness of the solutions in L1(Ω) for
the equations. Secondly, we prove the existence of a global attractor by proving there exists a compact absorbing
set. Finally, we apply index theory to consider the dimension of the attractor and prove that there exists an infinite
dimensional attractor of the equations under proper conditions.
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1. Introduction

In this paper, we consider the long-time behavior of solutions for following equation:
ut + (−∆)σ/2(|u|m−1u) + g(u) = h, (x, t) ∈ Ω × R+,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+,

u(x, 0) = u0, x ∈ Ω,

(1.1)

where (−∆)σ/2 is the spectral fractional Laplacian operator, σ ∈ (0, 2), m > 1, Ω ⊂⊂ RN(N ≥ 1) is a bounded domain
with a sufficiently smooth boundary ∂Ω, u0 ∈ L1(Ω) is the initial data, h = h(x) ∈ L∞(Ω) is a given external force, the
nonlinear term g ∈ C1(R) satisfies the dissipativity condition:

−C1 + k1|s|q−1 ≤ g′(s), (1.2)

where q > 1, k1 and C1 are some positive constants.
Recently, a great attention in the literature has been devoted to the study of nonlocal operators, both for their

mathematical interest and for their applications in concrete models. The fractional Laplacian operator is a kind of
nonlocal operator, which arises in several areas and it can be understood as the infinitesimal generator of a stable
Lévy process (see [3, 6, 33]). The fractional diffusion partial differential equations is nowadays intensively studied
both from theoretical and experimental point of views, since it conveniently explains a large number of phenomena
in physics, finance, biology, ecology, geophysics, and others. Some authors have investigated important properties
of fractional partial differential equations. For example, a lot of the fractional linear or nonlinear elliptic partial
differential equations were studied in [4, 5, 26, 32]; the linear reaction-diffusion equations with the fractional diffusion,

ut + (−∆)σ/2u + f (u) = h,
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appear in [1, 24, 25, 40, 41]. Since the work of A. de Pablo et al. [29], the nonlocal (fractional) porous medium
equation (which is one of the nonlinear nonlocal diffusion equations)ut + (−∆)σ/2(um) = 0, (x, t) ∈ Rn × R+,

u(x, 0) = u0, x ∈ Rn,
(1.3)

have been paid more and more attention. The existence of weak solutions and the continuity with respect to exponent
σ and m of the fractional porous medium equation in the whole space Rn was established in [30]. Infinite speed of
propagation was presented in [38], which is different from the classical porous medium equation. The existence of
self-similar solutions with conserved finite mass was discussed by [38]. In [7] the fractional porous medium equation
in bounded domain was investigated. They proved the existence of H∗-solution by subdifferential operator theory and
considered asymptotic behaviour of the equation.

The fractional porous medium equation with nonlinear term,ut + (−∆)σ/2(um) = g(u), (x, t) ∈ Rn × R+,

u(x, 0) = u0, x ∈ Rn,

was considered in [35] for 0 < σ < 2, m > mc = (n−σ)+/n and g(u) = u−u2. The author investigated the propagation
properties of nonnegative and bounded solutions, and proved that level sets propagate exponentially fast in time which
is different from standard KPP problem (see [20]).

As for σ = 2 ((−∆)σ/2 = −∆), that is classical porous medium equation with nonlinear term, there are a number
of papers consider the existence of attractors (see [2, 15, 16, 17, 19] and references therein). In [18], the authors
have proved that the existence of global attractor and considered the dimension of the attractor by estimating the
Kolmogorov entropy. The infinite dimensionality of the global attractor has been considered in [15], which is obtained
by showing that their ε-Kolmogorov entropy behaves as a polynomial of the variable 1/ε as ε tends to zero.

Compared to above papers, our work encounters some difficulties when dealing with problem (1.1). Because the
nonlinear term g is without an upper growth restriction, which provoke some mathematical difficulties. There make
the study of (1.1) particularly interesting. In the recent paper [42], we have consider the equation for initial date
u0 ∈ Lm+1. However, in [42], the uniqueness and continuity of the solution was not studied. Therefore, it seems
difficult to consider the long-time behavior. Furthermore, we apply Z2-index theory to consider the dimension of the
attractors, which is very different with Kolmogorov entropy estimation as in [15, 18].

The main aim of the present paper is to consider the well-posedness and the long-time behavior of solutions for the
equation (1.1) in L1. In the first part, we will prove that there exists a solution which generated a continuous semigroup
in L1(Ω). Firstly, in light of the fractional porous medium equation is a degenerate equation, it seems to be difficult
to directly multiply a function to the equation. Hence, we consider a non-degenerate approximate equation analogue
of (1.1) and prove that there exists a solution with sufficiently smooth initial data for the approximate equation by
a discretization process in time as [44]. Secondly, in consideration of the nonlinear term without an upper growth
restriction, we get a L1 − L∞-estimates for the solution. Furthermore, in order to relax the smoothness assumption
of initial date, we use an estimate (3.10) to get a weak limit of the solution for the non-degenerate equation. Lastly,
we show that the weak limit is a unique weak solution of equation (1.1), which generated a continuous semigroup.
In addition, since the fractional Laplacian operator is a kind of nonlocal operator, it is difficult to get proper estimate
for the main term ((−∆)σ/2(|u|m−1u)). We use the method of σ-harmonic extension to overcome the problem. In the
second part, we will consider long-time behavior of the solution for fractional porous medium equation. We get that
the existence of a global attractor by proving there exists a compact absorbing set. Moreover, we apply index theory
to consider the dimension of the attractor and prove that there exists an infinite dimensional attractor of the equation
on some conditions.

The paper is organized as follows. The preliminary things are discussed in Section 2. The well-posedness of the
approximate equation is verified in Section 3. The global well-posedness of equation (1.1) is given in Section 4. The
existence of a global attractor is established in Section 5. Moreover, under some proper condition, we show that the
dimension of the attractor is infinity.
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2. Some preliminaries

In this section, we first consider the work space and recall the results of de Pablo et al. ([7, 29, 30]) related to the
method of σ-harmonic extension.

The fractional laplacian operator (−∆)σ/2 in a bounded domain is defined by a spectral decomposition [8, 14, 29,
30, 36]. Let {ϕk, λk}

∞
k=1 be the eigenfunctions and the corresponding eigenvalue of −∆ in Ω with Dirichlet boundary

condition. The operator (−∆)σ/2 is defined by, for any u ∈ C∞0 (Ω), u = Σ∞k=1ukϕk,

(−∆)σ/2u = Σ∞k=1λ
σ/2
k ukϕk.

This operator can be extended by density for u in the Hilbert space

Hσ/2
0 (Ω) = {u ∈ L2(Ω) : ||u||2

Hσ/2
0

= Σ∞k=1λ
σ/2
k u2

k < ∞}.

The fractional laplacian can be also defined by σ−harmonic extension which was introduced by Caffarelli and
Silvestre for the case of the whole space in [11], and extended to bounded domains in [8, 13], see also [9, 36].

