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Abstract 	
Groundwater plays a crucial role in sustaining global food security but is being over-exploited in many basins of the world. Despite its importance and finite availability, local-scale monitoring of groundwater withdrawals required for sustainable water management practices is not carried out in most countries, including the United States. In this study, we combine publicly available datasets into a machine learning framework for estimating groundwater withdrawals over the state of Arizona. Here we include evapotranspiration, precipitation, crop coefficients, land use, well density, and watershed stress metrics for our predictions. We employ random forests to predict groundwater withdrawals from 2002-2020 at a 2 km spatial resolution using in-situ groundwater withdrawal data available for Arizona Active Management Areas (AMA) and Irrigation Non-Expansion Areas (INA) from 2002-2009 for training and 2010-2020 for validating the model respectively. The results show high training ( 0.86) and good testing ( 0.69) scores with normalized mean absolute error (NMAE) ≈ 0.64 and normalized root mean square error (NRMSE) ≈ 2.36 for the AMA/INA region. Using this method, we spatially extrapolate the existing groundwater withdrawal estimates to the entire state and observe the co-occurrence of both groundwater withdrawals and land subsidence in South-Central and Southern Arizona. Our model predicts groundwater withdrawals in regions where production wells are present on agricultural lands and subsidence is observed from Interferometric Synthetic Aperture Radar (InSAR), but withdrawals are not monitored. By performing a comparative analysis over these regions using the predicted groundwater withdrawals and InSAR-based land subsidence estimates, we observe a varying degree of subsidence for similar volumes of withdrawals in different basins. The performance of our model on validation datasets and its favorable comparison with independent water use proxies such as InSAR demonstrate the effectiveness and extensibility of our combined remote sensing and machine learning-based approach.
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INTRODUCTION
Constituting approximately 30% of total global freshwater reserves (Schneider, Root, & Mastrandrea, 2011), groundwater is the largest source of Earth’s liquid freshwater and is an essential resource responsible for sustaining the water-food-energy nexus (Smajgl, Ward, & Pluschke, 2016). With nearly half of the global drinking water being supplied by groundwater and the ever-increasing demands for agricultural products primarily driven by the rising global population and dietary shifts, groundwater is being rapidly depleted  (Margat & van der Gun, 2013). Specifically, since the latter half of the 20th century, demands for non-renewable groundwater reserves have tripled, providing about 20% of global irrigation water (Wada, van Beek, & Bierkens, 2012). Due to these large demands/dependence on groundwater, several key agricultural regions around the world are encountering the negative impacts of groundwater overuse, which include permanent aquifer depletion (Butler, Whittemore, Wilson, & Bohling, 2018; Cao, Zheng, Scanlon, Liu, & Li, 2013; Faunt, Sneed, Traum, & Brandt, 2016; Rodell, Velicogna, & Famiglietti, 2009; Scanlon et al., 2012; Shekhar et al., 2020; Smith et al., 2017; Tiwari, Wahr, & Swenson, 2009), land subsidence (Galloway & Burbey, 2011; Herrera-García et al., 2021; Smith & Li, 2021; Smith & Majumdar, 2020), and water contamination (Costall et al., 2020; Erban, Gorelick, Zebker, & Fendorf, 2013; Goebel, Pidlisecky, & Knight, 2017; Gottschalk, Knight, Asch, Abraham, & Cannia, 2020; Levy et al., 2021; Smith et al., 2018). Despite such pressing challenges, groundwater withdrawals (also known as extraction or pumping) are not monitored in most areas at a scale suitable for implementing sustainable groundwater management practices (Foster, Mieno, & Brozović, 2020). As a result, robust and effective methods are needed to reliably quantify groundwater use for aiding efforts to better manage this heavily stressed resource (Majumdar, Smith, Butler, & Lakshmi, 2020).

Currently, established methods to estimate groundwater withdrawals depend on agricultural water demand, which is usually calculated using evapotranspiration and soil models along with surface water availability. For example, the Central Valley Hydrologic Model (CVHM) developed by Faunt (2009) uses the MODFLOW FMP package (Schmid, 2004) to simulate water demand. This is a sophisticated approach that incorporates land use data and an evapotranspiration model relying on temperature, crop type, precipitation, and root depth. CVHM then apportions the remaining water demand to groundwater withdrawals after accounting for surface water demand using known surface water availability data. The Integrated Water Flow Model (IWFM) (Dogrul, Brush, & Kadir, 2016; Dogrul, Schmid, Hanson, Kadir, & Chung, 2016) is a similar approach and has been used to simulate the hydrologic cycle, including agricultural water demand. Cao et al. (2013) also developed a flow model using MODFLOW to simulate the spatiotemporal variability of groundwater depletion related to groundwater pumping in the North China Plain. The Arizona Department of Water Resources (ADWR) has published several reports on similar groundwater flow models simulating water supply and future water demands for various regions in Arizona (ADWR, 2018). The Aquaculture and Irrigation Water-Use Model (Wilson, 2021) developed for the Mississippi Alluvial Plain region combines remotely sensed land use data, in-situ pumping data, and look-up tables to estimate crop-specific groundwater use at local scales (~1.6 km). Although these models have been successfully applied and have produced added insights into the groundwater flow regime, calibrating and extending them to other regions or large geographical areas can be extremely expensive due to the inherent complexity and number of parameters involved. 

