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Abstract

In the paper we present a system of SIS type equations coupled by impulses at fixed

times that describe the transfer of patients in the healthcare system represented by a graph

of healthcare facilities and corresponding communities. The first aim for this considerations is

to provide rigorous mathematical analysis of a general theoretical model, which is then used

to model transmission of hospital acquired multi-drug resistant bacteria infections based on

real patient hospital records provided by German insurance company – AOK Lower Saxony.

Starting from the existence and the asymptotic behaviour, together with specification of

parameterR0, we propose sufficient conditions guaranteeing network suppression of infection.

Furthermore, conditions derived analytically and proposed numerical procedure are used to

indicate healthcare facilities that are most prone to the high prevalence bacteria spread in

the healthcare system and to ensure the stability of disease-free steady state of the system.
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1 Introduction

Description of a process that evolves continuously in time, excluding brief events that occur

occasionally and break this trend, is a common challenge in applications. The first paper where

the discontinuity was implemented in the form of a change of initial condition known as an

impulse (in further considerations we refer to models of that kind as impulsive differential

equation, IDE) is assigned to Milman and Myshkis[26]. The topic gained considerable interest

resulting in a few monographs by Bainov et al.[4, 3, 5] or Lakshmikantham et al.[23] where

systems of this kind are treated analytically. In the last decade however IDEs become widely

used in applied sciences to describe e.g. cell differentiation[16], vaccinations’ [46, 12], prey-

predator systems’ interactions[47, 45] or cancer growth and treatment [31, 20, 2, 9, 14] just to

mention few of them.

Compared to the wide range of results in epidemiology where ODEs are applied, the literature

in IDEs is more limited but still numerous. It is worth to divide them thematically into groups

with respect to the kind of modelled pulse effect, namely impulse vaccinations[39, 40, 35], birth

rate[18, 36], pest management[15, 44], quarantine[49], transfer between patches[11] etc.

In our approach we use impulse effect to describe the transfer of patients between

healthcare facilities and communities, therefore the results are similar to those listed as the

last approach. However, unlike Cordova–Lepe et al.[11], we focus on arbitrary relation between

patients locations which makes the considerations more general, and similar to systems such

as multigroup ODEs[41] or multigroup McKendrick type models[22, 48]. Moreover, presented

study is an attempt to understand the dynamics of deterministic computational models proposed

earlier[32, 34] and to analyse it in rigorous mathematical way.

This paper is organized as follows. In Section 2 a family of multigroup SIS type modes

is introduced. Next, in Section 3 we prove basic mathematical properties of the considered

system – the global existence and nonnegativity of the solutions. This considerations are

followed in Section 4 by investigation of the long-time behaviour of the solutions including:

existence of steady states, study of local stability of disease-free steady state and existence of

τ -periodic solutions. Additionally, in Subsection 4.2 we prove several propositions, derived from

network structure perspective, allowing to achieve the stability of the disease-free steady state.

Finally, we focus on the particular computational models[34, 32] and show that our analytical

considerations can be used to propose effective countermeasure reducing the system-wide

prevalence of multidrug-resistant bacteriae (such as Escherichia coli and Klebsiella pneumoniae)

in the healthcare system.

2 Model description

In this paragraph we build a mathematical background that allows us to rigorously describe

a transmission of a pathogen such as multidrug-resistant bacteriae (MDR) in the human

2



population understood as transmission of bacteriae between groups of patients that visit certain

healthcare facilities with a certain frequency. Considered healthcare network consists of n

healthcare facilities (later called H-nodes, indexed over Jn = {1, . . . , n}) and n corresponding

communities (later called C-nodes, indexed over J̄n = {n+ 1, . . . , 2n}). For brevity, by a

HC-pair we denote a pair of healthcare facility with a corresponding community node. Let

H(t) = (Hi(t))
T
i∈J2n , where J2n = {1, . . . , 2n} and Hi(t) denotes a fraction of all individuals

staying at i-th healthcare facility for i ∈ Jn, or at i-th community for i ∈ J̄n, at given time

t ≥ 0. In particular, the i-th community consists of individuals whose recent hospitalisation

took place in i− n-th healthcare facility.

Let us divide each of 2n-groups of patients into susceptible and infectious subpopulations,

resp. Si(t) and Ii(t), i ∈ J2n. Then,

Si(t) + Ii(t) = Hi(t) and
∑
i∈J2n

Hi(t) = 1. (1)

In addition, denote S(t) = (Si(t))
T
i∈J2n and I(t) = (Ii(t))

T
i∈J2n .

We assume that individuals are not aware of being infectious, thus the process of relocation

of patients from both groups is described by the same transfer matrix K = (kij)i,j∈J2n ∈
M2n×2n([0, 1]), where M2n×2n([0, 1]) denotes 2n×2n matrix with elements from the interval [0, 1].

Individuals stay in one location for time τ > 0, which in case of our numerical simulations equals

to 1 day, next they are either transferred or stay in the same place (meaning in healthcare facility

or community) for the next time period τ . Coefficients kij can be interpreted in the following

way. If j ∈ Jn then kij is probability of: transfer of individuals from j-th healthcare facility to

i-th healthcare facility (for i ∈ Jn, i 6= j); stay in j-th hospital overnight (for i ∈ Jn, i = j)

or discharge from the j-th healthcare facility i.e. to i-th community (for i ∈ J̄n). Analogously

for j ∈ J̄n kij is probability of admission of individuals from j-th community to i-th healthcare

facility (for i ∈ Jn); move to i-th community (for i ∈ J̄n, i 6= j) or stay in j-th community (for

i ∈ J̄n, i = j).

Following Piotrowska et al.[34, 32], in numerical simulations, we additionally assume that

i-th medical facility discharges its patients to i+n-th community, and that movements between

communities are not allowed, hence for i ∈ J̄n

kij 6= 0 if and only if (i, j) = (i, i) or (i, j) = (i, i+ n). (2)

In earlier, computationally based, approaches[32, 34] this assumption is required for two

reasons. First to ”track” the history of patients in the sense of the knowledge of the previous

hospitalization and second to consider in the model only the hospitalized people instead

of the whole society. Clearly, under such assumptions communities in models proposed by

Piotrowska et al.[32, 34] do not represent real communities in the society, but rather are

”containers” of patients who have left particular hospital and whose households might not be
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even geographically close to each other. Nevertheless, to make our analytical considerations more

general in the following we only assume that K is column stochastic matrix, namely the entries

are nonnegative and in columns they sum up to 1.

Finally, we assume that the transmission of infections is governed by a SIS-type (susceptible-

infectious-susceptible) model[24, 22]. Define Γ = diag(γi)i∈J2n , where γi > 0 denotes patient

recovery rate in a given healthcare facility for i ∈ Jn and at community for i ∈ J̄n. In addition let

B = diag(βi)i∈J2n , such that for i ∈ Jn parameter βi > 0 is a transmission rate at i-th healthcare

facility, while for i ∈ J̄n parameter βi ≥ 0 indicates a possible lack of further transmission of

infection at community.