If u(x) is a smooth bounded function defined on Ω, its extension to the upper half-cylinder CΩ = Ω × (0,∞),
U = E(u), is unique smooth bounded solution of the equation

∇ · (y1−σ∇U) = 0, in CΩ,

U = 0, on ∂Ω × [0,∞),
U(x, 0) = u(x), on Ω.

(2.1)

Then, for µσ = 2σ−1Γ(σ/2)Γ(1 − σ/2) > 0,

−µσ lim
y→0+

y1−σ ∂U
∂y

= (−∆)σ/2u(x).

The operator E can be extended to Hσ/2
0 (Ω). We need to consider the energy space Xσ

0 (CΩ), the closure of C∞c (CΩ)
with respect the norm

||U ||Xσ
0

=

(
µσ

∫
CΩ

y1−σ|∇U |2dxdy
)1/2

.

Then, we have following Lemmas.

Lemma 2.1. ([30]) The operator E : Hσ/2
0 (Ω)→ Xσ

0 (CΩ) is an isometry, that is,∫
Ω

(−∆)σ/4ψ(−∆)σ/4ϕdx = µσ

∫
CΩ

y1−σ〈∇E(ψ)∇E(ϕ)〉dxdy.

Lemma 2.2. ([30]) Let Φ1,Φ2 ∈ Xσ
0 (CΩ) and Tr(Φ1) = Tr(Φ2). Then, for some function ϕ ∈ Hσ/2

0 (Ω), we have

µσ

∫
CΩ

y1−σ〈∇E(ϕ)∇Φ1〉dxdy = µσ

∫
CΩ

y1−σ〈∇E(ϕ)∇Φ2〉dxdy.

Lemma 2.3. ([13])

Hs
0(Ω) =


W s,2(Ω), 0 < s < 1/2,
H1/2

00 (Ω) s = 1/2,
W s,2

0 (Ω) 1/2 < s < 1.

where W s,2(Ω) and W s,2
0 (Ω) are classical Sobolev space with the norm ‖u‖2W s,2(Ω) = ‖u‖2L2(Ω) + [u]2

W s,2(Ω). H1/2
00 (Ω) is

Lions-Magenes space, that is, the set comprised by the function in L2(Ω) and [u]W1/2,2(Ω) < ∞ and
∫

Ω

u(x)2

dist(x,∂Ω) dx < ∞.
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Next, we recall the definitions and results of the attractor [21, 22, 27, 31, 44] and the fractal dimension [21, 22,
27, 31].

Definition 2.4. ([31, 44]) Let {S (t)}t≥0 be a semigroup on a Banach space X. A set A ⊂ X is said to be a global
attractor if the following conditions hold: (i) A is compact in X. (ii) A is strictly invariant, i.e., S (t)A = A for
any t ≥ 0. (iii) For any bounded subset B ⊂ X and for any neighborhood O = O(A) of A in X, there exists a time
τ0 = τ0(B) such that S (t)B ⊂ O(A) for any t ≥ τ0.

Lemma 2.5. ([31, 44]) Let X be a (subset of) Banach space and (S (t), X) be a dynamical system which possesses a
compact absorbing set B, that is, for any bounded set X there exists a τ0(X) such that S (t)X ⊂ B for all t ≥ τ0(X).
Then, there exists a global attractorA = ω(B).

Definition 2.6. ([31]) Let A be a compact set in a metric space X. Then, for every ε > 0, A can be covered by the
finite number of ε-balls in X. Let N(X, ε) be the minimal number of such balls. The fractal dimension of the set A can
be expressed by

dF(A) = lim sup
ε→0+

logN(A, ε)
log(1/ε)

.

Remark 2.7. ([23]) Let fractal dimension of a set less than n, then the set homeomorphic to a subset of Rm, where
m ≤ 2n + 1.

Finally, we review the theory of Z2-index [37].

Definition 2.8. ([37]) For A ∈ Σ, let

(i) γ(A) = 0, if A = ∅;

(ii) γ(A) = inf{m : ∃h ∈ C0(A;Rm \ {0}), h(−u) = −h(u)}.

(iii) γ(A) = +∞, if {m : ∃h ∈ C0(A;Rm \ {0}), h(−u) = −h(u)} = ∅, in particular, if 0 ∈ A.

Then, the function γ : Σ→ Z+ ∪ +∞ is called the Z2−index on Σ.

Lemma 2.9. ([37]) A Z2-index defined on Σ satisfies

(i) γ(A) = 0⇔ A = ∅ ;

(ii) For every A, B ∈ Σ, if A ⊂ B, then γ(A) ≤ γ(B);

(iii) Let φ : X → X be a continuous and odd function. Then, γ(A) ≤ γ(φ(A)) for every A ∈ Σ;

(iv) Let A ∈ Σ be a compact set, then ∃δ > 0 such that γ(Nδ(A)) = γ(A), Nδ(A) is a symmetric δ-neighborhood of A;

3. The well-posedness of the approximate equation

In [42], we have obtained the solutions with initial data u0 ∈ Lm+1(Ω) for equations (1.1). We will prove that there
exists a solutions semigroup, which is also a C0 semigroup, in L1(Ω) for equations (1.1). In order to show that there
exists a solution in L1(Ω) with u0 ∈ L1(Ω), we prove that there exists a solution with sufficiently smooth initial data
satisfies (3.10), and then we get a solution in L1(Ω) by (3.10).

We now consider the approximate equation with sufficiently smooth initial data u0 ∈ C∞c (Ω), which is a non-
degenerate equation. 

ut + (−∆)σ/2(|u|m−1u) + µ(−∆)σ/2u + g(u) = h, (x, t) ∈ Ω × R+,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+,

u(x, 0) = u0, x ∈ Ω,

(3.1)
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where µ > 0 is a parameter. The solution u(x, t) is relate to µ, hence, we also denote that as uµ(x, t). Analogously to
[42], the corresponding difference equation of (3.1) is as follows∂−εt uε + (−∆)σ/2(|uε|m−1uε) + µ(−∆)σ/2uε + g(uε) = h(x), x ∈ Ω × [0,T ],

uε = 0, x ∈ ∂Ω × [0,T ],
(3.2)

where ∂−εt uε =
u(x, t) − u(x, t − ε)

ε
. There exists a solution of the difference equation (3.2) which satisfies the follow-

ing energy estimate, ∫ T

0

∫
Ω

[(−∆)σ/4(um
ε + µuε)]2dxdt +

1
m + 1

∫
Ω

|uε(T )|m+1 +
1
2

∫
Ω

|uε(T )|2dx

+ C
∫ T

0

∫
Ω

|uε|m+qdxdt + C
∫ T

0

∫
Ω

|uε|1+qdxdt

≤ C‖h‖L∞(Ω) +
1

m + 1

∫
Ω

|u0|
m+1dx +

1
2

∫
Ω

|u0|
2dx + CT |Ω|.