The growing availability of remote sensing data sets and gridded hydrometeorological data has enabled us to monitor large-scale regions for various hydrologic applications (Frappart & Bourrel, 2018; Lakshmi, Fayne, & Bolten, 2018; Leidner & Buchanan, 2018). Total water storage— GRACE (Gravity Recovery and Climate Experiment) and GRACE-FO (GRACE- Follow On) (Nie et al., 2018), terrestrial evapotranspiration—  SSEBop (Operational Simplified Surface Energy Balance) (Senay et al., 2013), precipitation— PRISM (Parameter-elevation Regressions on Elevation Slopes Model) (Daly et al., 2008), and land use— USDA-NASS (United States Department of Agriculture- National Agricultural Statistics Service) (Boryan, Yang, Mueller, & Craig, 2011) are some of the widely used openly available data sets over the conterminous United States (US). 

The individual use of these data sets for estimating groundwater storage fluxes has been reported in several studies. Rodell et al. (2007), Rodell et al. (2009), and Famiglietti et al. (2011) used GRACE-derived total water storage changes to estimate groundwater fluxes after subtracting the components of snow water, surface water, and soil moisture. Although GRACE and GRACE-FO data are helpful for basin- or continental-scale studies, their application to local-scale groundwater storage change estimation is hindered by the coarse resolution (~400 km). In addition, the application of remote sensing derived land use data sets to estimate irrigated area is becoming more common, but historically, these have not been directly related to groundwater withdrawals (Deines, Kendall, Butler, Basso, & Hyndman, 2021; Deines, Kendall, & Hyndman, 2017; Deines et al., 2020; Ozdogan & Gutman, 2008). Moreover, land subsidence estimates from spaceborne Interferometric Synthetic Aperture Radar (InSAR) techniques have been used in some studies to estimate groundwater storage changes at high spatial resolutions (~100 m) (Chaussard, Bürgmann, Shirzaei, Fielding, & Baker, 2014; J. Chen, Knight, & Zebker, 2017; Hoffmann, Zebker, Galloway, & Amelung, 2001; M. M. Miller & Shirzaei, 2015; Reeves et al., 2011; Smith et al., 2017) but these are typically restricted to specific regions having confined or semi-confined aquifers and highly compressible sediments (Smith & Majumdar, 2020). Despite several well-established research efforts in these fields, combined use of these data sets to estimate groundwater fluxes is rare.

The varying spatial and temporal resolutions of different remote sensing products pose a challenge for integrating them to estimate water balance components (Tamayo-Mas, Bianchi, & Mansour, 2018). Additionally, to directly estimate groundwater withdrawals using a water balance approach, we require knowledge of several essential variables such as surface water withdrawals, groundwater recharge, and inflow/outflow, which are often complicated and sometimes impossible to obtain. In this context, it has been shown that, in many cases, the accuracy of existing water balance estimates is limited to some extent because of spatial bias (Hashemi, Nordin, Lakshmi, Huffman, & Knight, 2017). Furthermore, traditional approaches involving physical models tend to become overly complex and computationally expensive, especially when applied to large regions, when various remote sensing products are utilized (Becker et al., 2019; Faunt, 2009; Moeck, von Freyberg, & Schirmer, 2018; Seibert, Staudinger, & van Meerveld, 2019; Tamayo-Mas et al., 2018). 

 Our earlier research in Kansas, consisting of semi-arid to sub-humid climatic regions (Majumdar et al., 2020), is possibly the earliest work on integrating multitemporal remote sensing products to estimate local-scale (5 km) groundwater withdrawals. Similar to Majumdar et al. (2020), in this work, we develop an approach to estimate groundwater withdrawals at a higher resolution (2 km) by utilizing a diverse collection of remote sensing and gridded hydrometeorological products that relate to the different water balance components. Here, we test this approach in Arizona, which experiences arid to semi-arid climates (ADWR, 2020c), and perform sensitivity analysis to different resolutions. We also compare our estimates of groundwater withdrawals with subsidence data from InSAR, marking the first study to compare withdrawals and subsidence over such a large (~ km2) region.

As in Majumdar et al. (2020), we apply random forests (Belgiu & Drăguţ, 2016; Breiman, 2001), a widely popular machine learning algorithm, to obtain local-scale estimates of groundwater withdrawals over the state of Arizona for the period 2002-2020. The model is calibrated and validated using in-situ groundwater pumping data available from the ADWR data archive (ADWR, 2020a). The remote sensing products incorporated in our study include SSEBop evapotranspiration (Senay et al., 2013) and land use from USDA-NASS (Boryan et al., 2011). Additionally, we use the PRISM gridded precipitation data (Daly et al., 2008) and crop coefficients (Allen, Pereira, Raes, & Smith, 1998) along with well density (ADWR, 2020a) and watershed water stress indices developed by Smith and Majumdar (2020) as predictors for our model. We also cross-compare the estimated groundwater withdrawals and sediment thickness data obtained from the US Geological Survey (USGS) (Shah & Boyd, 2018) with InSAR-derived land subsidence available from ADWR (2020) to provide insights into the causes of significant land subsidence in Southern and South-Central parts of Arizona (ADWR, 2019; Conway, 2016).   

The remainder of this paper is divided into four sections. We first discuss the characteristics of the study area, data sets used, and the details of our workflow (section 2), followed by an analysis of the results (section 3). Finally, we conclude with a discussion of our findings, their implications, and their applicability to other areas (sections 4 and 5).

