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Comparing the performance of high-resolution global 1 

precipitation products across topographic and climatic 2 

gradients of Central Asia 3 

 4 

ABSTRACT 5 

 6 

Accurate and reliable precipitation data with high spatial and temporal 7 

resolution are essential in studying climate variability, water resources 8 

management, and hydrological forecasting. A range of global precipitation data 9 

are available to this end, but how well these capture actual precipitation remains 10 

unknown, particularly for mountain regions where ground stations are sparse. 11 

We examined the performance of three global high-resolution precipitation 12 

products for capturing precipitation over Central Asia, a hotspot of climate 13 

change, where reliable precipitation data are particularly scarce. Specifically, we 14 

evaluated MSWEP, CHIRPS, and GSMAP against independent gauging stations 15 

for the period 1985–2015. Our results show that MSWEP and CHIRPS 16 

outperformed GSMAP for wetter periods (i.e., winter and spring) and wetter 17 

locations (150–600 mm/year), lowlands, mid-altitudes (0–3,000 m), and regions 18 

with a winter and spring precipitation regime. MSWEP was best at representing 19 

temporal precipitation dynamics, and CHIRPS was most prominent in 20 

representing the volume and distribution of precipitation. All products poorly 21 

estimated precipitation at higher elevations (>3,000 m), in drier areas (< 150 mm), 22 

and in regions characterized by summer precipitation. All precipitation products 23 

accurately detected dry spells, but their performance decreased for wet spells 24 

with increasing precipitation intensity. In sum, we suggest that CHIRPS and 25 

MSWEP provide the most reliable high-resolution precipitation estimates for 26 

Central Asia. However, the high spatial and temporal heterogeneity of the 27 

performance call for a careful selection of a suitable product for local applications 28 

considering the various aspects of precipitation dynamics, climatic, and 29 

topographic conditions.   30 
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 33 

1. INTRODUCTION 34 

 35 

The spatial and temporal variability of precipitation shape hydrological cycles 36 

(Michaelides et al., 2009). Climate change alters these cycles through changes in 37 

precipitation frequency, intensity, and amount and by affecting 38 

evapotranspiration patterns (Trenberth, 2011, Tan et al., 2020). These changes in 39 

turn impact freshwater availability for agriculture, hydropower, and 40 

socioeconomic development (Tan et al., 2020). Most regions with rainfed or 41 

irrigated crops depend on precipitation totals during the peak months of plant 42 

growth to meet water demand (Funk et al., 2015). Accurate and reliable 43 

precipitation records with high spatial and temporal resolutions are therefore 44 

essential to study climate variability, the management of water resources, and 45 

hydrological forecasting (Sun et al., 2018). 46 

Satellite precipitation sensors are currently the only instruments that can provide 47 

near real-time global coverage of precipitation with estimates from 48 

geosynchronous infrared sensors on geostationary satellites, which have a high 49 

sampling frequency, and polar-orbiting microwave sensors on low Earth–50 

orbiting satellites with lower temporal resolution (Huffman et al., 2007, Maggioni 51 

et al., 2016). Satellite-based estimates of precipitation are increasingly used to 52 

complement ground station observations, which are limited in areal coverage 53 

and density, particularly in inaccessible regions (e.g., mountainous areas), 54 

sparsely populated areas, and especially in developing countries (Zambrano-55 

Bigiarini et al., 2017, Sun et al., 2018, Rivera et al., 2018). The lack of station data 56 

in mountainous regions is worrisome because precipitation patterns in the 57 

mountains are crucial to assess changes in regional climate and in the cryosphere, 58 



   
 

   
 

which directly affect water availability in downstream regions (Unger-Shayesteh 59 

et al., 2013, Immerzeel et al., 2020, Viviroli et al., 2020).  60 

Merging satellite data with gauge measurements from ground stations and 61 

reanalysis estimations can improve the accuracy of global precipitation datasets 62 

(Tan et al., 2020). Reanalysis-based estimates merge atmospheric measurements 63 

and climatic models encompassing physical and dynamical processes to produce 64 

consistent, accurate, and continuous meteorological data (Sun et al., 2018, Tan et 65 

al., 2020). However, varying availability of ground observations for calibrating 66 

the satellite algorithms and reanalysis estimates can compromise the quality of 67 

the merged global precipitation datasets (Hu et al., 2018, Zandler et al., 2019, Sun 68 

et al., 2018). Therefore, quantitative validation of these global precipitation 69 

datasets against ground observations is critical to determine the accuracy and 70 

uncertainty of the global products at local and regional scales because 71 

misestimations can arise from sampling, instrumental (e.g., sensor observations), 72 

and algorithmic errors (Nijssen, 2004, Ebert, 2007, Hu et al., 2018). Validation is 73 

hence a keystone for better understanding the impact of climate changes on 74 

regional hydrological cycles. 75 

Station data for Central Asia are very scarce, especially in higher elevations and 76 

particularly since the dilapidation of much of the meteorological infrastructure 77 

following the collapse of the Soviet Union in 1991 and the independence of the 78 

Central Asian republics (Schiemann et al., 2008, Unger-Shayesteh et al., 2013). 79 

This is unfortunate because precipitation, glaciers, and snowmelt dominate the 80 

hydrological budget in the semiarid continental climate of Central Asia, where 81 

water fluxes in the mountainous areas play a crucial role in downstream 82 

hydrology and water availability (Schär et al., 2004, Mannig et al., 2013, Maussion 83 

et al., 2013). The region’s economy and ecology heavily rely on water from the 84 

two main endorheic rivers, the Amu Darya and Syr Darya, which originate in the 85 

headwater catchments of the Pamir and Tien Shan mountains, respectively 86 

(Schär et al., 2004, Unger-Shayesteh et al., 2013). In addition, the region is a 87 



   
 

   
 

hotspot of climate change with warming rates of up to 0.3 °C per decade during 88 

the past half century (Teixeira et al., 2013, Reyer et al., 2017, Peng et al., 2019).  89 

Precipitation data sourced from global precipitation products are paramount for 90 

data-scarce or ungauged regions, such as Central Asia. Previous studies have 91 

evaluated precipitation products for the region with varied and sometimes 92 

contrasting results (Table S1). Several studies have suggested that the gauge-93 

based products from the Global Precipitation Climatology Centre (GPCC), with 94 

spatial resolutions ranging from 0.25° to 1°, were the most reliable precipitation 95 

data for the region but underestimated precipitation in the mountains (Hu et al., 96 

2018, Malsy et al., 2014). In the Amu Darya basin, however, the gauge-based 97 

Climate Prediction Center (CPC) (0.5°) dataset performed best (Salehie et al., 98 