(3.3)

Let ε→ 0, we get a solution uµ(x, t) of the non-degenerate equation (3.1) and satisfies the following inequality,∫ T

0

∫
Ω

[(−∆)σ/4(um
µ + µuµ)]2dxdt +

1
m + 1

∫
Ω

|uµ(T )|m+1 +
1
2

∫
Ω

|uµ(T )|2dx

+ C
∫ T

0

∫
Ω

|uµ|m+qdxdt + C
∫ T

0

∫
Ω

|uµ|1+qdxdt

≤ C‖h‖L∞(Ω) +
1

m + 1

∫
Ω

|u0|
m+1dx +

1
2

∫
Ω

|u0|
2dx + CT |Ω|,

(3.4)

where C is independent of µ.
1. L∞ − L∞-estimate

In view of the absence of an upper growth restriction for g, we now investigate the standard L1 − L∞-estimate. In
order to get the L1 − L∞-estimate, we first show the L∞ − L∞-estimate and L1 − L1-estimate.

Lemma 3.1. Let condition (1.2) hold and let u be a weak solution of (3.1) with initial data u0 ∈ L∞(Ω), then
u(t) ∈ L∞(Ω).

Proof. As before, we multiply (3.2) by uk
ε = |uε|k−1uε and integrate over Ω × [0,T ], we have∫ T

0

∫
Ω

[(−∆)σ/2um
ε ]uk

εdxdt + µ

∫ T

0

∫
Ω

[(−∆)σ/2uε]uk
εdxdt +

∫ T

0

∫
Ω

(∂−εt uε)uk
εdxdt

+

∫ T

0

∫
Ω

g(uε)uk
εdxdt =

∫ T

0

∫
Ω

huk
εdxdt.

Applying Lemma 2.2, we get∫ T

0

∫
Ω

[(−∆)σ/2um
ε ]uk

εdxdt =

∫ T

0

∫
CΩ

y1−σ(∇E(um
ε ))(∇E(uk

ε))dxdt

=

∫ T

0

∫
CΩ

y1−σ(∇(E(uε))m)(∇(E(uε))k)dxdt

≥ 0,

and ∫ T

0

∫
Ω

[(−∆)σ/2uε]uk
εdxdt ≥ 0
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In view of ∫ T

0

∫
Ω

(∂−εt uε)uk
εdxdt ≥

1
k + 1

∫
Ω

(|uε(T )|k+1 − |uε(0)|k+1)dx

and (1.2), we have

1
k + 1

∫
Ω

|uε(T )|k+1dx +

∫ T

0

∫
Ω

|uε|k+qdxdt ≤ Ck +
1

k + 1
|uε(0)|k+1dx,

where C is independent of k. Hence(∫
Ω

|uε(T )|k+1dx
) 1

k+1

≤ (k + 1)
1

k+1 C
k

k+1 +

(∫
Ω

|uε(0)|k+1dx
) 1

k+1

.

Let k → ∞, we deduce that ‖uε(T )‖L∞(Ω) ≤ C + ‖u0‖L∞(Ω). Therefore, ‖u(T )‖L∞(Ω) ≤ C + ‖u0‖L∞(Ω).

2. A priori estimates
It is easy to check that ut of (3.1) is a functional as [42]. In order to show that ut is actually a function, we need

the following lemmas.

Lemma 3.2. Let u(x, t) ∈ L1(Ω × [0,T ]), uε → u a.e. (x, t) ∈ Ω × [0,T ]. Assume that uε and
uε(t) − uε(t − ε)

ε
is

uniformly bounded in Lp(Ω × [0,T ]), where p > 1. Then the weak derivative u′(x, t) ∈ Lp(Ω × [0,T ]).

Proof. Let φ ∈ C∞c (Ω × (0,T )). Because
uε(t) − uε(t − ε)

ε
is uniformly bounded in Lp(Ω × [0,T ]) with respect to ε,

we have a weakly convergent subsequence which is convergent to g(x, t) ∈ Lp(Ω × [0,T ]), that is,∫
Ω×[0,T ]

uε(t) − uε(t − ε)
ε

φ(x, t)dxdt →
∫

Ω×[0,T ]
g(x, t)φ(x, t)dxdt, as ε→ 0.

In addition, ∫
Ω×[0,T ]

u(x, t)φ
′

(x, t)dxdt = lim
ε→0

∫
Ω×[0,T ]

uε(x, t)
φ(x, t + ε) − φ(x, t)

ε
dxdt

= − lim
ε→0

∫
Ω×[0,T ]

uε(t) − uε(t − ε)
ε

φ(x, t)dxdt.

Therefore, ∫
Ω×[0,T ]

u(x, t)φ
′

(x, t)dxdt = −

∫
Ω×[0,T ]

g(x, t)φ(x, t)dxdt.

Hence, we get u′(x, t) = g(x, t) ∈ Lp(Ω × [0,T ])

Lemma 3.3. ([29]) Let m > 0, then there exists a positive constant c (depend on m ) such that

(xm − 1)(x − 1) ≥ c(x
m+1

2 − 1)2, ∀x ≥ 1.

and

(xm + 1)(x + 1) ≥ c(x
m+1

2 + 1)2, ∀x ≥ 1.

We now show that ut is actually a function.

Theorem 3.4. Let the condition (1.2) hold, u0 ∈ C∞c (Ω) and let u be a the weak solution of (3.1), then for all δ > 0,
ut ∈ L2(Ω × [δ,T ]).
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Proof. Indeed, let

∂−εt (um
ε ) =

um
ε (x, t) − um

ε (x, t − ε)
ε

= m|θuε(x, t) + (1 − θ)uε(x, t − ε)|m−1∂−εt uε,

where θ ∈ [0, 1]. Then, multiplying equation (3.2) by ∂−εt (um
ε + µuε) and integrating over Ω × [s,T ], where 0 ≤ s ≤ T .

We divide the time interval [0,T] in n subinterval and denote ts as right extreme point of the subinterval which include
s. The subinterval include s denote by s1th subinterval.

We now consider the inequality term by term. Because of the Lemma 3.3, we get

C
∫ T

s

∫
Ω

(∂−εt u
m+1

2
ε )2dxdt ≤

∫ T

s

∫
Ω

∂−εt (uε)∂−εt (um
ε )dxdt.