[bookmark: _Ref64313894]STUDY AREA, DATA, AND METHODS 
Study Area
There are two regionally extensive and predominantly used aquifer systems in Arizona, the Basin and Range Aquifer, covering southern and western parts, and the Colorado Plateau aquifers, which cover the northern and eastern parts of the state (Anderson, Pool, & Leake, 2006). Groundwater is extensively used in the agriculture sector, which grows year-round crops such as cotton, alfalfa, wheat, and several other specialty crops (AZDA, 2019). Arizona experiences arid and semi-arid climates with extreme precipitation variability and is currently in its 26th year of a long-term drought (ADWR, 2020c). With increasing demands for freshwater resources and ongoing drought conditions, groundwater resources are being heavily stressed, primarily in Southern and South-Central Arizona, where there is limited surface water availability, and pumping is generally from thick, unconsolidated aquifers, thereby leading to significant land subsidence (ADWR, 2019, 2020b; Anderson et al., 2006; Conway, 2016). 
Following the 1980 Arizona Groundwater Management Act (GMA) (ADWR, 2020b), areas exhibiting substantial groundwater reliance were identified and designated as Active Management Areas (AMAs). These include Prescott, Phoenix, Pinal, Tucson, and Santa Cruz. Additionally, rural farming areas (Joseph City, Douglas, and Harquahala) experiencing groundwater overdraft issues of lesser severity than AMAs were designated as Irrigation Non-Expansion Areas (INAs). These AMAs and INAs are shown in Figure 1.  
Compared to Kansas, where the climate varies from semi-arid in the west to sub-humid in the east (Lin et al., 2017), Arizona experiences an arid to semi-arid climate (ADWR, 2020c). Kansas primarily draws its groundwater from the High Plains Aquifer, which consists of unconsolidated blanket-like sand and gravel (alluvial deposits) (A. J. Miller & Appel, 1997). However, in Arizona, groundwater pumpage is predominantly from the unconsolidated basin-fill or valley-fill aquifer (Basin and Range Aquifer) and from the poorly-to-well consolidated sedimentary aquifers (Colorado Plateau aquifers) (Robson & Banta, 1995). Moreover, Arizona produces a much wider variety of crops, e.g., citrus fruits, leafy vegetables, nuts, and other specialty crops in addition to wheat, corn, and cotton (which are also grown in Kansas) (AZDA, 2019; Kansas Department of Agriculture, 2020).  
Owing to these considerable differences in aquifer properties, climatic characteristics, and crop production compared to our earlier work in Kansas (Majumdar et al., 2020) and the availability of sizeable in-situ groundwater withdrawal data from ADWR, we chose Arizona as the test site for extending our earlier approach. Moreover, understanding the links between groundwater pumping and land subsidence was another motivation behind selecting this region.            
Data 
In this study, we use a collection of spatio-temporal variables and temporally static data sets. The spatio-temporal data sets (2002-2020) include SSEBop evapotranspiration (ET), PRISM-derived precipitation (P), watershed stress calculated using average precipitation (WSPA), and watershed stress calculated using average precipitated adjusted with average evapotranspiration (WSPA/EA). Regarding the temporally static data sets, we include the mean USDA-NASS Cropland Data Layer (CDL) land use densities (averaged from 2008-2020), crop coefficients (CC), and well density map (WD). The in-situ groundwater withdrawal data were obtained from ADWR (2020a). A summary of these data sets is provided in the following paragraphs. 
In our research, we used the cumulative monthly SSEBop ET and PRISM precipitation data for the year-round growing season (January-December) from 2002-2020. The SSEBop ET data (Senay et al., 2013) are computed using the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature product (Wan, 2008) and model-assimilated weather fields. The data sets are available at 1 km spatial resolution over the conterminous US (CONUS) from daily to seasonal time scales. We incorporated the gridded PRISM precipitation product available from the PRISM group (Daly et al., 2008). The daily or monthly precipitation estimates, which are available CONUS-wide at a 4-km spatial resolution, are computed using weighted spatial regression methods wherein the weights are derived from various physiographic entities, including topography and location (Daly et al., 2008).      
In addition, we use two watershed water stress indices (Smith & Majumdar, 2020) using surface watershed shapefiles obtained from ADWR (2021) and USDA-NASS CDL land use. WSPA (watershed stress index using average precipitation) given by Eq. (1) is calculated as in Smith and Majumdar (2020). WSPA/EA (WSPA adjusted for ET), provided by Eq. (2), is a slight variant of WSPA and accounts for the average ET within a particular watershed. These indices indicate surface water availability per agricultural or urban land area, wherein the underlying assumption is that there are increased water demands in these developed land areas (Smith & Majumdar, 2020).   Accordingly, the positive and negative values of these metrics indicate lesser and more water stress, respectively.
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In this work, we use the USDA-NASS CDL (Boryan et al., 2011) data sets from 2008-2020, which are annual crop-specific land cover data layers developed using Landsat and ground data, available at 30 m spatial resolution over the CONUS. Moreover, we incorporate the mid-seasonal stage crop coefficients (CC) (Allen et al., 1998) as a proxy for irrigated agriculture (e.g., corn has a higher likelihood of being irrigated than sorghum). 
The ADWR Groundwater Site Inventory (GWSI) database (ADWR, 2021) contains well information (location, well depth, etc.) for the state. We use it to obtain a well density map that provides the number of wells in each pixel. In addition, we incorporate the ADWR groundwater basin shapefile (ADWR, 2021), USGS sediment thickness data (Shah & Boyd, 2018), and the InSAR-derived land subsidence estimates provided by ADWR (2021) for determining the relationship between groundwater withdrawals and land subsidence. The sediment thickness data set, which represents the thickness of unconsolidated sediments (depth to bedrock), is available in 1 km grid-node spacing format for the Western CONUS and has been derived using various methods, including well depth, seismic reflection, and gravity (Shah & Boyd, 2018). 
 We obtain the in-situ groundwater withdrawal data from ADWR (2020a) for the years 2002-2020. It is noteworthy that ADWR actively monitors pumping only within the AMA/INA region, and hence, withdrawals outside this area are unreported or unknown. The data pre-processing details are discussed in section 2.3.1.
Methods
The major steps involved in our workflow are conceptualized in Figure 2. We describe the data acquisition and pre-processing steps in section 2.3.1 and provide a brief review of our machine learning framework based on Random Forests in section 2.3.2.
Data Acquisition and Pre-Processing
The data acquisition and pre-processing workflow are similar to our previous work (Majumdar et al., 2020). We use the Google Earth Engine platform (Gorelick et al., 2017) to download the PRISM precipitation data for the growing season (January 1 – December 31) of each year for the 2002-2020 time period. For the SSEBop ET and USDA-NASS CDL data sets, we directly use the official data portals of USGS and USDA-NASS, respectively. We temporally sum up the ET and P data for the growing season to obtain each year’s cumulative ET and P. Next, we reclassified the CDL data into four classes depending on the pixel values representing agricultural (AGRI), urban (URBAN), surface water (SW), or other (OTHER) land use. Thereafter, we created three binary rasters corresponding to AGRI, URBAN, and SW and discarded OTHER. In order to introduce spatial context, we applied Gaussian filtering similar to Majumdar et al. (2020), which is further discussed in section 3.1. Finally, we compute the mean land use densities between 2008-2020 and use them as predictors. 
The watershed water stress rasters (WSPA and WSPA/EA) were computed using ET, P, AGRI, URBAN, and the ADWR surface watershed shapefile following Eq. (1) and Eq. (2). The crop coefficient (CC) raster is produced from the CDL data wherein the pixel values are obtained by matching the crop names (from the CDL data) with the mid-seasonal crop-coefficient look-up table provided by Allen et al. (1998). The well density raster (WD) is computed using the ADWR GWSI well location data across Arizona, wherein each pixel value indicates the number of wells within the pixel. As for the in-situ groundwater (GW) withdrawals, the ADWR point data available over the AMA/INA region from 2002-2020 were rasterized, where each pixel value represents the cumulative withdrawals from all the wells within that 2 km × 2 km pixel area. In this context, since withdrawals outside the AMA/INA region are unknown, we included pixels where there were no wells implying zero withdrawals to increase the number of samples, thereby improving the model predictions. 
All the raster data sets are clipped to the Arizona state boundary, reprojected to UTM 12N, and resampled using the nearest neighbor algorithm to 2 km resolution. The entire workflow is fully automated and uses open-source or freely available programming languages, tools, and libraries. In this research, we use Python 3 (Van Rossum & Drake, 2009) as the main programming backend for data acquisition, pre-processing, and implementing the machine learning model. R (Venables, Smith, & R Core Team, 2021) and QGIS (QGIS Project, 2021) are used for statistical analysis and visualization purposes, respectively. The primary Python libraries used in our workflow include NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), GDAL/OGR (GDAL/OGR contributors, 2021), scikit-learn (Buitinck et al., 2013; Pedregosa et al., 2011), Rasterio (Gillies, 2013), GeoPandas (GeoPandas developers, 2021), and Pandas (McKinney, 2010).
Machine Learning with Random Forests
Random forests (RF) (Breiman, 2001) is an ensemble machine learning algorithm that is extensively used in the remote sensing domain (Belgiu & Drăguţ, 2016). In this work, we use RF for addressing a multi-variate regression problem where the objective is to accurately predict groundwater withdrawals given nine different predictors (AGRI, URBAN, SW, CC, ET, P, WSPA, WSPA/EA, and WD). We employed three splitting strategies for generating the training and test data based on holding out temporal, spatial, and spatiotemporal data (discussed in section 3.1) to analyze the model performance. 