2021). In the Pamir mountains, the reanalysis product Modern-Era Retrospective 99 

analysis for Research Application (MERRA, 0.5°) stood out, although its 100 

performance deteriorated strongly for the period 1998–2012 due to the decline of 101 

station data availability (Zandler et al., 2019).  102 

The resolution of the abovementioned gauge-based and reanalysis products is 103 

not suitable for studies at regional and catchment scales in Central Asia because 104 

their spatial resolution is too coarse to capture precipitation gradients in the 105 

complex topography of the region (Hellwig et al., 2018, Henn et al., 2018). Here 106 

we evaluate global or near-global precipitation products with a spatial resolution 107 

higher than 12 x 12 km and for the period 1981–2015 for the Pamir and Tien Shan 108 

mountains and adjacent lowlands of Central Asia. We only selected gauge-109 

corrected products with proven reliability at local and regional scales with a 110 

sufficiently long time series available to support analyzing climatic trends and 111 

variability (see Table S1 and references therein). Finally, we only consider 112 

products that are still operational. These criteria resulted in the selection of the 113 

Climate Hazard Group InfraRed Precipitation with Station Data (CHIRPS 114 

version 2, 0.05°) (Funk et al., 2015), the Multi-Source Weighted-Ensemble 115 



   
 

   
 

Precipitation (MSWEP, 0.1°)(Beck et al., 2017a), and the Global Satellite Mapping 116 

of Precipitation (GSMAP, 0.1°)(Ushio et al., 2009).  117 

The gauge-corrected versions of GSMAP and MSWEP products were previously 118 

considered the best-performing high-resolution precipitation data for the region 119 

(Guo et al., 2015, Guo et al., 2017, Lu et al., 2021) and globally (Beck et al., 2017b). 120 

The gauge-calibrated CHIRPS product was ranked third in Central Asia when 121 

compared to six coarser precipitation products (Salehie et al., 2021). However, 122 

the accuracy of MSWEP and CHIRPS has to date not been assessed for Central 123 

Asia with data from meteorological stations that were not used for gauge 124 

correction of the investigated products.  125 

Here we aim to i) identify the strengths and limitations of the three global 126 

precipitation products at daily, monthly, seasonal, and annual timescales, ii) 127 

determine the effect of topography and climate regimes on the performance of 128 

the precipitation products, iii) quantify the accuracy of the products for different 129 

precipitation intensities, and iv), based on these evaluations, propose which 130 

precipitation product is most appropriate for subsequent studies. Our analysis 131 

hence facilitates informed decisions for assessing climate variability, 132 

hydrological and agricultural studies, and water management in this 133 

heterogeneous and data-scarce region.   134 

 135 

2. STUDY AREA 136 

 137 

The study area covers the Tien Shan and Pamir mountains, including the adjacent 138 

semi-arid lowlands of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and 139 

Uzbekistan (Figure 1). In the western and northern Tien Shan and Pamir 140 

mountains, most precipitation occurs during the winter and spring seasons 141 

(November–March) and falls primarily as snow (Barlow and Tippett, 2008, Sorg 142 

et al., 2012). In contrast, parts of central and eastern Tien Shan and eastern Pamir 143 

receive most precipitation during summer months (Apel et al., 2018). 144 



   
 

   
 

Precipitation amounts in the region range from 50 to 1,000 mm annually, 145 

primarily determined by orographic uplift and mid-latitude westerly cyclones 146 

(Barlow and Tippett, 2008, Mariotti, 2007).  147 

 148 

Large-scale variation of extratropical westerlies, which transport moisture from 149 

the Atlantic Ocean, the Mediterranean and Caspian Sea, and the Persian Gulf, are 150 

the major moisture sources throughout the year in Central Asia; the central and 151 

eastern Tien Shan and southeastern Pamir are also affected by the Indian 152 

Monsoon in summer (Böhner, 2006, Meier et al., 2013). Moisture fluxes from the 153 

Arabian Sea and tropical Africa during warm El Niño Southern Oscillation 154 

events cause higher precipitation in autumn and spring in southwestern Central 155 

Asia (Mariotti, 2007). 156 

 157 

3. DATA 158 

 159 

3.1. Precipitation products 160 

 161 

3.1.1. CHIRPS 162 

 163 

CHIRPS provides daily blended gauge-satellite precipitation estimates covering 164 

most global land regions (50° N to 50° S) with a resolution of 0.05° (about 5 km at 165 

the equator) from 1981 until present and with a low latency (updated roughly 166 

every 2 days, with a stable product released every 3 weeks) (Funk et al., 2015). 167 

CHIRPS combines precipitation estimates based on observations of infrared cold 168 

cloud duration in which cold and bright clouds are related to convection and 169 

therefore rain (Sun et al., 2018). CHIRPS incorporates station data from public 170 

data streams and private archives and uses reanalysis-based estimates of the 171 

Coupled Forecast System (CFS) to temporally disaggregate from 5-day to daily 172 

estimates and when thermal infrared observations are missing (Shukla et al., 173 

2014, Funk et al., 2015). Calibration of CHIRPS involves three main components: 174 



   
 

   
 

i) the Climate Hazards group Precipitation climatology (CHPclim); ii) the 175 

satellite-only Climate Hazards group Infrared Precipitation (CHIRP); and iii) the 176 

station-blending procedure (Funk et al., 2015). We downloaded the CHIRPS data 177 

from https://data.chc.ucsb.edu/products/CHIRPS-2.0/. 178 

 179 

3.1.2. GSMAP 180 

 181 

The GSMAP is a multi-satellite algorithm developed by the Japan Science and 182 

Technology Agency (Okamoto et al., 2005, Kubota et al., 2007). The algorithm 183 

follows three main steps: i) retrieval of precipitation rate from passive microwave 184 

data (precipitation-sized particles such as ice content are detected through 185 

clouds), provided by the CPC using a Kalman filter approach (Ushio et al., 2009); 186 

ii) propagation of the estimated precipitation rates using a backward- and 187 

forward-morphing technique (Joyce et al., 2004); and iii) refinement of 188 

precipitation data based on the relationship between the infrared brightness 189 

temperature and surface precipitation rates (Thiemig et al., 2012). GSMAP has a 190 

spatial resolution of 0.1° (about 11 km at the equator) and near-global coverage 191 

(60°N to 60°S). It provides hourly averaged rainfall (mm/h). We used daily 192 

precipitation values (mm/day) of the GSMAP_Gauge_NRT (near real-time with 193 

gauge-calibration using the NOAA CPC Unified Gauge-Based Analysis of Global 194 

Precipitation dataset, 0.5°) that has the longest record, starting in 2000 up to 195 

present day. We downloaded the GSMAP data from 196 

https://sharaku.eorc.jaxa.jp/GSMaP/. 197 

 198 

3.1.3. MSWEP 199 

 200 

The MSWEP precipitation dataset provides 3-hourly and daily temporal 201 

resolution at 0.1° to 0.25° spatial resolutions from 1979 to near present on a global 202 

scale (Beck et al., 2017a, Beck et al., 2017b, Beck et al., 2019). It merges gauge 203 

observations, satellite, and reanalysis estimates based on timescale and location 204 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://sharaku.eorc.jaxa.jp/GSMaP/


   
 

   
 

(Beck et al., 2019). The weight assigned to the gauge-based estimates is calculated 205 

from the gauge network density, and the weights assigned to the satellite- and 206 

reanalysis-based estimates are calculated from their comparative performance at 207 

surrounding gauges (Sun et al., 2018). We used the latest version of MSWEP with 208 

a spatial resolution of 0.1° (about 11 km at the equator). This dataset relies on the 209 

reanalysis ERA5, the Multi-Satellite Retrievals from the Global (IMERG) satellite 210 

constellation, and the Gridded Satellite (GridSat) thermal infrared imagery, with 211 