Following the approach of impulsive systems at fixed times, we define continuous dynamical

system describing the spread of infection on each time interval (kτ, (k + 1)τ), k ∈ N ∪ {0}.
Clearly, due to the impulse nature of the model we do not expect the solution to be continuous.

Instead, we use the space of piecewise continuous functions with discontinuity of a first kind,

denoted by PC([0,∞)), endowed with supremum norm, to model the process. Moreover, in the

following we use a notation of Hadamard product

I ◦ S = (IiSi)
T
i∈J2n . (3)

Abusing a notation, let H−1(t) := (1/Hi(t))i∈J2n . Well-posedness and positivity of the

mathematical formulation is explained in Theorem 1. It agrees also with the intuition that

comes from applications that starting from a nonzero fraction of individuals in the strongly

connected network, there are always patients in each node. We formulate network multigroup

SIS type model with impulses to be considered in this paper as follows:

Ṡ(t) = −B(I ◦ S ◦ H−1)(t) + ΓI(t)

İ(t) = B(I ◦ S ◦ H−1)(t)− ΓI(t)

}
t ∈ (kτ, (k + 1)τ ] , k ∈ N ∪ {0}

S(t+) = KS(t),

I(t+) = KI(t),

}
t = kτ, k ∈ N

S(0+) = S0 ∈ [0, 1]2n, I(0+) = I0 ∈ [0, 1]2n, H0 ∈ (0, 1]2n.

(4)

Finally, we relate the structure of patients’ transfers between healthcare facilities and between

healthcare facilities and communities with a directed and weighted graph G = (V,E, ω) such

that nodes V = {vi : i ∈ J2n} represent healthcare facilities and corresponding communities

and edges E inform about the possibility of transfer. For simplicity of notation we refer to

the elements of sets {vi : i ∈ Jn} and
{
vi : i ∈ J̄n

}
as H-nodes and C-nodes, respectively. In

numerical simulations, when condition (2) holds, elements of {(vi, vi+n) : i ∈ Jn} are called HC-

pairs. If there exists an edge e such that has a head in vj and a tail in vi (we write respectively

eterm = vj and einit = vi), for some i, j ∈ J2n then the transfer from vi to vj is possible. Weights
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of edges are represented by function ω : E → [0, 1] such that for any e ∈ E

ω(e) = kji, if einit = vi and eterm = vj .

The weight of an edge therefore gives a probability of patients’ transfer between two healthcare

facilities/communities associated respectively with a tail and a head of an edge.

Finally it is worth mentioning that if K is an adjacency matrix of some arbitrary line graph,

see Beineke and Wilson[8] p. 8 for definition, then the problem is graph realisable[6]. It can be

then considered as a transfer of patients along the edges of a metric graph[28]. For other models

of that kind we refer reader to Kramar-Fijavž and Puchalska[21].

3 Well-possedness of the model

In the following consideration we denote by r(K), σ(K) the spectral radius and spectrum of K,

respectively. Let P1 : R2n → ker(K − Id) be a projection onto ker(K − Id) along im (K − Id),

with Id ∈ M2n×2n([0, 1]) being an identity matrix. For column stochastic matrix K, r(K) =

1 (see Sec. 8.4, page. 489 in book by Meyer[25]) and by Perron-Frobenius theorem, a right

eigenvector of K associated with r(K) ∈ σ(K) is nonnegative and byH∞ we denote its normalised

representative ‖H∞‖1 =
∑

i∈J2n(H∞)i = 1. The projection P1 can be expressed explicitly by

P1x =
∑
i∈J2n

xiH∞, for any x ∈ R2n. (5)

3.1 The total sub-populations

In the following we describe a long-time behaviour of a total sub-population of patients at each

node. Clearly, it satisfies the following impulsive system

Ḣ(t) = 0 t ∈ (kτ, (k + 1)τ ] , k ∈ N ∪ {0}
H(t+) = KH(t) t = kτ, k ∈ N
H(0+) = H0 ∈ [0, 1]2n,

(6)

with H0 := S0 + I0.

Lemma 1. For any column stochastic matrix K there exist a unique solution to system (6) of a

form

H(t) = KkH0, for any t ∈ (kτ, (k + 1)τ ] , k ∈ N ∪ {0} , (7)

and H(0) = H0. If K is additionally irreducible and primitive matrix, then vector of patient

sub-populations converges to H∞.
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Proof. The solution of (6) is constant at each interval and by the explicit formula for linear

recursion we have

H(t) = H0 for t ∈ [0, τ ]

H(t) = Hk for t ∈ (kτ, (k + 1)τ ], k ∈ N,
(8)

where Hk := KkH0, which yields (7). It is clear that r(K) = 1 ∈ σ(K), since K is column

stochastic.

If K is additionally irreducible, then multiplicity of r(K) is one; see Thm. 5.13 in

Bátkai et al.[7]. Assumption that K is primitive imply that λ = 1 is dominant eigenvalue, by

Def. 5.17 in Bátkai et al.[7]. Hence, from Cor. 5.16 in Bátkai et al.[7], by the form of projection (5)

and assumption (1) we obtain the thesis.

Let us elaborate on the result of Proposition 1 in the context of healthcare network and

transfers between community and healthcare facilities. The crucial information is hidden in the

mapping P1. It projects the dynamics considered in every node into the subspace of vertices

adjacent to edges in so-called terminal-strong component of a network G (see page 19 in Bang-

Jensen and Gutin[19] for a definition). By active nodes we denote the H- and C-nodes from a

set V0 defined as

V0 := {vi ∈ V : i ∈ J2n, (H∞)i 6= 0} , (9)

and by

J0 := {i ∈ J2n : vi ∈ V0} . (10)

a set of indexes of active nodes. Definition of H∞ implies that only active nodes have real impact

on the dynamics of the considered healthcare network since all patients are finally occupying only

this units. This observation justifies the numerical procedure proposed by Piotrowska et al.[32,

34], where only healthcare facilities contained in V0 are taken into account.

Note that irreducibility of positive matrix K is equivalent to strong connectedness of a graph

G, see Thm. IV.3.2 in the book by Minc[27]. Define now adjacency matrix K̄ = (k̄ij)i,j∈J2n of

graph G as follows

k̄ij =

{
1 if kij 6= 0,

0 otherwise.

Let us remind that (i, j)-th element of m-th power of adjacency matrix K̄ gives a number of

paths of the length m from the node vj to vi, see Thm. IV.3.1 in the book by Minc[27]. Therefore

strong connectedness of a network is equivalent to condition

∀i,j∈J2n ∃m∈N K̄mij > 0,
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where K̄mij denotes the (i, j)-th element of K̄m matrix, see Cor. IV.3.1 in the book by Minc[27]. If

the order of quantifiers can be reversed then the matrix K is primitive, compare Lem. IV.3.1 in

the book by Minc[27]. Therefore, we can interpret the primitivity of matrices in the context of

the prevalence of resistant pathogens in hospital-community system in the following way. There

exists a moment in time t = mτ when a total sub-population of patients in each node is affected

directly by any considered node. Such a situation does not take place for instance when graph

has a cyclic structure (since then the total sub-population is always affected only by a certain

number of facilities that are the neighbours in the cycle). We take a special care to identify such

cases, as they are unrealistic and if they are present in the model, they indicate possible error

in data analysis or other types of inaccuracy.