For model evaluation, we relied on RF feature importances and different error metrics such as the coefficient of determination (), root mean square error (RMSE), mean absolute error (MAE), normalized RMSE (NRMSE), and normalized MAE (NMAE), wherein the normalization is carried out by dividing the RMSE and MAE with the mean of actual groundwater withdrawals. Like Majumdar et al. (2020), the feature importance or Gini importance is computed using the total decrease in node impurity (variance) averaged over all the trees (Breiman, Friedman, Olshen, & Stone, 1984). We also perform residual diagnostics and normality checks to understand possible bias in our model residuals (Hastie, Tibshirani, & Friedman, 2001).

As for hyperparameter tuning, we optimized three parameters, n_estimators (number of trees), max_features (maximum number of features or predictors split during model training), max_depth (maximum tree depth), and min_samples_leaf (minimum number of samples required to be at a leaf node) using the scikit-learn API (Buitinck et al., 2013; Pedregosa et al., 2011). We observed that n_estimators=500, max_features=5, max_depth=18, and min_samples_leaf =1e-5 provided the best results (lower NMAE and NRMSE, and higher ) with all the other hyperparameters set to scikit-learn defaults (scikit-learn developers, 2021). 
[bookmark: _Ref64313955]RESULTS AND ANALYSIS
As indicated above, we used three data splitting strategies which involved leaving out temporal, spatial, and spatiotemporal data in succession in the analyses. For temporal data splitting, we chose 2002-2009 as the training data and 2010-2020 as the test data. In the case of spatial data splitting, we select the Harquahala INA for model validation as it has the largest spatial extent among the INAs with an area of around 1983 km2 (Towne, 2014). This is a sufficiently large region to test the model, but not so large that it reduces a substantial portion of the training data needed to produce a robust calibration. In areas outside the Harquahala INA, all the temporal samples (2002-2020) are used to train the model.   The spatio-temporal data splitting strategy is an amalgamation of the spatial and temporal data splitting workflows where we leave out Harquahala INA for all the years (2002-2020), and for other regions, we choose only 2002-2009 data for model training. 
At first, we showcase the sensitivity analysis results in section 3.1. Thereafter, we present the model results and analysis in section 3.2, wherein the optimized parameters obtained from the sensitivity analyses are used.
Sensitivity Analysis
Two critical parameters that govern the way we use the remote sensing products in our proposed approach are the target scale of the estimates and the standard deviation () of the Gaussian kernel.  For performing sensitivity analysis, we used the same RF hyperparameters as mentioned in section 2.3.2 and varied the scale (in km) and  (in pixels) between [1, 5] and [1, 10], respectively. In Figure 3, we compare the  computed with varying  and scale using the test data for the three data-splitting strategies. 
Since our model is re-calibrated for each of these parameter combinations, the importance of various input features changes for each iteration. We find that varying scale and  affects the performance on temporal, spatial, and spatio-temporal validation datasets in different ways. Due to the coarser resolution of the PRISM product (originally at 4 km), precipitation, a key temporal predictor, has low feature importance (less variation with groundwater pumping) at finer scales. When we try to upsample a coarser grid to a finer one, we copy the same pixel value to those finer cells (nearest neighbor).  So, there is less variation of the coarser products at finer scales, which effectively reduces the feature importance, thus reducing performance at overly fine scales. However, if we choose a higher scale (e.g., 5 km) by observing the trend that the model performs better as we increase the scale (Figures 3 (a) and (c)), then we tend to lose out land-use information (such as AGRI and URBAN), which is essential for extending the results over the entire state and for the subsequent land subsidence analysis (more on this is provided in section 4).  Note that we have a higher  variation in Figure 3 (b) because of the lesser number of validation samples (restricted to the Harquahala region only) as compared to Figures 3 (a) and (c). 
When downsampling the high-resolution CDL data to a coarser grid, the nearest neighbor algorithm will assign a zero AGRI or URBAN class value to the coarser cell having more non-AGRI or non-URBAN classes. If there are smaller AGRI or URBAN regions within the coarser cell, we will lose such information, and the model would not predict groundwater pumping in those regions. Thus, finding an appropriate scale that is fine enough to preserve land use data while coarse enough for the model to learn to use precipitation and other coarse temporal predictors, is critical. We observe that the test  is consistently high when the target scale is 2 km and  4 pixels (implying a spatial window of 8 km × 8 km).  As a result, we find the target resolution of 2 km to be the most appropriate for this study. 
Groundwater Withdrawal Estimates
Holding out Temporal Data
For the temporal data splitting strategy, the number of training and test samples are 471,978 and 648,945, respectively, implying a split of 42%-58%. The mean actual and predicted groundwater withdrawals for the test years 2010-2020 are shown in Figures 4 (a) and (b), respectively.
The training error metrics include  0.86, NRMSE  1.54, and NMAE 0.43 over the AMA/INA region, with corresponding test error metrics being   0.69, NRMSE  2.36, and NMAE 0.64, respectively. Moreover, we are able to extrapolate our estimates to the entire state of Arizona (Figure 4 (b)), and these estimates are also constrained to the well locations implying that if there are no wells, then no pumping is occurring. From the scatter plot in Figure 4 (c), we see a good fit between the actual and predicted pumping. The majority of the scatter points approximately follow the 1:1 relationship even though there are some underpredictions and overpredictions. Additionally, the mean actual and predicted groundwater pumping for each year are depicted in Figure 5, showing that the model predictions for the test years (2010-2020) follow the actual ones reasonably well. Although the model overpredicts 2010 (a validation year), the mean predictions for the other validation years closely follow the actual mean pumpage. In particular, the mean predicted pumpings for 2016 and 2018-2020 are quite accurate, and our model is able to capture the temporal trends suitably. On the contrary, for the training years (2002-2009), we observe that the model does not capture the temporal trends. This could be attributed to the max_depth and min_samples_leaf  hyperparameters, which control overfitting the training data. Nevertheless, the satisfactory groundwater withdrawal predictions for the test or validation data highlight that our model has a good generalizing capability. Here, the feature importances (in decreasing order) corresponding to WD, AGRI, URBAN, CC, SW, ET, WSPA, P, WSPA/EA are 0.26, 0.18, 0.16, 0.14, 0.13, 0.07, 0.04, 0.02, and 0.01, respectively.  