For the second term, we have∫ T

s

∫
Ω

(−∆)σ/2(um
ε + µuε) · ∂−εt (um

ε + µuε)dxdt

=

∫ T

s

∫
Ω

(−∆)σ/4(um
ε + µuε) · ∂−εt [(−∆)σ/4(um

ε + µuε)]dxdt

≥
1
2
{

∫
Ω

[(−∆)σ/4(um
ε (x,T ) + µuε(x,T ))]2dx

− (1 − ζ)
∫

Ω

[(−∆)σ/4(um
ε (x, s) + µuε(x, s))]2dx

− ζ

∫
Ω

[(−∆)σ/4(um
ε (x, s − ε) + µuε(x, s − ε))]2dx},

where ζ =
ts−s
ε

. Defined a function ĝ(s) = g(s) + C1s, then ĝ′(s) ≥ 0. We get the following estimate,∫ T

s

∫
Ω

ĝ(uε)∂−εt (um
ε )dxdt

=

n∑
l=s1

∫
Ω

ĝ(uε(x, tl))(um
ε (x, tl) − um

ε (x, tl−1))dx +

∫ ts

s

∫
Ω

ĝ(uε)∂−εt (um
ε )dxdt

≥

n∑
l=s1

∫
Ω

(Ĝ(uε(x, tl)) − Ĝ(uε(x, tl−1)))dx + mζ
∫

Ω

(Ĝ(uε(x, s)) − Ĝ(uε(x, s − ε)))dx

= m{
∫

Ω

Ĝ(uε(x,T ))dx − (1 − ζ)
∫

Ω

Ĝ(uε(x, s))dx − ζ
∫

Ω

Ĝ(uε(x, s − ε))dx},

where Ĝ(u) =
∫ u

0 ĝ(s)|s|m−1ds.
Accordingly, we deduce that∫ T

s

∫
Ω

ĝ(uε)∂−εt (uε)dxdt

=

n∑
l=s1

∫
Ω

ĝ(uε(x, tl))(uε(x, tl) − uε(x, tl−1))dx +

∫ ts

s

∫
Ω

ĝ(uε)∂−εt (uε)dxdt

≥

n∑
l=s1

∫
Ω

(G̃(uε(x, tl)) − G̃(uε(x, tl−1)))dx + ζ

∫
Ω

(G̃(uε(x, s)) − G̃(uε(x, s − ε)))dx

=

∫
Ω

G̃(uε(x,T ))dx − (1 − ζ)
∫

Ω

G̃(uε(x, s))dx − ζ
∫

Ω

G̃(uε(x, s − ε))dx,
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where G̃(u) =
∫ u

0 ĝ(s)ds.
In addition, we get∫ T

s

∫
Ω

uε · ∂−εt (um
ε )dxdt

=
2m

m + 1

∫ T

s

∫
Ω

uε · |θ′u
m+1

2
ε (x, t) + (1 − θ′)u

m+1
2

ε (x, t − ε)|
m−1
m+1 · ∂−εt u

m+1
2

ε dxdt

≤ τ

∫ T

s

∫
Ω

(∂−εt u
m+1

2
ε )2dxdt

+ C
∫ T

s

∫
Ω

u2
ε · |θ

′u
m+1

2
ε (x, t) + (1 − θ′)u

m+1
2

ε (x, t − ε)|
2(m−1)

m+1 dxdt,

where τ is small enough.
For the last term, we have the following equation,∫ T

s

∫
Ω

h(x)∂−εt (um
ε )dxdt

=

n∑
l=s1

∫
Ω

h(x)(um
ε (x, tl) − um

ε (x, tl−1))dx +

∫ ts

s

∫
Ω

h(x)∂−εt (um
ε )dxdt

=

∫
Ω

h(x)um
ε (T )dx − (1 − ζ)

∫
Ω

h(x)um
ε (s)dx − ζ

∫
Ω

h(x)um
ε (s − ε)dx.

Accordingly, ∫ T

s

∫
Ω

h(x)∂−εt (uε)dxdt

=

∫
Ω

h(x)uε(T )dx − (1 − ζ)
∫

Ω

h(x)uε(s)dx − ζ
∫

Ω

h(x)uε(s − ε)dx.

Combining with Lemma 3.1 and the above estimate, we conclude that∫ T

s

∫
Ω

(∂−εt u
m+1

2
ε )2dxdt + µ

∫ T

s

∫
Ω

(∂−εt uε)2dxdt

+
1
2

∫
Ω

[(−∆)σ/4(um
ε (x,T ) + µuε(x,T ))]2dx + m

∫
Ω

Ĝ(uε(x,T ))dx + µ

∫
Ω

G̃(uε(x,T ))dx

≤

∫
Ω

[(−∆)σ/4(um
ε (x, s) + µuε(x, s))]2dx

+

∫
Ω

[(−∆)σ/4(um
ε (x, s − ε) + µuε(x, s − ε))]2dx + C.

where C depend on ‖u0‖L∞(Ω), g,T and ‖h‖L∞(Ω), but is independent of ε.
Integrating the above inequality over [0,T ] with respect to s, we infer that∫ T

0
t
∫

Ω

(∂−εt u
m+1

2
ε )2dxdt + µ

∫ T

0
t
∫

Ω

(∂−εt uε)2dxdt

+
T
2

∫
Ω

[(−∆)σ/4(um
ε (x,T ) + µuε(x,T ))]2dx + mT

∫
Ω

Ĝ(uε(x,T ))dx + µT
∫

Ω

G̃(uε(x,T ))dx

≤

∫ T

0

∫
Ω

[(−∆)σ/4(um
ε (x, s) + µuε(x, s))]2dx

+

∫ T

0

∫
Ω

[(−∆)σ/4(um
ε (x, s − ε) + µuε(x, s − ε))]2dx + TC.
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For all δ, T and 0 < δ < T , the inequality (3.3) imply that

δ

∫ T

δ

∫
Ω

(∂−εt uε)2dxdt ≤
∫ T

0
t
∫

Ω

(∂−εt uε)2dxdt ≤ C.

Applying Lemma 3.2, we finish the prove of Lemma 3.4.

Remark 3.5. Due to

u ∈ L∞(0,T ; Lm+1(Ω)) ↪→ L1(0,T ; L1(Ω) + H−σ/2(Ω)),

and

ut ∈ L1(0,T ; L1(Ω) + H−σ/2(Ω)),

thanks to Proposition 7.1 in [31], we get

u ∈ C(0,T ; L1(Ω) + H−σ/2(Ω)).

Hence,

u ∈ C(0,T ; L1(Ω)). (3.5)

3. L1 − L1-estimate

Lemma 3.6. Let condition (1.2) hold, let initial data u0 ∈ L∞(Ω) and let u(t) be the weak solution of (3.1). Then,

‖u(T )‖L1(Ω) ≤ C + ‖u0‖L1(Ω), (3.6)

where C is independent of T .

Proof. We consider a function p j(s), p j(s)→ sgns as j→ ∞ and exists M j > 0, such that −1 < p j(s) < 1, p j(0) = 0
and 0 < p

′

j(s) < M j.
Applying Lemma 2.3 and Lemma 3.1, we get that p j(um) ∈ Hσ/2

0 (Ω). Hence, thanks to Lemma 2.2, we deduce that∫
Ω

(−∆)σ/2um · p j(um)dxdt

=

∫
CΩ

y1−σ∇E(um) · ∇E(p j(um))dxdydt

=

∫
CΩ

y1−σ∇E(um) · ∇p j(E(um))dxdydt

=

∫
CΩ

y1−σ(∇E(um))2 · p
′

j(E(um))dxdydt

≥ 0.