GridSat only used prior to 2000. Unlike previous versions of MSWEP, this version 212 

does not correct underestimation over mountainous and snow-dominated 213 

regions in order to match rain gauge observations as closely as possible (Beck, 214 

2021). We downloaded the MSWEP data from http://www.gloh2o.org/. 215 

 216 

3.2. Precipitation gauge data 217 

We collected data for 30 stations within the five central Asian countries for the 218 

period 1981–2015 (Figure 1), which were not used to correct the global 219 

precipitation products. The selection of these stations was based on the list of 220 

station names and locations used for the CHIRPS product, the main public gauge 221 

sources of MSWEP (Funk et al., 2015). We directly requested and collected the 222 

station data from the local research and governmental institutions for validation, 223 

and they are not available on open public archiving domains that are used for 224 

gauge correction of the global datasets. For some stations, the calibration of the 225 

global precipitation made only used a share of the available time series (see Table 226 

S2); in these cases, we used only the remaining data for the validation. For 227 

GSMAP, we used only the data from those 27 stations, which are available for 228 

the period April 2000 through December 2015.  229 

4. METHODS 230 

 231 

http://www.gloh2o.org/


   
 

   
 

4.1 Evaluation of precipitation products at different timescales 232 

We evaluated all products at daily, monthly, seasonal, and annual timescales to 233 

understand their value for applications that require precipitation data of various 234 

temporal resolutions (e.g., hydrological forecasting, water resource management, 235 

and agricultural drought monitoring) (Tobin and Bennett, 2014, Funk et al., 2015). 236 

For the seasonal timescale, we used calendar seasons: December, January, 237 

February (DJF); March, April, May (MAM); June, July, August (JJA); and 238 

September, October, November (SON). We grouped stations by elevation bands, 239 

precipitation amount, and precipitation regime to evaluate the reliability of 240 

precipitation products in diverse environmental conditions and to determine the 241 

effect of topography and climate regimes on the performance of the products.  242 

Since different precipitation intensities challenge the accuracy of the precipitation 243 

estimates, we classified daily precipitation time series into dry spells (<1mm/d) 244 

and wet spells of various intensities (1-5mm/d, 5-20mm/d, 20-40mm/d, and 245 

>40mm/d) (World Meteorological Organization, 2008, Zambrano-Bigiarini et al., 246 

2017).  247 

4.2 Evaluation of precipitation products at different spatial scales 248 

We performed a point-to-pixel analysis to compare the time series of 249 

precipitation gauge data to the corresponding pixel of each product (Thiemig et 250 

al., 2012, Zambrano-Bigiarini et al., 2017, Baez-Villanueva et al., 2018). To ensure 251 

a consistent comparison among the products, we upscaled CHIRPS to the coarser 252 

spatial resolution of MSWEP and GSMAP (i.e., 0.1°) using bilinear interpolation. 253 

To determine the effect of the upscaling, we performed the evaluation for both 254 

original and upscaled versions (hereafter termed CHIRPS upscaled). 255 

4.3 Evaluation metrics 256 

We evaluated the performance of the products for continuous precipitation time 257 

series and for discrete precipitation events. For precipitation time series, we used 258 

the modified Kling–Gupta efficiency (KGE’) (Gupta et al., 2009, Kling et al., 2012) 259 



   
 

   
 

(Eq. S1), a dimensionless metric that measures the ability of the precipitation 260 

products to reproduce temporal dynamics (correlation coefficient r) while 261 

preserving the volume (bias ratio β) and the distribution of precipitation 262 

(variability ratio γ). KGE’, r, β, and γ values of 1 indicate a perfect agreement 263 

between the precipitation estimates from the product and the ground 264 

observations. KGE’ values range from −∞ to 1. To determine the product 265 

accuracy, we used the mean absolute error (MAE) (Eq. S2), which measures the 266 

average magnitude of the difference between the estimated and observed values 267 

(Ebert, 2007).  268 

We evaluated the ability of tested precipitation products measuring the 269 

correspondence between estimated and observed dry and wet spells of various 270 

intensity groups (section 4.1) using a standard contingency table (Ebert, 2007) 271 

that summarizes the frequency of correct and false predictions. We used three 272 

categorical measures—that is, the probability of detection (POD), the false alarm 273 

ratio (FAR), and frequency bias (fBias) (Eq. S3)—that quantify various aspects of 274 

performance: POD measures the fraction of correctly identified observed events 275 

(“hit rate”), FAR gives the fraction of diagnosed events that were dry spells, and 276 

fBias calculates the ratio of the estimated events to the observed precipitation 277 

(Ebert, 2007, Baez-Villanueva et al., 2018, Guo et al., 2017). Perfect values are fBias 278 

(no bias), POD (detection of all events) is 1, and FAR (no events are incorrectly 279 

identified) is 0.  280 

4.4 Dominant precipitation regimes 281 

To capture the heterogeneity of climatic conditions and precipitation seasonality, 282 

we determined the precipitation regimes of each gauge and its corresponding 283 

grid locations with a monthly sequence of the Pardé coefficients (Pardé, 1933) 284 

(Eq. S4), which are dimensionless and can be used for interregional comparisons 285 

of precipitation regimes. We used the k-means clustering algorithm (Lloyd, 286 

1982), which minimizes the sum of squares of distances between the gauging 287 

stations’ values and the cluster with the nearest mean. In that way, we grouped 288 



   
 

   
 

the “shapes” of the seasonal precipitation regime according to membership in a 289 

cluster of precipitation with a similar shape (Weingartner et al., 2013). We 290 

selected the optimal number of clusters (k) using the elbow method, a trade-off 291 

between the cluster sum of squared errors, and a larger number of clusters 292 

(graphically) (Thorndike, 1953, Zhang et al., 2016).   293 

5. RESULTS 294 

5.1 Performance at different timescales 295 

At the seasonal scale, all products performed worst in summer (Figure 2). The 296 

overall performance of GSMAP was lower compared to the other products at all 297 

timescales, except summer, and especially in winter (KGE’<0). MSWEP, CHIRPS, 298 

and its upscaled version showed the best performance in winter. The second-best 299 

seasonal performance was spring for MSWEP and autumn for CHIRPS products. 300 

All products showed positive correlation coefficients (r) for all timescales (Figure 301 

S1). MSWEP best captures the temporal dynamics of precipitation in winter, 302 

followed by the two CHIRPS products. Moreover, MSWEP and both versions of 303 

CHIRPS performed similarly well in autumn and spring. In terms of bias values 304 