Next, we show the residual analysis of the model estimates in Figures 6 (a)-(d). Figure 6 (a) shows that in major pumping areas, the model underpredicts (negative Mean Error) more than it overpredicts, and most of these large errors are present in the Phoenix AMA; wherein there is extensive groundwater pumpage with annual cumulative withdrawal rates exceeding 2000 mm/yr in some places. This observation is consistent with the RF prediction algorithm, wherein it tends to predict the mean of the training samples for unseen data (Breiman et al., 1984). The standardized residual histogram in Figure 6 (b) shows the residuals to be slightly skewed but closely follows a normal distribution, with the mean and standard deviation of the error residuals being -0.2 mm/yr and 32.59 mm/yr, respectively. Similarly, Figure 6 (c) shows no clear pattern in the residual scatter plot and that the residuals are clustered around 0. This implies that the residuals are independent and almost normally distributed, which is also depicted in Figure 6 (d). Even though there is a slight bias, 98.4% of the standardized residuals lie in the [-2, 2] interval, and thus, our model predictions are quite robust. 
Holding out Spatial Data
Here, we show the model results obtained by holding out the Harquahala INA (2002-2020) from the training process. The total number of training and test samples are 1,111,585 and 9,338, respectively. The mean actual and predicted groundwater withdrawals are shown in Figures 7 (a) and (b), along with the scatter plot in Figure 7 (c).
The training error metrics are  0.83, NRMSE  4.24, NMAE  0.47 (includes regions outside the AMA/INA also), respectively, with the corresponding test error metrics (only over the Harquahala INA) being  0.31, NRMSE  4.41, NMAE  1.04. Although the predicted pumpings are not as accurate as in section 3.2.1, it is noteworthy that the model underpredicts or overpredicts for specific pixels and that for the entire Harquahala INA, the model accuracy is relatively high, with the mean actual and predicted groundwater withdrawals being 32.95 mm/yr and 31.44 mm/yr, respectively.  As a result, our model would perform satisfactorily if we downsample these predictions to a coarser resolution. The error metrics are likely worse as the model predictors are mainly based on water demand (i.e., land use type and ET), but water could be pumped from a neighboring pixel to supply water to a field that has a high demand. Because of this, visual inspection of Figures 7 (a) and (b) shows good spatial agreement, even though the error metrics are worse than in the other test cases. 
In Figure 8, we observe the mean actual and predicted groundwater withdrawals over the Harquahala INA for each year from 2002-2020. While the predictions match closely with the actual values for some years (2007-2010), the model does not suitably capture the overall trend, unlike in Figure 5, where our model captures temporal trends for the broader study area reasonably well. Our model considers the mean land use from 2008-2020  as CDL data are unavailable before 2008 (Boryan et al., 2011). However, since 2008, the acreage of alfalfa, which is the principal irrigated crop in the Harquahala INA, has roughly doubled (Supplementary Figure 1). This is likely the reason our model overpredicts 2002-2006 and does not capture the overall increasing trend in groundwater usage in this region from 2011-2020.
Next, we carry out residual analyses similar to section 3.2.1, depicted in Figures 9 (a)-(d). 
Figure 9 (a) shows that model predictions exhibit high pixelwise errors for areas with high pumpage but do quite well outside these regions. These pixelwise errors are because of the low generalizability of the model when we consider the spatial data splitting strategy. Since the model has only been trained from the areas outside the Harquahala INA, it tends to predict an average estimate of the training samples, an inherent property of the random forests algorithm (Breiman, 2001). This is determined when comparing the mean actual and predicted withdrawals over Harquahala, which differ by 1.5 mm/yr. Thus, our model tends to produce sufficiently accurate results over the entire Harquahala INA. However, we have high errors at the pixel level (2 km resolution) because of the low model generalizability. Nevertheless, 95.73% of the standardized residuals shown in Figures 9 (b)-(d) lie in the [-2, 2] interval implying that the distribution of the residuals is approximately normal. 
Holding out Spatiotemporal Data
In this data splitting strategy, we have 468,044 training samples and 652,879 test samples, respectively, where 9,338 samples in the test data belong to the Harquahala INA (2002-2020); the remaining test samples are drawn from other regions for the years 2010-2020.  The train error metrics for the AMA/INA region are  0.84, NRMSE  1.63, NMAE  0.45 with the test error metrics being are  0.68, NRMSE  2.39, NMAE  0.65. We observe that these metrics closely follow those for the temporal data-splitting strategy in section 3.2.1, and the residual analyses are also similar. This similarity is also reflected in the feature importances of 0.26, 0.18, 0.16, 0.13, 0.13, 0.07, 0.04, 0.02, and 0.01 (WD, AGRI, URBAN, CC, SW, ET, WSPA, P, WSPA/EA). The test error metrics corresponding to the AMA/INA regions are summarized in Table 1, which suggests that leaving out temporal samples slightly improves the results over the Harquahala INA.
For the Harquahala INA, 96.34% of the standardized residuals lie within [-2, 2], and the error metrics are slightly better than those in section 3.2.2. Also, 98.39% of the standardized residuals obtained for the entire test data belong to [-2, 2], and hence, the residuals approximately follow a normal distribution. 
[bookmark: _Ref64313985]DISCUSSION
The modeling results and analyses highlight that the best error metrics are obtained using the temporal data-splitting strategy, similar to our earlier findings for Kansas (Majumdar et al., 2020). In this research, we observe that the spatially static land-use predictors (particularly, WD, AGRI, and URBAN) receive higher importance than the spatio-temporal predictors, ET, P, WSPA, and WSPA/EA. Even though the watershed water stress metrics (WSPA and WSPA/EA) are considered less important, these act as additional proxies for surface water availability (Smith & Majumdar, 2020), thus removing these predictors reduce the model performance. 