Similarly, we have ∫
Ω

(−∆)σ/2u · p j(um)dxdt ≥ 0.

9



In light of ∫
Ω

g(u)p j(um)dx

≥

∫
Ω

(−C + |u|q)|p j(um)|dx

≥ −C|Ω| +
∫

Ω

|u|q|p j(um)|dx.

≥ −C|Ω| + k
∫

Ω

|u||p j(um)|dx −C
∫

Ω

|p j(um)|dx

≥ −C|Ω| + k
∫

Ω

|u||p j(um)|dx,

Multiplying equation (3.1) by ekt p j(um) and integrating (x, t) over Ω × [δ,T ], we obtain∫ T

δ

ekt p j(um)utdxdt + k
∫ T

δ

∫
Ω

ekt |u||p j(um)|dxdt

≤

∫ T

δ

∫
Ω

Cektdxdt +

∫ T

δ

∫
Ω

|h|ektdxdt.

Passing to the limit j→ ∞, we get the following inequality,∫ T

δ

ekt
∫

Ω

d
dt
|u|dxdt + k

∫ T

δ

ekt
∫

Ω

|u|dxdt

≤

∫ T

δ

ektCdt +

∫ T

δ

ekt
∫

Ω

|h|dxdt

≤ CekT .

Therefore, we conclude that

‖u(T )‖L1(Ω) ≤ C + eδ−T ‖u(δ)‖L1(Ω).

Thanks to the remark (3.5), passing to the limit δ→ 0, we get (3.6).

4. L1 − L∞-estimate

Theorem 3.7. Let condition (1.2) hold. Suppose u0 ∈ L∞(Ω). Assume that u(t) is a weak solution of equation (3.1).
Then there exists a constant M such that

‖u(t)‖L∞(Ω) ≤ C(1 +
1

t
1

q−1

) := M, ∀t > 0. (3.7)

where M is independent of ‖u0‖L∞(Ω), but depend on 1
t .

Proof. We multiply the equation (3.1) by uk(q−1) = |u|k(q−1)−1u and integrate over Ω × [0,T ]. This implies that

1
1 + k(q − 1)

d
dt
‖u(t)‖1+k(q−1)

L1+k(q−1) +
k1

4q
‖u(t)‖1+(k+1)(q−1)

L1+(k+1)(q−1) ≤ Ck+1, (3.8)

where

Ck+1 = ‖h‖
(k+1)(q−1)+1

q

L∞ ·

[
(k + 1)(q − 1) + 1

k(q − 1)
·

k1

4q

]− k(q−1)
q

.

+

(
2q
k1

) k(q−1)
q

· |Ω|.
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Then, integrating the equation (3.8) over [s, t] with respect to t, we have

1
1 + k(q − 1)

‖u(t)‖1+k(q−1)
L1+k(q−1) +

k1

4q

∫ t

s
‖u(ξ)‖1+(k+1)(q−1)

L1+(k+1)(q−1) dξ

≤ Ck+1(t − s) +
1

1 + k(q − 1)
‖u(s)‖1+k(q−1)

L1+k(q−1) .

Let us now multiply above inequality by sk and integrate over [0, t] with respect to s. Then, we conclude that

tk+1

1 + k(q − 1)
‖u(t)‖1+k(q−1)

L1+k(q−1) +
k1

4q(k + 1)

∫ t

0
sk+1‖u(s)‖1+(k+1)(q−1)

L1+(k+1)(q−1) ds

≤ Ck+1 ·
tk+2

(k + 1)(k + 2)
+

∫ t

0

sk

1 + k(q − 1)
‖u(s)‖1+k(q−1)

L1+k(q−1) ds.
(3.9)

Iterating the inequality (3.9) and combining with Lemma 3.6, we arrive at

tk+1

1 + k(q − 1)
‖u(t)‖1+k(q−1)

L1+k(q−1)

≤ Ck+1 ·
tk+2

(k + 1)(k + 2)
+ · · · + C1

t2

2
+ Ct + t‖u(0)‖L1(Ω)

≤ C‖u(0)‖L1(Ω) ·Ck+1(tk+2 + · · · + t).

We divided the above inequality by tk+1 and raised to the power of 1
1+k(q−1) . This implies that

(
1

1 + k(q − 1)
)

1
1+k(q−1) ‖u(t)‖L1+k(q−1)

≤ (C‖u(0)‖L1(Ω) ·Ck+1)
1

1+k(q−1) ·

(
1 − tk+2

(1 − t)tk

) 1
1+k(q−1)

.

Letting k → ∞ for t > 0, we have

‖u(t)‖L∞(Ω) ≤ C(1 +
1

t
1

q−1

) ∀t > 0.

Remark 3.8. In fact, the M is independent of ‖u0‖L1(Ω) by the Theorem 3.7.

5. Continuous dependence of the solution
The following lemma show the uniqueness of the solution for equation (3.1) and which also can be used to obtain

a weak solution with initial data u0 ∈ L1(Ω).

Lemma 3.9. Let the condition (1.2) hold and let u1(t) and u2(t) be two solution of equation (3.1) with initial data
u1

0 ∈ C∞c (Ω) and u2
0 ∈ C∞c (Ω), respectively. Then the following estimate hold:

‖u1(t) − u2(t)‖L1(Ω) ≤ eKt‖u1
0 − u2

0‖L1(Ω), (3.10)

where K = max
s∈R
{−g′(s)}.

Proof. Indeed, let v(t) = u1(t) − u2(t). Then, the function satisfies the following equation
vt + (−∆)σ/2(l1(t) + µ)v + l2(t)v = 0,
v|∂Ω = 0,
v|t=0 = u1

0 − u2
0.
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where

l1(t) =

∫ 1

0
|su1(t) + (1 − s)u2(t)|m−1ds ≥ 0

l2(t) =

∫ 1

0
g
′

(su1(t) + (1 − s)u2(t))ds ≥ −K.

Multiplying the above equation by p j((l1(t) + µ)v) and integrating over Ω, we get∫
Ω

vt p j((l1(t) + µ)v)dx ≤ K
∫

Ω

vp j((l1(t) + µ)v)dx.

Let us now multiply the inequality by e−Kt and integrate over [δ,T ] with respect to t. This implies that∫ T

δ

e−Kt
∫

Ω

vt p j((l1(t) + µ)v)dxdt ≤ K
∫ T

δ

e−Kt
∫

Ω

vp j((l1(t) + µ)v)dxdt.

Letting j→ ∞, we have ∫ T

δ

e−Kt d
dt

∫
Ω

|v|dxdt ≤ K
∫ T

δ

e−Kt
∫

Ω

|v|dxdt,

that is, ∫ T

δ

d
dt

(e−Kt
∫

Ω

|v|dx)dt ≤ 0.

Thus, ∫
Ω

|v(T )|dx ≤ eK(T−δ)
∫

Ω

|v(δ)|dx.

Letting δ→ 0 and combining with remark 3.5, we get

‖u1(t) − u2(t)‖L1(Ω) ≤ eKt‖u1
0 − u2

0‖L1(Ω).