3.2 Existence of solutions

Using the explicit formula for H given in (8) we transform the original model (4) into 2n-

dimensional one obtaining

İ(t) = −B(I ◦ I ◦ H−1
k )(t) + (B− Γ)I(t) t ∈ (kτ, (k + 1)τ ] k ∈ N ∪ {0}

I(t+) = KI(t) t = kτ, k ∈ N

I(0+) = I0 ∈ [0, 1]2n.

(11)

Note that for t ∈ (kτ, (k + 1)τ ], k ∈ N, at each coordinate i ∈ J2n the equation simplifies to

the scalar logistic equation, namely

İi(t) = − βi
(Hk)i

I2
i (t) + (βi − γi)Ii(t),

Ii(kτ) = Ii(kτ
+).

(12)

Consider now functions a(k, t) = (ai(k, t))i∈J2n and b(k, t) = (bi(k, t))i∈J2n for k ∈ N ∪ {0}
and t ∈ (kτ, (k + 1)τ ] such that for i ∈ J2n the following holds

ai(k, t) = e(βi−γi)(t−kτ), (13)

bi(k, t) =


βi

(βi−γi)(Hk)i
(ai(k, t)− 1) for βi 6= γi,

βi
(Hk)i

(t− kτ) for βi = γi.
(14)

Note that functions (13) and (14) are positive, where the positivity of the second term in the

case of βi 6= γi follows from the positivity of ai(k,t)−1
βi−γi . Furthermore, define

a := (ai(k, (k + 1)τ))i∈J2n and A := diag(a) ∈M2n×2n(0,∞) (15)

which, by (13), are both independent of k. The solution of (12) for t ∈ (kτ, (k+ 1)τ ] and i ∈ J2n
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is given by nonlinear operator Ti(k, t) : [0, 1]→ PC((kτ, (k + 1)τ ]) such that

Ti(k, t)
(
Ii(kτ

+)
)

=
ai(k, t)Ii(kτ

+)

1 + bi(k, t)Ii(kτ+)
. (16)

Note also that if βi = 0, then Ti(k, t) becomes linear, namely Ti(k, t) (Ii(kτ
+)) =

ai(k, t)Ii(kτ
+).

Theorem 1. For any I0 ∈ [0, 1]2n there exists a unique, nonnegative solution of (11), that

remains in [0, 1]2n, which depends continuously on initial condition for t 6= kτ , k ∈ N ∪ {0},
such that for t ∈ (kτ, (k + 1)τ ], k ∈ N ∪ {0}

I(t) = T (k, t− kτ) Πk
j=1KT (k − j, τ)(I0) , (17)

where each coordinate of T (k, t) = (Ti(k, t))i=1,...,2n is given by (16) and Π should be understood

as composition of operators. Furthermore the solution is positive for any I0 ∈ (0, 1]2n.

Proof. Existence and uniqueness of a local solution follows from Thm. 1.2.2 and Cor. 2.2.1

in Lakshmikantham et al.[23]. An explicit formula for a solution is proved by induction and

nonnegativity is a consequence of nonnegativity of oparators T (k, t) and K. A global existence

of nonnegative solution follows from Thm. 1.4.4 in Lakshmikantham et al.[23] and the following

estimate

İ(t) ≤ (B− Γ) I(t), t 6= kτ,

I(t+) ≤ KI(t), t = kτ,

I(0) = I0 ∈ (0, 1]2n.

(18)

Continuous dependence on initial condition for any t 6= kτ , k ∈ N is based on Thm. 2.3.1 in

Lakshmikantham et al.[23].

To show the positivity of solutions note that for i ∈ J2n, Ii(kτ+) ≥ 0, Ii is an increasing

function and attains 0 only for Ii(kτ+) = 0. If the solution I of (11) is not positive then for

I0 > 0, the first argument t0 > 0 such that I(t0) = 0 is of a form t0 = k0τ
+, k0 ∈ N. On the

other hand,

I(k0τ
+) = KI(k0τ) = 0,

holds leading to contradiction since K as nontrivial, and nonnegative matrix cannot have a

positive eigenvector I(k0τ) corresponding to zero eigenvalue.

Finally, since K is stochastic and Ḣ = 0 the system (11) is conservative. Therefore by (1)

supt∈[0,∞) I(t) ≤ 1.
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4 Long-time behaviour

The considerations in this section are devoted to irreducible and primitive matrix K. To simplify

a notation let

b := lim
k→∞

b(k, (k + 1)τ), (19)

which by (14) and Proposition 1 is well posed, and define function F : (0,∞)2n → (0,∞)2n as

follows

F(I) =

(
aiIi

1 + biIi

)
i∈J2n

. (20)

4.1 Steady states and τ-periodic solutions

First we focus on the existence of disease free and endemic steady states. For that purpose define

the following constants

R0 := r(KA), (21)

R1 := min
i∈J0

(
βi
γi

)
, (22)

with a set of indices J0 defined in (10). Moreover, we say that system (11) satisfies condition (∗)
if

there exist a constant l > 1 such that for any i ∈ J2n βi = lγi. (∗)

We also note easily that condition (∗) implies that R1 > 1.

Clearly, matrix KA is the next generation matrix known from the literature[42, 43]. Its (i, j)-

th element is the expected number of new (secondary) infections in compartment i consisting

of completely susceptible population, produced by the infected (colonized) individual originally

introduced into compartment j, while R0 is called basic reproduction number [13, 42].

Lemma 2. Let K be a primitive and irreducible matrix. Independently on the model parameters,

there always exists a disease free steady state of system (11). If R1 ≤ 1, then it is the only

nonnegative steady state of the system. Furthermore, if R1 > 1 and (∗) holds, then there exists

also endemic steady state given by

I∗ =

(
1− 1

l

)
H∞, (23)

where H∞ is normalised nonnegative representative of right eigenvector of K associated with

r(K) ∈ σ(K).

Proof. By definition, a disease free steady state of system (11) exists independently on the

parameter values. Note that if there exist other fixed point I∗ = (I∗i )i∈J2n then F(I∗) = I∗ and
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thus

I∗i =

(
1− γi

βi

)
(H∞)i =

(
1− 1

l

)
(H∞)i, for i ∈ J2n.

Its positivity is guaranteed by the conditionR1 > 1, and additionally we have I∗ ∈ ker(K−Id) =

span {H∞}. Finally, I∗ is a nontrivial nonnegative fixed point because l > 1.

Lemma 3. Let K be a primitive and irreducible matrix. The disease free steady state of

system (11) is locally asymptotically stable for R0 < 1, while for R0 > 1 it is unstable.

Proof. To examine local stability of disease free steady state we linearise a problem at zero

obtaining

(KF)′(0) = KA,

so if R0 < 1, then zero is locally asymptotically stable while for R0 > 1 it is unstable.