The sensitivity analyses carried out in section 3.1 provide additional insights into the choice of scale and .  We see that for the temporal and spatio-temporal data splitting strategies, the variation of the test  with  is low, and scale is primarily responsible for changing the model performance. This is because the high-resolution predictors (AGRI, URBAN, SW) are smoothed out at higher scales, and the variability of the in-situ groundwater withdrawals is also reduced.  Since we have less variability of the predictor variables at higher scales (also fewer pixels),  , which essentially is the window size in pixels, will not significantly affect the model performance. As a result, when we spatially extrapolate the model estimates to the entire state of Arizona at higher scales, we tend to not predict withdrawals in smaller regions exhibiting substantial agricultural activities where the actual pumpage is unknown or unreported (i.e., areas having NA values in Figure 4 (a)). This is because agricultural land use is occurring at a much finer scale than the scale of the model. However, at lower scales (< 3 km), the model performance drops because of the coarseness of the spatio-temporal predictors, particularly precipitation (PRISM), and because variation in the groundwater withdrawals is smoother, thus more predictable, at coarser scales.  Despite these challenges, high-resolution predictions are crucial for improved groundwater management. Because of this and the consistently high metrics across our three validation approaches, we consider a 2 km scale to be the most appropriate for our model. This model allows us to extend the model predictions over Arizona (Figure 4 (b)) and perform a visual analysis of the unreported areas lying outside the AMA/INA region. In addition, we can appropriately relate land subsidence to groundwater withdrawals, as discussed below.   
Relating Land Subsidence to Groundwater Withdrawals
Groundwater overdraft-induced land subsidence has been widely reported across Southern and South-Central Arizona since the 1940s (Conway, 2016). Excessive groundwater pumping from the alluvial aquifers in these regions containing geomechanically weak clay layers acts as the primary driver of land subsidence. Subsidence is also a function of aquifer confinement, as deformation is the principal mode of storage loss in unconsolidated, confined aquifers (Smith & Majumdar, 2020). 
Figure 10 (a) and (b) compares our predictions of groundwater withdrawals with InSAR-estimated deformation. Both show totals from 2010-2020, the test period of our model. While there is some visual agreement between the two datasets, many regions with significant pumping in Figure 10 (a) show little or no subsidence in Figure 10 (b). The apparent disagreement between these two datasets is a function of the difference in their physical meaning. Subsidence is a representation of groundwater storage loss accommodated by aquifer consolidation, while pumping is not a direct representation of storage loss. Some regions with significant recharge or inflow could have substantial pumping but no storage loss. While the relative portion of groundwater withdrawals that results in storage loss varies by region, Butler, Whittemore, Wilson, and Bohling (2016) showed that in the heavily irrigated High Plains Aquifer of Kansas, groundwater storage loss was on average 7% to 22% of the total withdrawals. 
Subsidence represents a lower bound on the loss of aquifer storage in confined aquifers (Smith et al., 2017) because the loss of confined aquifer storage is accommodated by either loss of pore space (i.e., compaction and subsidence) or expansion of pore-water, the latter of which is often not significant in unconsolidated aquifers (Smith et al., 2017). Since unconfined aquifers lose most of their storage due to drainage of pores (Fetter, 2001), subsidence is typically a much smaller component of aquifer storage loss in unconfined aquifers. Thus, unconfined aquifers with significant groundwater withdrawals typically have lower subsidence relative to confined aquifers where similar withdrawals take place.
We illustrate these principles in Figure 10 (c), where we show the ratio for each groundwater basin (defined by the ADWR) of total subsidence to total withdrawals within the basin. This ratio is an estimate of the fraction of groundwater withdrawals that result in a loss in confined aquifer storage. Note that some basins with subsidence features, notably the Phoenix and Tucson basins (PHX and TUC), have ratios close to zero, indicating the volume of subsidence is small relative to total withdrawals. Conversely, the Wilcox (WIL), McMullen (MMU), Safford (SAF), and Douglas (DIN) basins all have high ratios, ranging from 0.06 to 0.1, or 6% to 10%. These values indicate that the principal aquifers in these basins are confined or partially confined, while those with lower ratios are primarily unconfined. Figure 10 (d) shows that all regions with significant pumping and subsidence have a high thickness of unconsolidated sediments.
A literature review on groundwater conditions of the basins shown in Figure 10 (c) confirms that basins with higher ratios are more likely to be confined. All basins with a ratio of 0.06 or higher are identified from aquifer reports as having confined or partially confined conditions in their main aquifer, and all other basins are reported to have unconfined conditions in their main aquifer (Table 2). If the basins with ratios of 0.06 or higher can be assumed to be primarily confined, as is suggested by the references in Table 2, then we can then estimate that the loss in the storage of these basins as a fraction of total withdrawals is roughly equal to the fraction shown in Table 2. This is an approximation that relies on the assumption that withdrawal patterns have not dramatically changed over the past several decades, as residual compaction from previous withdrawals could also be affecting the subsidence signal (Galloway & Burbey, 2011), and some aquifer storage loss that has occurred may not have resulted in deformation yet. While these factors limit the interpretability of our results to some extent, we find a satisfactory agreement of our results with independent hydrogeologic surveys of confining conditions and the similar relationship of storage loss to withdrawals we found compared with Butler et al. (2016) as validation. Thus, this approach is an effective first-order indicator of confining aquifer conditions, storage loss, and relative recharge or inflow to the aquifer system.
Note that basins with low subsidence values but high withdrawals, such as PHX and TUC, likely have similar or greater storage loss relative to those identified as confined, but that storage loss is primarily accommodated by drainage of pores rather than consolidation of sediments. For this reason, it is more challenging to quantify with InSAR data.
Uncertainty Associated with the Remote Sensing Products
Compared to our earlier work in Kansas (Majumdar et al., 2020), in this study, we selected the SSEBop ET product (Senay et al., 2013) instead of the MODIS (Moderate Resolution Imaging Spectroradiometer) Global Evapotranspiration Project (MOD16) data, because the latter has missing values over urban areas (Reitz, Senay, & Sanford, 2017). Hence, if we used MOD16, we would have left out several training samples predominantly from the Phoenix AMA. Regarding the uncertainty assessment of the SSEBop product, M. Chen, Senay, Singh, and Verdin (2016) found that it performs satisfactorily in estimating ET with an  0.86 calculated against eddy covariance measurements at 42 AmeriFlux tower sites from 2001-2007. More specifically,  0.92 and RMSE  13 mm/month were obtained over croplands which suggests that the SSEBop product can be suitably used for this study. In addition, relative errors of less than 20% were observed across multiple AmeriFlux towers which further justifies the use of this product in our research.   