4. Solutions in L1(Ω)

We now formulate the definition of a weak solution with initial data in L1(Ω) of that problem.

Definition 4.1. We say that a function u is a weak solution of (1.1) for every δ > 0 and u0 ∈ L1(Ω), if

u ∈ C([0,T ], L1(Ω)), u ∈ L∞(Ω × [δ,T ]), um ∈ L2([δ,T ],Hσ/2
0 (Ω))

and it satisfies (1.1) in the sense of distributions.

Remark 4.2. In fact, thanks to (3.7) and remark 3.5, we know that the weak solution of the approximate equation
(3.1) satisfy the condition of the Definition 4.1.

Lemma 4.3. Assume that the condition (1.2) hold and initial data u0 ∈ C∞c (Ω). Then, there exists a weak solution of
the equation (1.1) for the Definition 4.1.
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Proof. Indeed, let uµn be a weak solution of the approximate equation (3.1) with initial data u0, where µn is the
parameter and µn → 0 as n → 0. Then, uµn satisfy the estimate (3.4). We conclude that um

µn
is uniformly bounded

in L2(0,T ; Hσ/2
0 (Ω)). Hence, we can extract a weakly convergent subsequence with um

µn
⇀ um in L2(0,T ; Hσ/2

0 (Ω)).
Applying the Aubin-Lions Lemma, we get uµn → u a.e. in Ω×[0,T ] (analogously to the proof of Theorem 2.3 in [42]).
Thus, ‖uµn (t)−u(t)‖L1(Ω) → 0 a.e. in [0,T ]. Thanks to Lemma 3.9, we infer that the limit u(x, t) satisfy (3.10). We now
show that the u(x, t) is what we need. In addition, thanks to (3.7), we get ‖uµn‖L∞(Ω×[δ,T ]) ≤ M. Hence, there exists a
weakly star convergent subsequence of uµn such that uµn

∗
⇀ u. Therefore, ‖u‖L∞(Ω×[δ,T ]) ≤ lim inf

n→∞
‖uµn‖L∞(Ω×[δ,T ]) ≤ M.

We now show that u ∈ C([0,T ], L1(Ω)). Let 0 ≤ s < t ≤ T and ε > 0, because of (3.10), we have

‖u(s) − u(t)‖L1(Ω)

≤eK(t−s)‖u0 − u(t − s)‖L1(Ω)

≤eK(t−s)‖u0 − uuµn
(t − s) + uuµn

(t − s) − u(t − s)‖L1(Ω)

≤eK(t−s)‖u0 − uuµn
(t − s)‖L1(Ω) + eK(t−s)‖uuµn

(t − s) − u(t − s)‖L1(Ω)

≤ε,

where µn and t− s is small enough. Hence, we arrive at u ∈ C([0,T ], L1(Ω)). It is easy show that for every test function
ϕ ∈ C∞c (Ω × (0,T )), we have µn

∫ T
0

∫
Ω

(−∆)σ/4uµn (−∆)σ/4ϕdxdt → 0 as µn → 0. Actually ,

µn

∫ T

0

∫
Ω

(−∆)σ/4uµn (−∆)σ/4ϕdxdt

=µn

∫ T

0

∫
Ω

uµn (−∆)σ/2ϕdxdt

≤µn

(∫ T

0

∫
Ω

|uµn |
2dxdt

)1/2

·

(∫ T

0

∫
Ω

((−∆)σ/2ϕ)2dxdt
)1/2

≤µn ·C → 0 as µn → 0.

Using the analogous method of Theorem 2.3 in [42] for nonlinear term, we get that u(x, t) satisfy the equation (1.1) in
sense of distributions.

In order to consider the uniqueness of the weak solution for (1.1), we need to study the following equation
−∂tw + l1(t)(−∆)σ/2w + ε(−∆)σ/2w = 0 x ∈ Ω × [0,T ],
w(x, t) = 0 x ∈ ∂Ω × [0,T ],
w(x,T ) = wT x ∈ Ω,

(4.1)

where the l1(t) is the same as that in Lemma 3.9.
According to the standard Fatou-Galerkin method and the maximum principle, it is easy to obtain the solvability

result for the equation (4.1) as Lemma 1.4 in [18]. Here we only state the result as follows.

Lemma 4.4. Assume that l1 ∈ L∞(Ω × [0,T ]). Then for every wT ∈ Hσ/2
0 (Ω) and every ε > 0, there exists a unique

solution w ∈ W (1,σ),2(Ω × [0,T ]) of the equation (4.1) and the following estimate holds:

‖(−∆)σ/4w(t)‖2L2(Ω) + 2ε
∫ T

0
‖(−∆)σ/2w(t)‖2L2(Ω)dt ≤ ‖(−∆)σ/4w(T )‖2L2(Ω). (4.2)

Moreover, if in addition, C1 ≤ wT (x) ≤ C2, then

C1 ≤ w(x, t) ≤ C2, for t ∈ [0,T ]. (4.3)

Now we are ready to state our main result in this section.
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Theorem 4.5. Assume that the condition (1.2) hold and initial data u0 ∈ L1(Ω). Then, there exists a unique weak
solution of (1.1) for the Definition 4.1.

Proof. Let un
0 ∈ C∞0 (Ω) and un

0 → u0 in L1(Ω). Then, thanks to the Lemma 4.3, we get that there exists a weak
solution un(x, t) for equation (1.1) with initial data un

0. Because of (3.10), we get that un(t) is the Cauchy sequence in
L1(Ω). Hence, there exists u(t) ∈ L1(Ω) such that un(t) → u(t) in L1(Ω) for every t ≥ 0. Let us show that u(x, t) is the
weak solution of equation (1.1). Taking into account un is the weak solution of equation (1.1) with initial data un

0, we
conclude that (un)m is uniformly bounded in L2(0,T ; Hσ/2

0 (Ω)). Thus, we can extract a weakly convergent subsequence
with (un)m ⇀ um in L2(0,T ; Hσ/2

0 (Ω)). In addition, thanks to (3.7), we get ‖un‖L∞(Ω×[δ,T ]) ≤ M. Then, we can extract

a weakly star convergent subsequence with un ∗
⇀ u. Hence, ‖u‖L∞(Ω×[δ,T ]) ≤ lim inf

n→∞
‖un‖L∞(Ω×[δ,T ]) ≤ M. Besides,

let u1,0, u2,0 ∈ L1(Ω). Then, there exists un
1,0, u

n
2,0 ∈ C∞c (Ω) such that un

1,0 → u1,0 in L1(Ω) and un
2,0 → u2,0 in L1(Ω).

Moreover, there exists weak solution un
1(x, t) and un

2(x, t) with initial data un
1,0 and un

2,0, respectively. Applying (3.10),
we get that there exists u1(x, t) and u2(x, t) such that un

1(t)→ u1(t) in L1(Ω) and un
2(t)→ u2(t) in L1(Ω) for every t ≥ 0.