Now let us focus on the characterisation of possible periodic behaviour of the considered

system. Let j0 := # {i ∈ J2n : βi = 0} and without loss of generality assume that βi = 0 for

i ∈ J̄2n−j0 := {2n− j0 + 1, . . . , 2n}. Thus, we specify a new partition of a set J2n = J2n−j0 ∪
J̄2n−j0 and divide operator K into a block matrices. Namely let K = (K̂ij)i,j=1,2 such that

K̂11 ∈ M(2n−j0)×(2n−j0)([0, 1]), K̂22 ∈ Mj0×j0([0, 1]) and K̂12, K̂T21 ∈ M2n−j0×j0([0, 1]). Moreover,

we use a hat to define any 2n-dimensional vector divided according to new index permutation,

for example let I = (Î1, Î2), Î1 = (Ii)i∈J2n−j0 and Î2 = (Ii)i∈J̄2n−j0
. Additionally, for a given

in (15) and i = 1, 2 we define

Âi := diag(âi), where â1 = (ai)i∈J2n−j0 , â2 = (ai)i∈J̄2n−j0
. (24)

If we additionally assume that for j0 > 0 matrix (Id− K̂22Â2) is invertible, then we specify

parameter which relates the rate of spread of infection with the structure of a graph in the

following way

R := min
i∈J2n−j0

si, (25)

where

si := (Ka)i for J̄2n−j0 = ∅ (26)

and

si :=
(
K̂11â1 + K̂12Â2(Id− K̂22Â2)−1K̂21â1

)
i

otherwise. (27)

Theorem 2. Let K be a primitive and irreducible matrix such that (Id − K̂22Â2) is invertible.

If R > 1 system (11) has a nonnegative τ -periodic endemic solution I∗(t). Furthermore, if
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condition (∗) holds, then τ -periodic solution becomes a nonegative endemic steady state defined

in (23).

Proof. For the sake of convenience, within this proof we define functions F̂1, Ẑ1 : (0,∞)2n−j0 →
(0,∞)2n−j0 and F̂2, Ẑ2 : (0,∞)j0 → (0,∞)j0 , which according to the new indices permutation,

for j = 1, 2, are given by

F̂j(Îj) = (Fi(Ii))i∈x , and Ẑj(Îj) = (Zi(Ii))i∈x ,

where x = J2n−j0 for j = 1 and x = J̄2n−j0 for j = 2; while

Fi(I) =
aiI

1 + biI
and Zi(I) =

I

1 + biI
. (28)

We note that (F̂1(Î1), F̂2(Î2))T = (Â1Ẑ1(Î1), Â2Ẑ2(Î2))T .

First, consider J̄2n−j0 6= ∅. A nontrivial τ -periodic solution I∗(t) satisfies condition KF(I) =

I, which expands to

K̂11Â1Ẑ1(Î1) + K̂12Â2Î2 = Î1, (29)

K̂21Â1Ẑ1(Î1) + K̂22Â2Î2 = Î2. (30)

Since matrix (Id− K̂22Â2) is invertible, we rewrite (30) as follows

Î2 =
(

Id− K̂22Â2

)−1
K̂21Â1Ẑ1(Î1). (31)

Plugging (31) into (29) we transform the considered fixed point problem into K̂F̂1

(
Î1

)
= Î1

with K̂ = (k̂ij)i,j∈J2n−j0 as follows

K̂ = K̂11 + K̂12Â2

(
Id− K̂22Â2

)−1
K̂21. (32)

Since Zi is invertible for any i ∈ J2n−j0 except of b−1
i , we have Ẑ−1

1 :
∏
i∈J2n−j0

[0, b−1
i ) →

[0,∞)2n−j0 , Ẑ−1
1 (Ŷ1) =

(
Z−1
i (Yi)

)
i∈J2n−j0

with Ŷ1 = (Yi)i∈J2n−j0 defined by

Z−1
i (Y ) =

(
Y

1− biY

)
i∈J2n−j0

.

In further considerations we also use Gi : [1,∞) → [0, b−1
i ) and its inverse G−1

i : [0, b−1
i ) →

[1,∞), for i ∈ J2n−j0 such that

Gi(Y ) =
Y − 1

biY
and G−1

i (Y ) =
1

1− biY
.

11



Define now

c := min
i∈J2n−j0

Gi(si) and C := max
i∈J2n−j0

{
Gi(si) : Gi(si) < min

s∈J2n−j0
b−1
s

}
.

For R > 1 we have c > 0 and maximum is chosen from nonempty set. Definition of si in (27)

implies that 1 ≤ G−1
i (c) ≤ si ≤ G−1

i (C). Thus, for i ∈ J2n−j0 ,

Z−1
i (c) = cG−1

i (c) ≤ c si ≤ C si ≤ C G−1
i (C) = Z−1

i (C). (33)

Finally choosing K :=
∏2n−j0
i=1 [mi,Mi] with

mi := Z−1
i (c) > 0 and Mi := Z−1

i (C)

we have K̂F̂1 |K ⊂ K. Indeed, by the estimate (33) and the monotonicity of Ẑ, for Î1 ∈ K and

i ∈ J2n−j0 we have(
K̂F̂1(I1)

)
i

=
∑

j∈J2n−j0

k̂ijajZj(Ij) ≥
∑

j∈J2n−j0

k̂ijajZj(mj) = si c ≥ Z−1
i (c) = mi.

On the other hand, by (27) and (32) we have(
K̂F̂1(I1)

)
i
≤

∑
j∈J2n−j0

k̂ijajZj(Mj) = siC ≤ Z−1
i (C) = Mi.

By Schauder fixed point theorem there exits a fixed point for a mapping K̂F̂1

∣∣∣
K

and its

uniqueness follows straight from Thm. 1 in Ciurte et al.[10]. Nevertheless, we cannot guarantee

the uniqueness of fixed point in (0, 1]2n and hence we conclude that system (11) has at least one

τ -periodic solution.

In the case J̄2n−j0 = ∅, all the steps are analogous for si defined in (26), which ends the

proof.

Let us discuss a few observations related to the assumptions of Theorem 2. Using the property

that operator norm ‖A‖∞ = maxi
∑

j |aij | (see Bátkai et al.[7]), we have

∥∥∥K̂22Â2

∥∥∥
∞

= max
i∈J̄2n−j0

 ∑
j∈J̄2n−j0

kije
−γjτ

 < 1, (34)

guaranteeing convergence of the Neumann series and thus invariables of (Id− K̂22Â2).

For diagonal matrix K̂22, e.g. when we do not allow the exchange patients between

12



communities where bacteriae transmission is negligible[34, 32], condition (34) becomes trivial∥∥∥K̂22Â2

∥∥∥
∞

= max
i∈J̄2n−j0

kiie
−γiτ < 1.

Nevertheless, for non-diagonal matrix K̂22, e.g. when we allow the exchange patients between

communities, condition (34) restricts the grow of number of colonized patients ensuring that in

such units recovery rates are sufficiently large.