(β), CHIRPS and CHIRPS upscaled showed the best performance at all 305 

timescales, except for the summer season, when it slightly underestimated 306 

precipitation (Figure S2). GSMAP revealed higher overestimation in winter and 307 

underestimation in summer, whereas MSWEP overestimates precipitation in 308 

autumn and summer. Among all products, only GSMAP overestimated the 309 

variability (γ) of the observed precipitation, especially in winter (Figure S3), 310 

whereas the other products underestimated it at all timescales but particularly 311 

during the summer season.  312 

CHIRPS and its upscaled version performed best at monthly timescales and 313 

performed similar to MSWEP at the annual timescale. MSWEP showed the 314 

highest correlations but also the highest overestimation of precipitation at both 315 

scales. CHIRPS upscaled, followed by CHIRPS, performed best in terms of bias 316 



   
 

   
 

as well as in capturing the precipitation variability at monthly timescales, 317 

whereas MSWEP had a better performance in estimating the precipitation 318 

variability at the annual timescale.  319 

Our results reveal distinct variations in MAE for different timescales (Figure 3). 320 

Regarding the lowest median MAE, both CHIRPS datasets showed it in autumn, 321 

GSMAP demonstrated it in summer, and MSWEP showed it in spring and 322 

winter. MSWEP in summer and GSMAP in spring, winter, and autumn exhibited 323 

the largest errors. CHIRPS products presented the lowest MAE at annual and 324 

monthly timescales. 325 

5.2 Spatial evaluation of the products’ performance 326 

The highest correlations for all products were found in the western part of the 327 

study area, where most of the precipitation occurs in winter and spring (Figure 328 

4). GSMAP overestimated the variability of precipitation (γ) in the southern 329 

Pamir and western Tien Shan, while the other products, especially MSWEP, 330 

underestimated the variability in this area. All of the datasets overestimated 331 

precipitation (β) in the same region, with CHIRPS and its upscaled version 332 

performing slightly better. In the southeastern Pamir and western Tien Shan, the 333 

overall performance (measured with KGE’) was poor for all products, but 334 

especially that of GSMAP. The precipitation products performed best in the 335 

stations located in the western Pamir and northern Tien Shan, with KGE’ values 336 

of 0.92 for MSWEP, 0.87 for both CHIRPS products, and 0.83 for GSMAP. Overall, 337 

the MAE was lowest in the western region where MSWEP performed best, 338 

followed by GSMAP, CHIRPS upscaled, and CHIRPS. We found the highest 339 

MAE in the southwestern Tien Shan for all products, followed by the southern 340 

Pamir, especially for GSMAP and MSWEP.  341 

To determine how topography and climate regime affected the products’ 342 

performance, we grouped all stations by elevation bands, precipitation amount, 343 

and precipitation regime (Figure 5). All of the products, but especially GSMAP, 344 



   
 

   
 

had lower performance at high elevations (> 3,000 m). MSWEP performed best 345 

in the lowlands (< 1,000 m), while CHIRPS excelled at mid-altitudes (2,000-3,000 346 

m). The MSWEP and CHIRPS products had similar performance between 1,000 347 

m and 2,000 m elevation.  348 

Considering annual precipitation, MSWEP performed best for wetter locations 349 

(> 300 mm/year), while both CHIRPS performed best for moderately wet 350 

locations (150-300 mm/year) (Figure 5b). For drier locations (< 150 mm/year), all 351 

of the products failed to capture the precipitation dynamics. With respect to 352 

precipitation regimes, all of the products performed best in cluster 1, where most 353 

of the precipitation falls in winter and spring, with long dry summers and 354 

autumns (Figure 1). MSWEP showed the highest median values, followed by 355 

CHIRPS. In cluster 2, with precipitation in winter and spring but short, dry 356 

summers, CHIRPS products performed better than the other products did. 357 

However, in cluster 3 (summer precipitation), all of the products performed 358 

poorly, and only MSWEP had positive median KGE’ values. CHIRPS and its 359 

upscaled version were unable to capture the summer precipitation regime of 360 

most of the stations (Figure 6 e-f), and MSWEP performed better in representing 361 

the region’s climatology but overestimated the precipitation amounts. 362 

5.3 Evaluation of dry and wet spells  363 

 364 

All of the precipitation products were able to accurately detect dry spells with 365 

POD > 0.6 (Figure 7). However, the ability to detect wet spells decreased 366 

proportionally with increasing precipitation intensity. MSWEP showed slightly 367 

better performance in terms of POD, except for the most intense precipitation 368 

class, for which CHIRPS upscaled performed better. The FAR values are 369 

consistent with the POD, and all of the products identified dry spells very well, 370 

with MSWEP having slightly better performance, which decreased with 371 

precipitation intensity, and GSMAP having better performance for moderate 372 

precipitation events. CHIRPS showed the closest agreement for all precipitation 373 



   
 

   
 

intensities in terms of fBias, with a slight overestimation (fBias > 1) of light events 374 

and an underestimation (fBias < 1) of heavy precipitation. 375 

 376 

6. DISCUSSION 377 

 378 

We evaluated the performance of three precipitation products (CHIRPS, GSMAP, 379 

and MSWEP) with a spatial resolution higher than 12 km to capture local 380 

precipitation patterns over the heterogeneous topography and climate of Central 381 

Asia. To do so, we collected precipitation data from 30 independent gauging 382 

stations across the region. We accounted for elevation, precipitation regime, 383 

precipitation amount, intensity of wet spells, temporal dynamics, and different 384 

timescales. Overall, the products all performed best in i) altitudes below 3,000 m; 385 

ii) regions dominated by winter and spring precipitation; and iii) wetter periods 386 

(i.e., winter and spring) and locations with between 150 and 600 mm of 387 

precipitation per year, and the products accurately detected dry spells. We found 388 

key differences between the products. MSWEP was best at capturing 389 

precipitation dynamics, CHIRPS was best at representing the volume and 390 

distribution of precipitation over different timescales and locations, and GSMAP 391 

generally showed poorer performance. We also evaluated MSWEP v2.8 for the 392 

first time and found that, as compared to previous versions (the results of an 393 

earlier evaluation are presented in Figures S4 and S5), v2.8 improved the overall 394 

performance in the study region, especially for spring and winter, and did not 395 

overestimate precipitation as much. 396 

MSWEP and CHIRPS also captured precipitation dynamics well for the Tibetan 397 

Plateau (MSWEP v2) (Liu et al., 2019), Chile (MSWEP v1.1) (Zambrano-Bigiarini 398 

et al., 2017), western Africa (MSWEPv2.2) (Satgé et al., 2020), India (MSWEP v2.1) 399 

(Prakash, 2019), and the Bolivian Altiplano (MSWEP v2.1) (Satgé et al., 2019). 400 

Because CHIRPS is intended to support agricultural drought monitoring, its best 401 

performance was expected at around the wettest months for each location (Funk 402 



   
 

   
 

et al., 2015). This is supported by our results for Central Asia, where CHIRPS 403 

performed best for wetter periods and locations. Similar to our results, GSMAP 404 

also had the comparatively poor performance for the mountainous endorheic 405 

system of the Bolivian Altiplano (Satgé et al., 2019) and for western Africa (Satgé 406 

et al., 2020). The accuracy of GSMAP estimates may be affected by the lower 407 

number of stations in the source data CPC compared to MSWEP and CHIRPS 408 

(Satgé et al., 2020).  409 

Despite MSWEP and CHIRPS having the best overall performance, we found 410 

some limitations. Both products performed worst in summer (overestimation of 411 

precipitation), during the driest period in areas where winter and spring 412 

precipitation dominate (clusters 1 and 2, Figure 1), and for stations in areas with 413 

precipitation below 150 mm/year. Similar findings have been reported for 414 

CHIRPS in other drylands, such as northeast Brazil (Paredes-Trejo et al., 2017), 415 