The PRISM group (Daly et al., 2008) provides an extensive database of precipitation estimates using a network of weather stations. Although PRISM estimates have more errors in higher elevations (Henn, Newman, Livneh, Daly, & Lundquist, 2018), Stillman, Zeng, and Bosilovich (2016) found that for their study area in south-eastern Arizona, PRISM provided the best correlation among the products they compared based on interannual timescales. Moreover, in the US corn belt, Mourtzinis, Rattalino Edreira, Conley, and Grassini (2017) observed that the PRISM precipitation estimates lie within 19% (RMSE) of the weather-station measurements during the growing season. In addition, the higher spatial resolution of this product (4 km) is particularly suited to our study compared to globally available coarser (~10 km) products like the Global Precipitation Mission (GPM) data sets (Huffman, Stocker, Bolvin, Nelkin, & Tan, 2019). Thus, we consider the PRISM precipitation product to be an appropriate choice for our study, considering the robustness, availability, and maintainability of this data set.

In this research, we used the USDA-NASS CDL land-use products available over Arizona from 2008-2020 and computed the mean land use densities as specified in sections 2.2 and 2.3. These CDL maps have sufficiently high crop classification accuracy, e.g., the CDL 2015 data set has an overall crop classification accuracy of 89.6% for the entire state with 262,134 pixels accurately classified with a Kappa coefficient of ~0.87 (USDA-NASS, 2015).  Since USDA-NASS CDL data are specifically tailored to the CONUS region at a sufficiently high spatial resolution (30 m), we considered this to be an appropriate product for our workflow as opposed to the globally available land cover products such as the MODIS land cover (Friedl & Sulla-Menashe, 2019).  However, we do note that CDL data are not available for the entire study period, yet there appear to be some systematic land use changes that affect our model accuracy. The static nature of this predictor thus does introduce some error to our model results.