Now let us focus on the condition R > 1. In the case βi > 0 for i ∈ J2n condition R > 1 is

significantly stronger than R0 > 1. Indeed,

1 < R0 = r(KA) ≤ ‖KA‖ = max
i∈J2n

∑
j∈J2n

kijaj ,

while

R = min
i∈J2n

∑
j∈J2n

kijaj > 1.

On the other hand, if we assume that transmission of the pathogen can only take place in

hospitals[32, 34], then j0 = n and si simplifies to

si =
∑
j∈Jn

kijaj +
∑
j∈J̄n

aj−nkj,j−n
1− ajkjj

kijaj .

4.2 Dynamics of healthcare facility network

Proposition 3 indicates that R0 has a strong impact on the model dynamics. Unfortunately,

the formula given by (21) is not very informative in the context of spread of infection within

the network and therefore we propose a sufficient condition for local asymptotic stability that

clarifies the restrictions.

Using intuition form a standard SIS model, the spread of infection should depend strictly on

the healthcare facilities where the transmission rate exceeds the recovery rate. In the following

result we show that it is possible to obtain a stability of disease free steady state even if there

exist a group of nodes vi such that βi > γi. This is due to the fact that patients from this group

of nodes are recovering in nodes where βi < γi. The model has this property due to a proper

internal network structure, therefore we call described process the effect of network suppression

of infection.

Let us divide all the nodes with respect to the patient average length of stay, which is given

13



by 1
1−kii (for details see Piotrowska et al.[32]), namely

J+
ξ :=

{
i ∈ J2n :

1

1− kii
>
ξ + 1

ξ

}
(35a)

J0
ξ :=

{
i ∈ J2n :

1

1− kii
=
ξ + 1

ξ

}
, (35b)

J−ξ :=

{
i ∈ J2n :

1

1− kii
<
ξ + 1

ξ

}
, (35c)

where ξ is an arbitrary number from [1,∞). Note that condition kii 6= 1 holds since otherwise it

contradicts with strong connectedness of the network. The choice of conditions in (35) explains

the proof of Proposition 4.

Lemma 4. Let K be primitive and irreducible matrix and ξ ∈ [1,∞) be an arbitrary parameter.

If

(i) for all i ∈ J+
ξ ai <

1− tr(A)(1− kii)
kii(ξ + 1)− 1

, (36a)

(ii) for all i ∈ J0
ξ tr(A) <

ξ + 1

ξ
, (36b)

(iii) for all i ∈ J−ξ ai >
1− tr(A)(1− kii)
kii(ξ + 1)− 1

, (36c)

then disease free steady state is locally asymptotically stable.

Proof. We show that under above assumptions r(KA) < 1. Note that for matrix Ā = (āij)i,j∈J2n

such that

āij = aj , for i, j ∈ J2n

we have KA = K ◦ Ā, where ◦ is again a Hadamard product. By Cor. 2.1 in Zhao and Liu[50],

we obtain the estimate

r(K ◦ Ā) ≤ max
i∈J+

ξ

Ci, with Ci := kiiai + (r(K)− kii)(r(Ā)− ai).

Obviously r(Ā) =
∑

i∈J2n ai = tr(A) and r(K) = 1, thus

Ci = kiiai + (1− kii)(tr(A)− ai) ≤ ai (kii(ξ + 1)− 1) + tr(A)(1− kii), (37)

for ξ ∈ [1,∞). Let us consider the case kii >
1
ξ+1 , which indicates that we focus on i ∈ J+

ξ . The

upper bound on ai in condition (36a) is, by inequality (37), equivalent with Ci < 1. We note

also that in order to have nonempty set of constants satisfying (36a) we need tr(A)(1−kii) < 1.

Analogous estimates in two other cases allow to show that for any i ∈ J2n, that satisfies (36),

Ci < 1 which ends the proof.

Although conditions in Proposition 4 seem to be complex, they agree with an intuition. Let
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us remind that, for βi = 0 parameter ai can be interpreted as a rate describing the unsuccessful

recovery process in C- or H-node within time period τ . On the other hand, susceptible patients

can also get colonized, so taking into account that fact we call ai = e(βi−γi)τ the infectiousness

of i-th node. One of the crucial parameters in this considerations is tr(A) which is a sum of all

ai and hence we refer to it as a network infectiousness parameter and it allows for suppression

of infection by the network itself. Note that the bound on ai in (36) transforms into

1− tr(A)(1− kii)
kii(ξ + 1)− 1

=

(
tr(A)

1
1−kii

− 1

)
1

1− kii(ξ + 1)
.

Thus to ensure the local stability of disease-free steady state, the infectiousness ai of each

node in i ∈ J+
ξ needs to be balanced by the product of surplus of network infectiousness over

length of stay of patients in particular node, namely 1
1−kii , multiplied by the altered length of

stay in the considered node if the probability of the stay in the unit would increase (ξ+ 1) times

(keeping in mind that kii(ξ+1) < 1 due to the fact that we consider i ∈ J+
ξ ). Clearly, parameter

ξ was introduced to allow some flexibility in allocation of healthcare facilities in sets with lower

and upper bound on infectiousness.

For simplicity consider ξ = 1. First, assume that the average time of a stay in some node i

is longer than two days and that tr(A) > 2. The longer patients stay in considered node, the

weaker is the ability of a network to suppress an infection in this node.

Now for nodes where the average length of stay is one day, lower bound in (36c) is

counterintuitive as it seems to promote higher number of infections. However, for tr(A) < 1 this

condition is always satisfied. On the other hand, for fixed network and fixed tr(A), condition (36c)

allows to balance the distribution of high-prevalence node within the whole network. Example

1 (iii)-(iv) shows that having two systems with the same node infectiousness’ suppression effect

may either hold or not. In every variant of this example, there are two nodes, with one with

greater than one and second with smaller than one infectiousness, connected in both directions.

Intuitively, the node with greater than one infectiousness shall develop non-zero endemic state

and spread it to the other node. However, we show cases where this behaviour is suppressed by

sufficient transfer rates from smaller than one infectiousness node.

Example 1. Consider system (11) with τ = 1 and four sets of parameters. Case (i) (resp. (ii))

shows that conditions (36) can be satisfied for ai > 1 and i ∈ J+
ξ (resp. i ∈ J−ξ ), while the

next two indicates that lower bound in (36c) allows for appropriate location of high-prevalence

nodes in the network structure. In all cases the network structure in the system is given by a

column stochastic, primitive and irreducible matrix K ∈M2×2([0, 1]) and the node transmission

and recovery rates by B = diag(βi)i=1,2 and Γ = diag(γi)i=1,2.

(i) K =

[
0.7 0.6

0.3 0.4

]
, β1 − γ1 = ln 1.1, β2 − γ2 = ln 0.1

According to formulas (13) – (15) we have A = diag (1.1, 0.1). Conditions in Proposition 4
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are satisfied since σ(K) =
{

1
10 , 1

}
, J+

1 = {1} , J−1 = {2} , tr(A) = 1.2

a1 = 1.1 < 1.6 =
1− tr(A)(1− k11)

2k11 − 1
,

a2 = 0.1 > −1.4 =
1− tr(A)(1− k22)

2k22 − 1
.