Sub-Saharan Africa (Harrison et al., 2019), and Mainland China (Bai et al., 2018), 416 

as well as for MSWEP (v2.1) in northeast India (Prakash, 2019). The low 417 

performance in these areas arguably is due to the very low precipitation, in that 418 

a single incorrectly identified rainfall event could lead to 100% over- or 419 

underestimation (Zambrano-Bigiarini et al., 2017). Satellite-based precipitation 420 

estimates may be more suited to estimating convectional tropical rainfall patterns 421 

than the isolated, highly localized, and short-lived convective rainfall typical in 422 

semiarid to arid areas (Thiemig et al., 2012, Dinku et al., 2010, Beck et al., 2017b). 423 

Our findings support this claim. In dry regions, detecting precipitation is difficult 424 

because space-born sensors (e.g., microwave and infrared sensors) can miss the 425 

sub-cloud evaporation of raindrops or rainfall suppression by desert aerosols 426 

(e.g., mineral dust) and be affected by the land’s surface properties, such as a hot 427 

background (e.g., upwelling microwave radiation) (Beck et al., 2017b, Dinku et 428 

al., 2011).  429 

We found that the products overestimated precipitation at higher elevations (> 430 

3,000 m), possibly because the gauge network density in such areas is low 431 



   
 

   
 

(Harrison et al., 2019). In complex mountainous terrains, precipitation can be 432 

falsely detected due to long-lasting orographic clouds or by the contrast between 433 

the temperature and the emissivity of rough land surfaces of water and snow-434 

covered areas, which satellite sensors can misinterpret as precipitation (Satgé et 435 

al., 2019, Gebregiorgis and Hossain, 2013, Guo et al., 2015). In addition, in global 436 

evaluations, the reanalyses exhibited lower accuracy than the microwave- and 437 

infrared-based satellite datasets in the tropics did (Beck et al., 2017b). In contrast, 438 

these products perform well in extratropical regions, probably linked to 439 

deficiencies in the sub-grid convection parameterization schemes along with 440 

issues in the land surface parameterization (Beck et al., 2017b). The coverage of 441 

the raw data sources, orographic correction, and interpolation techniques may 442 

compromise the accuracy of the precipitation products (Sun et al., 2018). 443 

Considering the high dependency of the global precipitation products on local 444 

gauge calibration, more efforts are needed to increase the accessibility of local 445 

observations in order to improve the products’ quality and reliability for 446 

hydrological, agricultural, and climate studies. 447 

All of the products performed worse in southeastern Pamir and Tien Shan, where 448 

precipitation peaks in summer. Generally, such poor performance among all of 449 

the products for summer precipitation can be related to challenges in capturing 450 

the orographic uplift of warm clouds, false detection of very cold high clouds as 451 

precipitating by infrared products, and microwave products missing warm 452 

precipitation from shallow clouds (Behrangi et al., 2014, Gebregiorgis and 453 

Hossain, 2013, Satgé et al., 2019). Moreover, for the reanalysis-based products 454 

(i.e., CHIRPS and MSWEP), poor summer performance might additionally have 455 

resulted from an unrealistic northward displacement of the monsoon cycle (Di 456 

Giuseppe et al., 2013) and from the fact that atmospheric models in mid-latitudes 457 

can more reliably predict winter precipitation associated with synoptic systems 458 

such as fronts than it can summer precipitation, which is more often associated 459 

with convective systems such as thunderstorms (Zhu et al., 2014, Haiden et al., 460 

2012).  461 



   
 

   
 

Although the examined precipitation products were able to detect dry spells 462 

accurately, their performance decreased for wet spells as precipitation intensity 463 

increased. This lower performance for higher intensities can be associated with 464 

local storm events with a spatial extent smaller than the satellites’ spatial 465 

resolution (Thiemig et al., 2012). The weaker detection ability of CHIRPS might 466 

be related to its fixed threshold for detecting precipitation from cloud 467 

temperatures that might not be appropriate for this region as well as its 468 

dependency on the 0.25° TRMM training data, which contributes to the false 469 

detection of rainfall events when averaged over larger areas (Dinku et al., 2010, 470 

Paredes-Trejo et al., 2017, Toté et al., 2015, Dinku et al., 2018). The reported 471 

duplication and inconsistency in the gauge sources used to calibrate CHIRPS 472 

could be additional sources of uncertainty (Rivera et al., 2018).  473 

Finally, our results suggest that the precipitation product’s selection depends on 474 

the specific user needs or application and the regional characteristics. For 475 

example, CHIRPS and MSWEP perform best during winter and spring, which 476 

makes them suitable to assess terrestrial water storage prior to the irrigation 477 

season. While CHIRPS provides daily precipitation amounts, MSWEP has a 478 

higher temporal resolution (3-hour resolution), making it more appropriate for 479 

sub-seasonal hydrological monitoring and forecasting (Beck et al., 2017b). Both 480 

products have had a long temporal record, from 1979 (MSWEP) and 1981 481 

(CHIRPS) to near the present, with a delay of several days (CHIRPS) or several 482 

hours (MSWEP). CHIRPS has a higher spatial resolution (0.05°) as compared to 483 

MSWEP (0.1°) and more suitable for smaller catchments in elevations below 3,000 484 

m. The products’ best performance was achieved in the western, central, and 485 

northern Tien Shan and Pamir mountains and in adjacent regions. Although we 486 

did not find considerable differences between the original and upscaled version 487 

of CHIRPS, a lower performance of the upscaled version can arise from the 488 

resampling method used for upscaling; hence, we advise the use of CHIRPS in 489 

its native resolution.  490 



   
 

   
 

7. CONCLUSION 491 

We presented the first evaluation of three global high-resolution precipitation 492 

products over the heterogeneous topography and climate of Central Asia using 493 

independent station data. We quantified the products’ ability to reproduce 494 

temporal dynamics while preserving the volume and distribution of 495 

precipitation, evaluated the products’ accuracy, and assessed the products’ 496 

ability to detect dry and wet spells of different intensities accurately.  497 

We found that CHIRPS and MSWEP were the most reliable global products for 498 

obtaining high-resolution precipitation estimates in Central Asia, especially for 499 

wet seasons. Nevertheless, our results highlight high spatial and temporal 500 

heterogeneity of the performance, which indicates that the final product for a 501 

local application must be selected with care, based on the guidelines provided 502 

above. This is particularly relevant for regions with low precipitation levels and 503 

in complex terrain where ground station data are sparse. 504 
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FIGURES 862 