Like Majumdar et al. (2020), the random forests model can automatically learn from the consistent biases in these products. However, random errors, rather than systematic errors, are more likely to impact the model performance negatively. 
[bookmark: _Ref64313994]CONCLUSIONS
In this research, we successfully advance our earlier work in Kansas (Majumdar et al., 2020) and extend it to the state of Arizona by providing new insights, particularly on model sensitivity. We also relate land subsidence to the predicted groundwater withdrawals and suitably demonstrate the extensibility of our approach at an even higher resolution (2 km vs. 5 km in our previous study), considering the fact that in-situ pumping data are only available over the AMA/INA region.

Here, we develop an improved integrated workflow combining different openly available data sets (remote sensing, modeled, look-up tables, and GIS-based) into a random forests-driven machine learning framework and provide a thorough sensitivity analysis related to target scale and Gaussian filtering of the land-use products. Moreover, we perform a more robust analysis by designing three different data-splitting strategies (temporal, spatial, and spatio-temporal) and observe that the temporal data-splitting technique works best. Additionally, the random forest feature importances and their relation to the spatial scales are discussed. We also developed a new approach that integrates InSAR and groundwater usage data to estimate loss of confined aquifer storage and improve the characterization of aquifer properties and conditions. 

Even with the increasing global push towards sustainable groundwater management practices and water security in general, active monitoring of groundwater withdrawals is still limited to only a few regions worldwide. In this work, we successfully demonstrated the practicability and extensibility of our machine learning-based approach, which could aid water managers in putting such water management efforts in traction.
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