Furthermore r(KA) =
√

1621+81
200 < 1.

(ii) K =

[
3
4

2
3

1
4

1
3

]
, β1 − γ1 = ln 0.5, β2 − γ2 = ln 1.5

According to formulas (13) – (15) we have A = diag
(

1
2 ,

3
2

)
. Again the conditions in

Proposition 4 hold since σ(K) =
{

1
12 , 1

}
, J+

1 = {1} , J−1 = {2} , tr(A) = 2 and

a1 =
1

2
< 1 =

1− tr(A)(1− k11)

2k11 − 1
,

a2 =
3

2
> 1 =

1− tr(A)(1− k22)

2k22 − 1
,

Moreover r(KA) =
√

33+7
16 < 1.

(iii) K =

[
0.1 0.51

0.9 0.49

]
, β1 − γ1 = ln 0.89, β2 − γ2 = ln 1.1

Repeating the calculations we have A = diag(0.89, 1.1), σ(K) = {−0.41, 1}, J−1 = {1, 2}
and tr(A) = 1.99. This time however condition (36c) does not hold since

a1 = 0.89 < 0.98875 =
1− tr(A)(1− k11)

2k11 − 1
.

The disease free steady state is not asymptotically stable because r(KA) > 1.021.

(iv) K =

[
0.1 0.51

0.9 0.49

]
, β1 − γ1 = ln 1.1, β2 − γ2 = ln 0.89

In this case the only difference, comparing to (iii) is the swap of infectiousness parameters

between healthcare facilities 1 and 2. We have A = diag(1.1, 0.89), σ(K) = {−0.41, 1},
J−1 = {1, 2} and tr(A) = 1.99, however, now condition (36c) is satisfied

a1 = 1.1 > 0.98875 =
1− tr(A)(1− k11)

2k11 − 1
,

a2 = 0.89 > 0.745 =
1− tr(A)(1− k22)

2k2 − 1
.

The disease free steady state is asymptotically stable, r(KA) < 0.963.
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Lemma 5. Under the assumptions of Proposition 4, the network suppression effect is possible

only if there is no more then one i ∈ J+
ξ such that ai ≥ 1.

Proof. Note that for tr(A) > 2 there are no parameters of the model such that for i ∈ J+
ξ

conditions

1− tr(A)(1− kii)
kii(ξ + 1)− 1

> 1, (38)

are satisfied. Clearly, i ∈ J+
ξ implies that

1− kii(ξ + 1) < 0. (39)

To show this, let us consider two cases.

First, let tr(A) > ξ + 1, then kii ∈
(

2−tr(A)
ξ+1−tr(A) , 1

]
which is an empty set for ξ ≥ 1.

Now let tr(A) ≤ ξ + 1. Since (39), thus to have (38) inequality tr(A)(1 − kii) < 1 needs to

hold. Consequently we obtain the bound on kii,

kii ∈
(
tr(A)− 1

tr(A)
,

2− tr(A)

ξ + 1− tr(A)

)
,

and the above set is nonempty only for trA < ξ+1
ξ . In addition ξ+1

ξ ≤ 2 holds. We conclude that

if there is more than one healthcare facilities in J+
ξ with ai > 1, then tr(A) > 2 and conditions

(36) does not hold.

Proposition 5 indicates that Proposition 4 can be used in the networks where all but one

of the nodes belong to J−ξ set. However when more then one node is in J+
ξ set, it is better to

consider another sufficient condition guaranteeing the local stability of disease-free steady state

given in the following proposition. One of the main advantages of proposed approach is not only

to give a new result that can be easily checked but also to gather a few intuitive observations.

Furthermore, it indicates that restriction noticed in Proposition 5 is not of general nature.

Lemma 6. Let K be primitive and irreducible matrix. If there exits a parameter α ∈ [0, 1] such

that for all i ∈ J2n ∑
j∈J2n

kijaj

α

a1−α
i < 1, (40)

then disease-free steady state is locally asymptotically stable.

Proof. The result is based on the bound for the maximal characteristic root of nonnegative
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irreducible matrix derived by Ostrowski et al.[29, 30]. Namely,

r(KA) = max
i∈J2n

∑
j∈J2n

kijaj

α∑
s∈J2n

ksiai

1−α

= max
j∈J2n

∑
j∈J2n

kijaj

α∑
s∈J2n

ksi

1−α

a1−α
i .

By columns stochasticity of K and Proposition 3 we have a thesis.

Note that choosing α = 0 we obtain standard stability condition for SIS model, namely that

all recovery rates exceed transmission rates γi > βi.

Condition (40) for α = 1, namely
∑

j kijaj < 1, limits the number of infectious patient

in i-th place, directly caused by one patient entering it from any other place. From analytical

perspective we recognise this condition as one of the conclusions from Perron theorem, see for

instance Meyer[25] para. 8.2.7.

For α = 1
2 condition (40) reads

∑
j∈J2n

kijaj <
1

ai
⇐⇒

∑
j 6=i

kijaj <
1

ai
− kiiai for all i ∈ J2n. (41)

Expression kijaj = kije
(βj−γj)τ can be interpreted as a probability that patients from node j

that remained colonized or get colonized after time τ spent in node j was moved to i-th node.

Thus,
∑

j 6=i kijaj would correspond to the inflow to node i still infectious patients from all other

nodes and if it is properly restricted then the stability of disease free steady state is guarantied.

Hence, condition (41) allows us to select nodes to which countermeasures preventing the spread

of the pathogen within the network should be addressed.

It allows to derive the following example.

Example 2. Consider system (11) with τ = 1 and the following set of parameters

K =


0.51 0 0.1 0.1

0.2 0.51 0 0.1

0.29 0 0.8 0

0 0.49 0.1 0.8

 , B− Γ = diag (ln 1.3, ln 1.1,− ln 2,− ln 2)

According to formulas (13) – (15) we have A = diag (1.3, 1.1, 0.5, 0.5), and since

# {λ : |λ| = r(KA)} = 1, K irreducible. We note now that tr(A) = 3.4 and J+
ξ = J4 for any

ξ ≥ 1. The assumptions of Proposition 6 are satisfied for α = 1
2 and indeed r(KA) < 0.82.
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5 Numerical simulations in relation to previous study

The theoretical considerations presented above not only validate previous numerical simulations

but also improve our understanding of the network components on the dynamics of the SIS-

type pathogen (e.g. multidrug-resistant bacteriae) transmission in the healthcare system. In

particular, local stability results agree with global numerical observations about two possible

behaviours of the system. Either the disease-free steady state is asymptotically stable, and then

the disease ”will die out” within infinite time horizon, or it is unstable, so then even one colonized

patient introduced to the system will lead to the propagation of the pathogen within the system

and its persistent presence e.g. due to the existence of locally asymptotically stable endemic

steady state or τ -periodic solutions. Unfortunately, the spread of hospital-acquired infections

in the European population leads to a bitter conclusion that in real systems we deal with the

latter. Then, the general question arises: is it possible to modify the existing system, limiting

the necessary cost as much as possible, such that the asymptotically stable state will be the

disease-free state? On the other hand, if the disease-free state is not an option, how to at least

lower the prevalence of bacteria in the network?