Thanks to Lemma 4.3, we have

‖u1(t) − u2(t)‖L1(Ω)

=‖u1(t) − un
1(t) + un

1(t) − un
2(t) + un

2(t) − u2(t)‖L1(Ω)

≤‖u1(t) − un
1(t)‖L1(Ω) + ‖un

1(t) − un
2(t)‖L1(Ω) + un

2(t) − u2(t)‖L1(Ω)

≤‖u1(t) − un
1(t)‖L1(Ω) + eKt‖un

1,0 − un
2,0‖L1(Ω) + ‖un

2(t) − u2(t)‖L1(Ω)

→eKt‖u1,0 − u2,0‖L1(Ω) as n→ ∞.

Hence, u1(x, t) and u2(x, t) satisfy (3.10). We now show u ∈ C([0,T ], L1(Ω)). Actually, let 0 ≤ s < t ≤ T , applying
(3.10), we have following inequality hold for every ε > 0:

‖u(s) − u(t)‖L1(Ω)

≤eK(t−s)‖u0 − u(t − s)‖L1(Ω)

≤eK(t−s)‖u0 − un
0 + un

0 − un(t − s) + un(t − s) − u(t − s)‖L1(Ω)

≤eK(t−s)‖u0 − un
0‖L1(Ω) + ‖un

0 − un(t − s)‖L1(Ω) + ‖un(t − s) − u(t − s)‖L1(Ω)

≤ε.

where t − s small enough and n large enough. Using the analogous method of Theorem 2.3 in [42] for nonlinear term,
we have u(x, t) satisfy the equation (1.1) in sense of distributions. Actually, u(x, t) is a approximate solution of (1.1).

To show the uniqueness and continuous dependence. We consider the following equation

vt + (−∆)σ/2(l1(t)v) + l2(t)v = 0 (4.4)

where v(t) = u1(t) − u2(t) is the difference between two solutions of the equation (1.1) and the li are the same as that
in Lemma 3.9. We assume, in addition, that ui ∈ L∞(Ω × [0,T ]). Because of the absence of enough regularity for
the equation, we can not multiply the equation by sgn(v). Hence, in order to overcome the difficulty, we multiply the
equation by the solution w(t) of equation (4.1) and integrate over Ω × [δ,T ]. We have

(v(T ),w(T )) − (v(0),w(0)) − ε
∫ T

0
((−∆)σ/2w(t), v(t))dt +

∫ T

0
(l2(t)v(t),w(t))dt = 0. (4.5)

Approximating the function w0
T = sgn(v(T )) in L2(Ω) by wn

T ∈ Hσ/2
0 (Ω) and −1 ≤ wn

T ≤ 1 and constructing the
solution wn(t) of the equation (4.1), we infer that −1 ≤ wn

T (x, t) ≤ 1 and

(v(T ),wn
T ) − ε

∫ T

0
((−∆)σ/2wn(t), v(t))dt ≤ ‖v(0)‖L1(Ω) + L2

∫ T

0
‖v(t)‖L1(Ω)dt (4.6)
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where L2 = ‖l2(x, t)‖L∞(Ω×[0,T ]). Passing to the limit ε→ 0 and using the inequality (4.6) and

−ε

∫ T

0
((−∆)σ/2wn(t), v(t))dt ≤ ε1/4(ε1/2‖(−∆)σ/2wn‖2L2(Ω×[0,T ]) + ‖v‖2L2(Ω×[0,T ])),

we have

(v(T ),wn
T ) ≤ ‖v(0)‖L1(Ω) + L2

∫ T

0
‖v(t)‖L1(Ω)dt. (4.7)

We now pass to the limit ε→ ∞ in (4.7). Then, we conclude

‖v(T )‖L1(Ω) ≤ ‖v(0)‖L1(Ω) + L2

∫ T

0
‖v(t)‖L1(Ω)dt.

Thanks to the Gronwall inequality, we have

‖v(t)‖L1(Ω) ≤ eL2t‖v(0)‖L1(Ω). (4.8)

Hence,we have prove the uniqueness of weak solution for the equation (1.1) under the additional assumption u ∈
L∞(Ω × [0,T ]). Moreover, a weak solution is a approximate solution. Therefore, all weak solution satisfy (3.10). We
now consider the general case, that is, ui belong only to L∞(Ω × [δ,T ]) for every δ > 0. Hence, we have

‖u1(t) − u2(t)‖L1(Ω) ≤ eK(t−δ)‖u1(δ) − u2δ‖L1(Ω).

Passing to the limit δ → 0, we conclude that all the weak solutions satisfy the inequality (3.10), that is, the weak
solution is unique. In addition, it is imply that u ∈ C([0,T ], L1(Ω)).

We have obtained existence and uniqueness of weak solutions and their continuous dependence on initial condi-
tions. Hence, we can define the operator semigroup {S (t)}t≥0, which is continuous in L1(Ω).

5. The infinite-dimensional global attractor

In this section, we consider the existence and dimension of the attractor for the semigroup {S (t)}t≥0 in L1(Ω). It is
easy to show that there exists a bounded absorbing set of the semigroup in L1(Ω) by the Theorem 4.5. We now prove
that the semigroup has a compact absorbing set.

Theorem 5.1. Let the condition (1.2) hold. Then the semigroup {S (t)}t≥0 has a bounded absorbing set in W
σ

2m ,2m(Ω),
that is, there exists a bounded set B in W

σ
2m ,2m(Ω), such that for every bounded subset B in L1(Ω), there exists a

positive constant T0 = T0(‖B‖L1 ), such that

S (t)B ⊂ B, for every t ≥ T0.

Proof. Let T > 2 and T − 1
2 ≥ δ ≥ T − 1. Multiplying the equation (3.1) by um

µ + µuµ, integrating over Ω × [δ,T ] and
combining with (3.7), we get ∫ T

δ

∫
Ω

[(−∆)σ/4(um
µ + µuµ)]2dxdt ≤ C,

where C is independent of T and δ.
We multiply the equation (3.1) by (t − δ)(um

µ + µuµ)t and integrate over Ω × [δ,T ]. It implies that∫ T

δ

∫
Ω

(t − δ)(m|uµ|m−1 + µ)u2
µtdxdt +

1
2

(T − δ)
∫

Ω

[(−∆)σ/4(um
µ (T ) + µuµ(T ))]2dx

+ (T − δ)
∫

Ω

G(uµ(T ))dx

=
1
2

∫ T

δ

∫
Ω

[(−∆)σ/4(um
µ + µuµ)]2dxdt +

∫ T

δ

∫
Ω

G(uµ(t))dxdt

+ (T − δ)
∫

Ω

h(um
µ + µuµ)dx −

∫ T

δ

∫
Ω

h(um
µ + µuµ)dxdt,
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where G(uµ) =
∫ uµ

0 g(s)(|s|m−1 + 1)ds. Applying (3.7) again, we have∫
Ω

[(−∆)σ/4um
µ (T )]2dx ≤ C,

where C is independent of T and δ. Hence, let u(t) be weak solution of equation (1.1). Then,∫
Ω

[(−∆)σ/4um(T )]2dx ≤ C.