 863 

Figure 1. Study area and location of the 30 precipitation stations used for validation. Bar plots 864 
represent the annual precipitation regimes (section 4.4) of the clusters shown in the map: Cluster 865 
1 (yellow) is characterized by winter and spring precipitation and long, dry summers and 866 
autumns; cluster 2 (blue) has winter and spring precipitation and a short, dry summer period; 867 
and summer precipitation dominates in cluster 3 (red). 868 



   
 

   
 

 869 

Figure 2. KGE' between the precipitation products and precipitation gauge data for six different 870 
timescales. The vertical blue line indicates the optimum value for KGE'. From left to right and up 871 
to bottom: monthly, winter (December, January, February), spring (March, April, May), summer 872 
(June, July, August), and autumn (September, October, November).  873 

 874 

 875 
Figure 3. Mean absolute error (MAE) in mm of various global precipitation datasets and 876 
precipitation gauge data for six different temporal scales. The vertical blue line indicates the 877 
optimum value for MAE. 878 

 879 
 880 



   
 

   
 

 881 
 882 
Figure 4. KGE', its components (r, β, γ), and MAE derived from a monthly timescale. The colors 883 
for KGE’, r, and MAE range from light yellow (very poor performance) to dark red (best 884 
performance). For β and γ, white colors represent their best performance, while underestimation 885 
is depicted in dark purple and overestimation is depicted in dark green. Gray color identifies 886 
stations not available for product evaluation (i.e., GSMAP, data before 2000). The black outlines 887 
correspond to the countries (see figure 1 for a detailed map of the region). 888 
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 890 

Figure 5. KGE' at a monthly timescale between the precipitation products and precipitation gauge 891 
data for different a) elevation bands: 0–1000 m, 1000–2000 m, 2000-3000 m, and 3000-4000 m; b) 892 
mean annual precipitation (2000-2015); c) precipitation regimes with corresponding clusters 893 
(cluster 1 has winter-spring precipitation, long dry summers; cluster 2 has winter-spring 894 
precipitation, short dry summers, and cluster 3 is characterized by summer precipitation). The 895 
vertical blue line indicates the optimum value for KGE’. N indicates the number of stations in 896 
group. 897 
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 899 



   
 

   
 

 900 

Figure 6. Mean annual precipitation and interannual variation in precipitation estimated by the 901 
precipitation products (dashed lines), as compared to the gauging stations (solid lines) for each 902 
cluster. Cluster 1 (winter/spring precipitation; long, dry summers); Cluster 2 (winter/spring 903 
precipitation; short, dry summers), and Cluster 3 (summer precipitation). 904 
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 908 

 909 

Figure 7. Median values of probability of detection (POD), false alarm ratio (FAR), and frequency 910 
of bias (fBias) performance for dry spells (< 1 mm/d) and wet spells of different intensities (1–5 911 
mm/d, 5–20 mm/d, 20–40 mm/d, and > 4 0mm/d). The horizontal dashed line indicates the 912 
optimum POD, FAR, and fBIAS values.  913 
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Supporting information 22 

 23 

 24 

Figure S1. Pearson correlation coefficient (r) between different satellite estimations and 25 
precipitation gauge data at the corresponding grid cell for six temporal scales. The vertical blue 26 
line shows the optimum value for r. 27 
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 29 

 30 

Figure S2. Bias ratio (β) of different satellite estimations and precipitation gauge data at the 31 
corresponding grid cell for six temporal scales. The vertical blue line shows the optimum value 32 
for β. 33 

 34 

 35 

Figure S3. Variability ratio (γ) between different satellite estimations and precipitation gauge 36 
data at the corresponding grid cell for six temporal scales. The vertical blue line shows the 37 
optimum value for γ. 38 

39 



   
 

   
 

 40 

Figure S4. KGE' for both MSWEP versions and precipitation gauge data at the corresponding 41 
grid cell for six temporal scales. The vertical blue line shows the optimum value for KGE'. 42 

 43 

 44 

 45 

Figure S5. MAE for both MSWEP versions and precipitation gauge data at the corresponding 46 
grid cell for six temporal scales. The vertical blue line shows the optimum value for MAE. 47 



   
 

   
 

Table S1. Precipitation products evaluated over Central Asia. NP: Near present.  48 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

Zandler et 

al. (2019) 

GPCC Full 

data (2018) 

1980–

1994; 

1998–2012 

Monthly 0.25° x 0.25° 1891–

2016 

Gauge Pamir 

Mountains, 

Tajikistan 

5 gauging 

stations 

Schneider et al. 

(2018a) 

GPCC 

Monitoring  v.6 

1° x 1° 1982–NP Gauge Schneider et al. 

(2018b) 

CRU TS 4.03 0.5° x 0.5° 1901–

2018 

Gauge Harris et al. (2014) 

GPCP V2.3 2.5° x 2.5° 1979–NP Satellite- 

Gauge 

Huffman et al. 

(1997), Adler et al. 

(2018) 

PERSIANN-

CDR 

0.25° x 0.25° 1983–NP Satellite Ashouri et al. 

(2015) 

MERRA-2 0.5° x 0.625° 1980–NP Reanalysis Reichle et al. (2017) 

MERRA-2 Bias 

Corrected 

0.5° x 0.625° 1980–NP Reanalysis- 

Gauge 

ERA-interim 0.7° x 0.7° 1979–NP Reanalysis Dee et al. (2011) 

ERA5 0.25° x 0.25° 1979–NP Reanalysis European Centre 

for Medium-range 

Weather Forecast 

(2019) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

TRMM 3B43 

version 7 

1998–2012 0.25° x 0.25° 1998–

2014 

Satellite Huffman and 

Bolvin (2018)  

Hu et al. 

(2018) 

GPCC v 7 1901–2010 Monthly, 

seasonal, 

Annual 

0.5° x 0.5° 1901–NP Gauge Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan, 

Tajikistan, and 

Xinjiang, 

China 

586 

meteorolo

gical 

stations: 

438 CGP 

V1.0 

(China 

Meteorolo

gical 

Administ

ration, 

Global 

Precipitati

on V1.0) 

and 148 

from 

NSIDC 

(U.S. 

National 

Snow and 

Ice Data 

Center) 

Schneider et al. 

(2015) 

CRU TS 3.22 0.5° x 0.5° 1901–NP Gauge Harris et al. (2014) 

WM 0.5° x 0.5° 1901–NP Gauge Willmott and 

Matsuura (2012) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

Guo et al. 

(2015); 

TMPA 3B42V7 2004–2006 Daily, 

seasonal, 

monthly 

0.25° x 0.25°   Satellite/ 

Satellite-

Gauge 

Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan 

and, Tajikistan  

Asian 

Precipitati

on-

Highly 

Resolved 

Observati

on Data 

integratio

n 

Towards 

Evaluatio

n of 

Water 

Resources 

(APHRO

DITE - 

0.25° x 

0.25°) 

Yatagai et 

al. (2012) 

Huffman et al. 

(2007) 

CMORPH 0.25° x 0.25°   Satellite/ 

Satellite-

Gauge 

Joyce et al. (2004), 

Xie et al. (2014) 

GSMaP (MVK) 0.1° x 0.1°   Satellite/ 

Satellite-

Gauge 

Okamoto et al. 