The obvious intervention would be decreasing the transmission probability globally, i.e. by

global increase of the hygienic standards, limit antibiotics usage, isolate colonized patients or

high-risk patients etc. in all hospitals. This would lead to global decrease of transmission levels βi,

and as maxi βi → 0 this would eventually lead to stability of disease-free steady state. However,

assuming that this is feasible at all, the economic burden on society would be enormous. Thus,

the natural approach is to limit the interventions only to some part of the system, i.e. to focus

the interventions in precisely chosen units, not only lowering the prevalence there, but also

decreasing it globally.

The first step towards this goal is to determine which healthcare units are most prone to

the high prevalence of bacteriae. By the prevalence in the i-th node Previ(t) and a system-wide

prevalence Prev(t), at time t ≥ 0, we understand

Previ(t) =
Ii(t)

Hi(t)
, Prev(t) =

∑
i∈J2n Ii(t)∑
i∈J2n Hi(t)

,

respectively. In order to make sure that above parameters stabilise at certain level, in computer

simulations we consider only t = kτ , k ∈ N ∪ {0}. It is demonstrated by numerical simulations

that high prevalence in healthcare facilities is correlated to their average length of stay[34]. Also,

the basic reproduction number estimated for a one hospital-community pair (HC-pair), can be

used for this purpose[32]. It is worth to underline that listed results take into account only local

properties of a given unit and do not exploit the healthcare network properties directly.

Results of this study lead to indicators of units for interventions, which also take into account

the network structure. We determine network basic reproduction number R0, defined in (21),

indicating that stable disease-free state is locally asymptotically stable for R0 < 1. It cannot be
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used directly to point to specific units, but it may be used to evaluate if the proposed intervention

is promising. Then, there is a parameter si defined in (27), which takes into account the pathogen

spread in a given node and the network structure. In the following we focus on another parameter

ri :=
∑
j∈J2n

kijaj −
1

ai
, (42)

which arises due to subtracting right-hand side from left-hand side of (41). In particular, if

ri < 0 for all nodes, then the disease-free steady state is locally asymptotically stable due to

Proposition 6 with α = 1/2.

To investigate the potential of our analytical findings we use a computational network based

model of healthcare system of Lower Saxony (Germany). The model is based on anonymized

insurance data provided by AOK Lower Saxony — a healthcare provider in Germany, for more

information on these data we refer interested reader to our technical report[33]. Previously

proposed computational model[34], that is also used in this simulations, corresponds to the

theoretical model presented in Section 2 with τ = 1 day. It describes dynamics of 164 hospital

nodes (H-nodes) and the same amount of corresponding community nodes (C-nodes). As an

initial state, 1% of colonized population uniformly distributed among total population is assumed

and all simulations are conducted for a period of 7 000 days. More details on the numerical model

may be found in Piotrowska et al.[34] while the code and documentation of the package can be

downloaded[1].

The previous study[34, 32] focused on hospital inquiry infections thus also now we assume no

multidrug-resistant bacteriae transmission in C-nodes. Moreover, we assume that transmission

characteristics in all hospitals are the same (βi = β) and that spontaneous recovery is the

same in all nodes. The choice γi = 1/365 day−1 and βi = 0.065 day−1 (for H-nodes)

for the network (built based on data provided by AOK Lower Saxony and for the patient-

transfer matrix[34]) resulted in stabilization (within a period of 7 000 days) of the system-wide

community prevalence (understood as a fraction of all colonized patients staying in C-nodes)

and the system-wide hospital prevalence (understood as a fraction of all colonized patients

staying in H-nodes) at the level of 8.87% and 21.98%, respectively. These results are close to

values reported in the literature for ESBL-producing Enterobacteriaceae (Escherichia coli and

Klebsiella pneumoniae)[37], third-generation cephalosporin-resistant Escherichia coli [17] and

third-generation cephalosporin-resistant Enterobacteriaceae in general[38].

The time evolution of the prevalence within the simulated period is presented in Figure

1. The prevalence at the end of simulation do not change much, thus we assume that we are

sufficiently close to the stable state or τ -periodic solution at the last simulated day. Since most

likely it is not the stable state itself, later on we will call it final state.

The interesting observation, that clearly indicates the importance of system approach, is

the large difference in prevalence between particular facilities (in final states), although they do
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Figure 1: Change of the prevalence in healthcare facilities (left) and corresponding community
nodes (right) in time. In first row, sort order was based on facility index in the patient-transfer
matrix, which is not related to any particular parameter of the facility. In second row, nodes
are ordered by increasing si parameters (see (27)) of H-nodes (C-nodes are also sorted by
corresponding H-node parameters). In second row, nodes are ordered by increasing ri parameters
(see (42)) of H-nodes (C-nodes are also sorted by corresponding H-node parameters). Separate
sort order for C-nodes is not introduced to show the correspondence between H-node prevalence
and C-node prevalence. Prevalence is shown at transfer moments (once per day), so we do not
observe daily fluctuations in these figures.
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Figure 2: H-node parameter ri (left) and si (right) versus final prevalence in corresponding
H-nodes.

not have different properties regarding the transmission and recovery parameters. If facilities are

sorted by si parameter (with the same sort order for C-nodes, i.e. by their corresponding H-node

si parameter), we note that some order is imposed on their prevalence. Namely, H-nodes and

C-nodes with high prevalence are more likely to occur for higher values of si (see Figure 1 middle

row). If we take ri instead, the correspondence is even better, as shown in Figure 1 bottom row.

While the dependence of the final prevalence on the ri parameter is not monotone (see also

Figure 2), we clearly see that high prevalence are reached for facilities with high ri, while this is

not exactly the case for si. This observation is promising, as we expect the high-prevalence

facilities to be an important source of colonized patients in the healthcare network and ri

parameters seem to better grasp some of the properties of nodes in the healthcare system

network. Moreover, Proposition 6 suggest a natural goal to achieve: reduce ri ≥ 0 parameters for

H-nodes accordingly. Reduction will be performed by decreasing βi by half, which we interpret

as local (hospital-level) countermeasures. Here we do not want to go deeper into the nature of

these interventions, but rather to verify if this approach has a chance of success and to check

how much we would be able to reduce the system-level prevalence.

The procedure is then as follows. We start with the original network, with βi = 0.065 day−1

for H-nodes (βi = 0 in C-nodes) and γi = 1
365 day−1 for every node. We pick a H-node with

maximal ri parameter and reduce in this node βi by a factor of two, and we run the simulation

to check the system-wide (hospital and community) prevalence. Note that by reducing a given

βi, all rj values may change — not only ri since the whole network is affected by this change.