Therefore,

‖u(t)‖W σ
2m ,2m(Ω) ≤ C, t > 2.

Based on the above theorem, we get the existence of the global attractor of the semigroup {S (t)}t≥0 by Lemma 2.5.

Theorem 5.2. Let the condition (1.2) hold. Then the semigroup {S (t)}t≥0 has a global attractor in L1(Ω).

We now investigate the dimension of the attractor by the Z2 index theory. Let us consider the following equation.
ut + (−∆)σ/2(|u|m−1u) − |u|s−1u + g(u) = 0, (x, t) ∈ Ω × R+,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+,

u(x, 0) = u0, x ∈ Ω,

(5.1)

where g(u) satisfies the condition (1.2), and g is an odd function. Assume that 1 ≤ s < min{m, q} and there is a
constant α > s such that

lim
|τ|→0

g(τ)τ
|τ|α+1 = 0. (5.2)

Scince g is an odd function, applying (5.2) we get that g(τ)τ ≤ C|τ|α+1, where τ small enough; and

G(s) :=
∫ s

0
g(τ)|τ|m−1dτ ≤

C
m + α

|s|m+α. (5.3)

Theorem 5.3. Let g is an odd function and satisfies the condition (1.2) and (5.2). Then, the semigroup {S (t)}t≥0
generated by problem (5.1) is odd and admits a global attractor A in L1(Ω). Moreover, the global attractor A is
symmetric, that is, −A = A.

Proof. For every u0 ∈ L1(Ω), we know that −u0 ∈ L1(Ω). Let u(t) be the weak solution of problem (5.1) with initial
data u0. Then, −u(t) is the weak solution of problem (5.1) with initial data −u0 ∈ L1(Ω). Therefore, S (t)(−u0) =

−u(t) = −S (t)u0, that is, {S (t)}t≥0 is odd.
It is easy to show that −|u|s−1u + g(u) ≥ −C + k|u|q, where C, k are positive constants. Hence, the existence of a

global attractorA is an immediate consequence of Theorem 5.2.
We now show that the attractorA is symmetric.

A = ω(B) = ∩τ≥0∪t≥τS (t)B,

where B is an absorbing set and ω(B) is its ω limit set. Indeed, let B0 = B(0,R) = {u ∈ L1(Ω) : ‖u‖1 ≤ R} be the
symmetric absorbing set of semigroup S (t). Assume y ∈ A, then there exists a sequence {xn}

∞
n=1 ⊂ B0 and tn → ∞,

such that

S (tn)xn → y, in L1(Ω).

Because {−xn}
∞
n=1 ⊂ B0 and S (t) is odd, we have

S (tn)(−xn) = −S (tn)xn → −y, in L1(Ω).

Hence, −y ∈ A andA is symmetric.
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Lemma 5.4. [28, 43] Let {S (t)}t≥0 be an odd semigroup on a Banach space X, which possesses a symmetric global
attractorA. For any positive integer k, if there exists a symmetric set B ⊂ X such that γ(B) ≥ k, 0 < ω(B), then there
exists a neighborhood O(0) of 0 such that γ(A\O(0)) ≥ k

Theorem 5.5. Let above assumption hold and let u0 ∈ L1(Ω). Then, problem (5.1) possesses a symmetric global
attractorA in L1(Ω), of which the fractal dimension is infinite.

Proof. Applying Remark 2.7, we only need show that for every integer k > 0, there exists a neighborhood O(0) of 0,
such that

γ(A\O(0)) ≥ k. (5.4)

Actually, the inequality (5.4) implies that for every m, the odd continuous mapping fromA\O(0) to Rm \ {0} does not
exists. Moreover, the homeomorphic mapping from A to a subset of Rm does not exists. In light of Remark 2.7, we
can conclude that the dimension of A is infinite. To this end, thanks to Lemma 5.4, we need to find a symmetric set
Bk such that γ(Bk) ≥ k and ω(Bk) ⊂ A\{0}.

Consider the functional

Φ(u) =

∫
Ω

{
1
2

[(−∆)σ/4(|u|m−1u)]2 −
1

s + m
|u|s+m + G(u)

}
dx,

where 0 < s < min{m, q}. We conclude that

Φ(u(t1)) − Φ(u(t2)) = −

∫ t1

t2

∫
Ω

(u
m+1

2
t )2dxdt ≤ 0.

Hence, for every u0 ∈ Hσ/2
0 (Ω) ∩ L∞(Ω), the function Φ(u(t)) is nonincreasing with respect to t.

For every integer k > 0, let Vk be an k-dimensional subspace of Hσ/2
0 (Ω) ∩ L∞(Ω). Setting Ak = {u ∈ Vk :

‖(−∆)σ/4u‖L2(Ω) + ‖u‖L∞(Ω) = 1}, then Ak is compact in Hσ/2
0 (Ω) ∩ L∞(Ω), and there exists δ > 0 such that

inf
u∈Am
‖u‖m+s

Lm+s(Ω) = δ.

Setting εAk = {εu : u ∈ Ak}, then γ(εAk) = γ(Ak) = k. let v = εu ∈ εAk, combine with (5.3), for every sufficiently
small ε, we have

Φ(v) =

∫
Ω

{
1
2

[(−∆)σ/4(|v|m−1v)]2 −
1

s + m
|v|s+m + G(v)

}
dx

≤
1
2

∫
CΩ

y1−σ|E(v)|2(m−1)(∇v)2dxdy −
1

s + m

∫
Ω

|v|s+mdx +
C

m + α

∫
Ω

|v|m+αdx

≤
ε2(m−1)

2
‖v‖2

Hσ/2
0 (Ω)

−
δ

s + m
εs+m +

C
m + α

εm+α

≤
1
2
ε2m −

δ

s + m
εs+m +

C
m + α

εm+α.

Since s < min{m, α}, for every v = εAk, we have Φ(v) < 0. Owing to Φ(0) = 0 and the function Φ(u(t)) is
nonincreasing with respect to t, we infer that ω(εAk) ⊂ A\{0}. Applying Lemma 5.4 and Z2 index theory, we have

γ(A\O(0)) ≥ k.

Remark 5.6. In the case of fractional diffusion non-degenerate equations (m = 1) in bounded domains, it is easy
to get the finite dimensionality of the attractor by estimating the Kolmogorov entropy. However, for m > 1, the
dimension of attractor is infinite in Theorem 5.5. It is because the power of the first term (that is equivalent to 2m) of
the functional Φ is greater than the second term (s + m). The coefficient of the second term is negative. Hence, the
functional is decreasing and then increasing in the domain of the original point. Moreover, for every eigenvalue of
(−∆)σ/2, there exists a complete bounded orbit which lie in attractor. The complete bounded orbits are different from
each other. Accordingly, the dimension of attractor is infinite.
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