(2005), Kubota et 

al. (2007), Mega et 

al. (2014) 

PERSIANN 0.25° x 

0.25°  

  Satellite/ 

Satellite-

Gauge 

Sorooshian et al. 

(2000), Hsu et al. 

(1997), Ashouri et 

al. (2015) 

Guo et al. 

(2017) 

TMPA 3B42V7 2001–2006 Daily, 

seasonal 

0.25° x 0.25°   Satellite/ 

Satellite-

Gauge 

Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan 

and, Tajikistan  

APHROD

ITE - 0.25° 

x 0.25°  

Yatagai et 

al. (2012) 

Huffman et al. 

(2007) 

CMORPH 0.25° x 0.25°   Satellite/ 

Satellite-

Gauge 

Joyce et al. (2004), 

Xie et al. (2014) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

GSMaP (RNL) 0.1° x 0.1°   Satellite-

Reanalysis

/ Satellite-

Reanalysis-

Gauge 

Okamoto et al. 

(2005), Kubota et 

al. (2007), Mega et 

al. (2014) 

PERSIANN 0.25° x 

0.25°  

  Satellite/ 

Satellite-

Gauge 

Sorooshian et al. 

(2000), Hsu et al. 

(1997), Ashouri et 

al. (2015) 

(Salehie 

et al., 

2021) 

APRHODITE 1979–2019 Monthly 0.25° x 0.25°   Gauge Amu Darya 

Basin 

55 

meteorolo

gical 

stations 

Yatagai et al. (2012) 

CHIRPS 0.05° x 0.05° 1981–NP Satellite-

Gauge-

Reanalysis 

Funk et al. (2015) 

CPC 0.5° x 0.5°   Gauge  https://psl.noaa.gov

/data/gridded/data.c

pc.globalprecip.html  

CRU TS V4.03 0.5° x 0.5°   Gauge Harris et al. (2014) 

GPCC 0.5° x 0.5°   Gauge Schneider et al. 

(2018b) 

PGF 0.25° x 0.25°   Gauge-

Reanalysis 

 http://hydrology.

princeton.edu/dat

a/pgf/v3/0.25deg

/daily/ 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html


   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

Udel V5.01 0.5° x 0.5°   Gauge  Willmott and 

Matsuura (2012) 

Schär et al. 

(2004) 

ERA-15 1979–1993 Monthly, 

Seasonal 

2.5° x 2.5° 1979–

1993 

Reanalysis Syr Darya and 

Amu Darya 

basins 

4 

meteorolo

gical 

stations 

Gibson et al. (1999)  

(Hu et al., 

2016) 

MERRA 1979–2010 Monthly, 

Seasonal, 

Annual  

0.5° x 0.67° 1979–NP Reanalysis Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan, 

Tajikistan, and 

Xinjiang, 

China 

199 

meteorolo

gical 

stations 

Rienecker et al. 

(2011) 
 

ERA-Interim 0.75° x 0.75° 1979–NP Reanalysis Dee et al. (2011) 

 
CFSR 0.31° x 0.31° 1979–NP Reanalysis  Saha et al. (2010) 

 
TRMM 3B32 0.25° x 0.25° 1998–NP Satellite Huffman et al. 

(2007) 

 
MW 0.5° x 0.5° 1900–

2010 

Gauge Willmott and 

Matsuura (2012) 

(Malsy et 

al., 2014) 

CRU TS 3.2 1971–2000 Mean 

monthly 

precipitati

on 

0.5° x 0.5° 1901–

2011 

Gauge Rivers Ob, 

Irtysh, Tobol, 

Ural, Amu 

Darya, Syr 

Darya, Tarim 

and the lakes 

Balkhash, Issyk 

142 

hydrologi

cal 

stations 

Harris et al. (2014) 

GPCC v 6 0.5° x 0.5° 1901–

2010 

Reanalysis Schneider et al. 

(2011) 

WATCH 

forcing data 

(WFD) 

0.5° x 0.5° 1958–

2001/197

9–2009 

Reanalysis Weedon et al. 

(2014) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

(ERA 

Interim) 

Kul, and Aral 

Sea 

APRHODITE 0.25° x 0.25° 1951–

2007 

Gauge Yatagai et al. (2012) 

(Schiemann 

et al., 2008) 

CRU TS 2.1 1960–1990 Monthly, 

seasonal, 

annual 

0.5° x 0.5° 1901–

2002 

Gauge Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan, 

and Tajikistan 

CRU, 

GPCC, 

and 

UDEL 

Mitchell and Jones 

(2005) 

GPCC 0.5° x 0.5° 1950–

2000 

Gauge http://www.dwd.

de/en/FundE/Kli

ma/KLIS/ 

int/GPCC/Projects

/VASClimO   

UDEL 1.02 0.5° x 0.5° 1950–

1999 

Gauge Legates and 

Willmott (1990) 

CAMS-OPI 0.5° x 0.5° 1979–

2008 

Gauge- 

Satellite 

http://www.cpc.n

cep.noaa.gov/prod

ucts/ 

global 

precip/html/wpag

e.camsopi.html 

ERA-40 ~125 km 1958–

2002 

Reanalysis (Uppala et al., 

2005) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

NCEP ~210 km 1948–

2008 

Reanalysis Kalnay et al. (1996) 

ECOP (changing) 1985–

2008 

Reanalysis http://www.ecm

wf.int/products/d

ata/ 

operational 

system/ 

CHRM 0.5° x 0.5° 1958–

2001 

Reanalysis Vidale et al. (2003) 

CHRM-ECOP 0.5° x 0.5° 1997–

2006 

Gauge, 

Satellite 

(Lu et al., 

2021) 

SM2RAIN 2007–2019 
 

0.125° x 

0.125° 

2007–NP 
 

Kazakhstan, 

Uzbekistan, 

Turkmenistan, 

Kyrgyzstan, 

Tajikistan, and 

Xinjiang, 

China 

SM2RAI

N and 

ERA5 

Brocca et al. (2019)  

 
ERA5 0.29° x 0.29° 1979–NP Reanalysis Hersbach et al. 

(2019) 

 
3B42 0.25° x 0.25° 1997–NP 

 
Huffman et al. 

(2017) 

 
CHIRPS 0.05° x 0.05° 1981–NP Satellite-

Gauge-

Reanalysis 

Funk et al. (2015) 

 
CMORPH_CR

T 

0.0727° x 

0.0727° 

1998–NP 
 

Joyce et al. (2004) 



   
 

   
 

Study Evaluated 

datasets 

Evaluated 

period 

Evaluated 

temporal 

resolution 

Product 

spatial 

resolution 

Product 

temporal 

coverage 

Product 

data 

sources 

Region  Reference 

dataset 

Source 

 
GSMAP-Gauge 0.1° x 0.1° 2000–NP Satellite, 

Gauge  

Kubota et al. (2007) 

 
IMERG_FR 0.1° x 0.1° 2000–NP Reanalysis http://storm-

pps.gsfc.nasa. 

gov/storm 
 

PERSIANN_C

DR 

0.25° x 0.25° 1983–NP Satellite  Sorooshian et al. 