Although, since ai dependents on βi, and kii is likely to be the maximal value of i-th row of

the matrix K (probability of remaining in any node is likely to be larger than probability of

transfer/admission/discharge), then we expect that change of βi will have the most significant

impact on ri. Next, we pick a H-node with maximal ri again and repeat the procedure until the

satisfactory prevalence reduction will be obtained. Note that repeated reductions in the same

facility are possible.

Impact of successive transmission rates reductions on final system-wide hospital and
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Figure 3: System-wide (hospital and community) prevalence and R0 parameter versus number
of transmission rates reductions.

community prevalence in the healthcare system and R0 parameter are shown in Figure 3.

Before transmission rates reductions, 21.98% system-wide hospital prevalence and 8.87% system-

wide community prevalence was observed (cf. Figures 4 and 5). We see that initially, the both

prevalences decreases slowly. After 16 reductions, system-wide hospital prevalence decreased

to about 17% (7.5% in community, while after 48 reductions, system-wide hospital prevalence

decreased below 8% (over 3% in community). To lower the system-wide hospital prevalence

below 3%, 61 reductions are necessary. For 72 and more reductions, it is less than 1%. At 80-th

reduction, R0 drops below 1. At that point, we expect the disease-free state to be stable. While

in simulations we still observe a non-zero prevalence (0.4% in system-wide hospital, 0.2% system-

wide community), exactly zero may be impossible to observe in finite-time simulations. The last

simulation, with 99 reductions, resulted in system-wide hospital prevalence below 0.06%.

At the beginning, the described procedure reduces transmission rates in different facilities

successively (see Figure 6). However, for further iterations we observe repeated reductions in the

same facilities. The highest number of transmission rates’ reductions in the same facility that we

observe is 3. Nevertheless, it is present only in few facilities. To obtain R0 < 1 (80 reductions),

only two triple reductions are necessary, and only 57 facilities out of 164 in total are covered by

additional preventive countermeasures — other facilities need not to be affected. Additionally,

in Figure 7 we present the change of ri values after selected iterations confirming correctness of

proposed procedure.

6 Conclusions

Both analytical and numerical results presented in the above considerations are crucial to

understand the network structural influence on the dynamics of infection spread. The effect

of network suppression proved in Prepositions 4 and 6, indicates that simple intuitions based

on decoupled systems may fail. Even having parameters βi > γi, for some units i ∈ J2n we can

still expect asymptotic damping of infection. It is further confirmed in calculations of parameter
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Figure 4: Change of the prevalence in healthcare facilities (H-nodes) in time for different number
of transmission reductions: 0 (original system), 1, 8, 16, 32, 48, 70, 95. All figures are sorted by
increasing H-node ri values for original system.
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Figure 5: Change of the prevalence in community (C-nodes) in time for different number of
transmission reductions: 0 (original system), 1, 8, 16, 32, 48, 70, 95. All figures are sorted by
increasing H-node ri values for original system.
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Figure 6: Transmission reduction factor in healthcare facilities for different number reduction
algorithm iterations: 1, 10, 31, 41, 76 and 80. After 80 iterations system R0 given by (21) is
smaller then 1.

ri presented in Section 5, which can differ substantially although transmission and recovery

parameters are the same in all hospitals. In view of the above, the mechanism of sorting the

healthcare facilities in order to determine which of them are more prone to the high system

prevalence clearly indicates good places in the network to control the infection.

Numerical simulations justify two sorting methodologies. The first establishes the order in

the set of units with respect to the value of parameter ri; and its effectiveness is confirmed

by Figures 4 and 5 (top rows). We can also propose another sorting which divides all units

with respect to number of transmission rates’ reductions in the procedure in Section 5, compare

Figure 6. Reductions of β parameter should be conducted until the conditions ri < 0 hold for all

i ∈ J2n and thus R0 < 1 is satisfied guarantying local stability of decease free steady state. In

particular, for computational network based model of healthcare system of Lower Saxony, after

80 algorithm iterations we divide all units into compartments due to the number of reductions

that affected particular healthcare facility nodes abating four compartments C0 up to C3 with

indexes indicating the number of reductions:

|C0| = 107, |C1| = 36, |C2| = 19 |C3| = 2.

It is natural to ask about the correlation between the final hospital/community prevalence

and other standard network measures both local (such as H-nodel/C-node in-/out-degrees;
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Figure 7: H-node ri parameter versus prevalence for different number of transmission reductions:
0 (original system), 1, 8, 16, 32, 48, 70, 95. All figures are sorted by increasing H-node ri values
for original system.
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average length of stay in nodes; node in-/out-strength; closeness in-/out-centrality) and global

ones (graph radius, diameter and density). In the light of considerations of Piotrowska et al.[34],

we do not expect here a breakthrough, however deeper analysis of the corrections between node

prevalence and some more sophisticated network measures might be addressed in the future.

Another interesting direction of further considerations is the investigation on the relationship

between parameter R0 and both the system-wide and H-node (resp. C-node) prevalence. Even

having explicit formulas for functions H and I, see (7) and (17), it is not clear how to establish

this relation analytically. In our simulations we observe that decrease of prevalence (system-

wide hospital and system-wide community) is accompanied by decrease of R0 (see Figure 3).

The observed pattern suggests a hypothesis that a network with lowerR0 would results in a lower

prevalence. Since calculating R0 for a network model is much faster than performing a pathogen

dynamics simulation, it would be an efficient parameter for comparison of different networks’

susceptibility on a given pathogen. While it is no substitute for a full-scale simulation, it could

improve initial process of developing modifications of existing healthcare system networks by

efficiently indicating of more or less promising propositions.

Finally, except from indicting units where the cost of transmission reduction compared to the

global effect is the lowest, we can consider little costly good practices to decrease the colonisation.

Prepositions 4 and 5 clearly indicate that it is easier to obtain network suppression of infection

if there are more units from a set J−ξ , see Definition (35c), i.e. with average length of stay equal

to 1. It goes in line with previous results on decoupled systems which stated the correlation

between high prevalence in healthcare facilities and the average length of stay. Translating

obtained property into suggestion that can be given to police-makers responsible for hospital

network management; we propose to promote system in which in well-considered cases patients

are discharged from the hospital for weekends instead of being kept for two more days without

serious reason. It is worth to thought through this suggestion because, except from medical

reasons, it also reduces hospital costs. In order to confirm our hypothesis further considerations

in this direction should be conducted, changing the model so that it takes into consideration the

lack of discharge from hospitals in the weekends. Another specification that should be included

is the possible growth in number of admissions on Mondays due to wrong diagnosis at the end

of a previous week.
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[9] Marek Bodnar, Urszula Foryś, and Monika J. Piotrowska. Logistic type equations with

discrete delay and quasi-periodic suppression rate. Appl. Math. Letters, 26(6):607–611,

2013.

[10] Anca Ciurte, Sergiu Nedevschi, and Ioan Rasa. Systems of nonlinear algebraic equations

with unique solution. Numerical Algorithms, 68(2):367–376, apr 2014.
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