(2000) 
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Table S2. Local gauging stations used in the validation. KG: Kyrgyzstan; KZ: Kazakhstan; TM: TJ: Tajikistan; Turkmenistan; UZ: Uzbekistan. (–) Not 50 
available. (––) Not used. * Based on information provided by ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-51 
2.0/list_of_stations_used/monthly. These stations are also considered independent for MSWEP.  52 

 53 

Station Country 
Altitude 

(m) 
Lat Lon 

Annual 
precipitation 

(mm/year) 

Available period 
(monthly) 

Available period 
(daily) 

Period used in 
CHIRPS* 

Validation 
period 

Ak-Terek KG 1,190 40.37 74.22 1085 2000–2015 – –– 2000–2015 

Baytyk KG 1,579 42.67 74.63 559 2000–2015 – 1981 –2000 2001–2015 

Buhara UZ 219 39.72 64.62 126 – 1988–2012 
1981–1995/ 
2000–2020 

1995–1999 

Bulunkul TJ 3,744 37.70 72.95 88 
1981–1990/1999–

2013 
1936–1967/1975–

1989 
1981–1991 1999–2013 

Chatkal KG 2,300 41.82 71.10 500 2000–2015 – 1981–1995 2000–2015 

Gulcha KG 1,575 40.30 73.47 678 2000–2015 – 1981–1997 2000–2015 

Guzar UZ 527 38.62 66.27 200 – 
1988–2001/2005–
2012/2015–2016 

1981–1999 2005–2012 

Humragi TJ 1,737 38.28 71.33 169 
1958–1994/2001–

2008 
1936–1970/1976–

1984 
–– 

1981–
1994/2001–

2008 



   
 

   
 

Station Country 
Altitude 

(m) 
Lat Lon 

Annual 
precipitation 

(mm/year) 

Available period 
(monthly) 

Available period 
(daily) 

Period used in 
CHIRPS* 

Validation 
period 

Irkht TJ 3,276 38.13 72.62 120 
1981–1991/1998–

2009 
1939–

1967/1974~1985 
1981 – 1997 / 

2014–2020 
1998–2009 

Ishkashim TJ 2,510 36.72 71.61 134 
1981–1991/1998–

2009 
1939–1967/1974–

1985 
1981–1991 / 
2014–2020 

2001–2009 

Javshangoz TJ 3,438 37.36 72.44 87 
1981–1995/2001–
2006/2009–2013 

1936–1989 1981–1991 

1992–
1994/2001–
2006/2009–

2013 

Kala-i-
Khumb 

TJ 1,231 38.51 70.94 485 1997–2005 1936–1981 
1981–1991 / 
2013–2020 

1997–2005 

Kara 
Kuzhur 

KG 855 41.93 76.30 264 2000–2015 – 1981–1991 2000–2015 

Karshi UZ 363 38.75 65.72 255 – 
1988–

1999/2007/2014–
2018 

1981–
1992/2000–

2020 
1993–1999 

Khorog TJ 2,077 37.48 71.54 272 1936–2001–2013 
1939–1989/2001–

2013 
1991–2020 1981–1990 

Kyzyl-
Adyr 

KG 1,764 42.62 71.59 327 2000–2015 – 1981–1991 2000–2015 

Lasi_Uzgen KG 978 40.77 73.30 977 2000–2015 – 1981–1991 2000–2015 

Minchukur UZ 2,147 38.65 66.93 676 – 
1988–1992/1994–
2013/2015–2016 

1981–1999 2000–2013 



   
 

   
 

Station Country 
Altitude 

(m) 
Lat Lon 

Annual 
precipitation 

(mm/year) 

Available period 
(monthly) 

Available period 
(daily) 

Period used in 
CHIRPS* 

Validation 
period 

Murghab TJ 3,576 38.15 73.96 80 
1936–1991–

1993/1998–2009 
1936–1970/1974–

1985 
1981–1993 / 
2013–2020 

1998–2009 

Navabad TJ 2,576 37.67 71.83 392 1981–2013 1956–1989 –– 1981–2013 

Navoi UZ 339 40.13 65.20 176 – 1988–2017 
1981–

1995/2009–
2019 

1996–2008 

Oygaing UZ 1,620 42.00 70.63 733 2000–2015 – 1981–1999 2000–2015 

Rushan TJ 1,980 37.95 71.57 289 1960–2001–2008 
1936–1984/2001–

2008 

1981–
1991/2013–

2020 
2001–2008 

Savnob TJ 2,955 38.40 72.60 153 
1986–1999–2001–

2005 
1962–1981 –– 1986–2005 

Shahrisabz UZ 1,026 39.25 67.07 499 – 1988–2018 1985–1999 2000–2018 

Shaymak TJ 3,840 37.54 74.82 151 
1981–1991/1999–

2009 
1936–1970/ 1975–

1985 
1981–1991 1999–2009 

Shelek KZ 600 43.60 78.25 274 2000–2015 – 
1981–1991/ 
2018–2020 

2000–2015 

Tahtamish TJ 3,729 37.83 74.64 68 1968–1987 1944–1964 –– 1981–1987 



   
 

   
 

Station Country 
Altitude 

(m) 
Lat Lon 

Annual 
precipitation 

(mm/year) 

Available period 
(monthly) 

Available period 
(daily) 

Period used in 
CHIRPS* 

Validation 
period 

Takhta 
Bazar 

TM 354 35.97 62.91 216 2000–2015 – 1981–1991 2000–2015 

Zhalanash KZ 1,690 43.04 78.64 507 2000–2015 – –– 2000–2015 
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Eq. S1 55 

𝐾𝐺𝐸′ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2  56 

   57 

 58 

𝑟 =  
1

𝑛
∑

(𝑂𝑛 − 𝜇𝑜) ∗ (𝑆𝑛 − 𝜇𝑠)

𝜎𝑜 ∗ 𝜎𝑠

𝑛

1
 59 

 60 

𝛽 =  
𝜇𝑠

𝜇𝑜
 61 

 62 

𝛾 =  
𝐶𝑉𝑠

𝐶𝑉𝑜
=  

𝜎𝑠/𝜇𝑠

𝜎𝑜/𝜇𝑜
, 63 

 64 

where µ is the distribution mean, σ is the standard deviation, and o and s are the 65 

observed values and the product estimates, respectively.  66 

 67 

Eq. S2 68 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑠𝑖 − 𝑜𝑖|

𝑁

𝑖=1

 69 

 70 

 71 

Eq. S3 72 

𝑃𝑂𝐷 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 73 

 74 

𝐹𝐴𝑅 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 75 

 76 

𝑓𝐵𝐼𝐴𝑆 =  
ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 77 

 78 

 79 



   
 

   
 

Eq. S4 80 

𝑃𝐾𝑖 =
𝑃𝑖

𝑃𝐴
 , 81 

 82 

where PKi is the Pardé coefficient of month i, Pi is the mean monthly 83 

precipitation (averaged over the study period) in month i, and PA is the mean 84 

annual precipitation (averaged over the same years) (Parajka et al., 2008, 85 

Weingartner et al., 2013). 86 

 87 


