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ABSTRACT
Digital point-occurrence records from the Global Biodiversity Information Facility (GBIF) and other data providers enable a wide range of research in macroecology and biogeography. However, data errors may hamper immediate use. Manual data cleaning is time-consuming and often unfeasible, given that the databases may contain thousands or millions of records. Automated data cleaning pipelines are therefore of high importance. This study examined the extent to which cleaned data from six pipelines using data cleaning tools (e.g., the GBIF web application, different R packages) affect downstream species distribution models. In addition, we assessed how the pipeline data differ from expert data. From 13,889 North American Ephedra observations in GBIF, the pipelines removed 31.7% to 62.7% false-positives, invalid coordinates, and duplicates, leading to data sets that included between 9,484 (GBIF application) and 5,196 records (manual-guided filtering). The expert data consisted of 703 thoroughly handpicked records, comparable to data from field studies. Although differences in the record numbers were relatively large, stacked species distribution models (sSDM) from the pipelines and the expert data were strongly related (mean Pearson's r across the pipelines: 0.9986, versus the expert data: 0.9173). The ever-stronger correlations resulted from occurrence information that became increasingly condensed in the course of the workflow (from individual occurrences to collectivized occurrences in grid cells to predicted probabilities in the sSDMs). In sum, our results suggest that the R package-based pipelines reliably identified invalid coordinates. In contrast, the GBIF-filtered data still contained both spatial and taxonomic errors. However, major drawbacks emerge from the fact that no pipeline fully discovered misidentified specimens without the assistance of expert taxonomic knowledge. We conclude that application-filtered GBIF data will still need additional review to achieve higher spatial data quality. Achieving high-quality taxonomic data will require extra effort, probably by thoroughly analyzing the data for misidentified taxa, supported by experts.
INTRODUCTION
[bookmark: _Hlk80541265]Digitally accessible records from global data-sharing networks like the GBIF provide the foundation for addressing a wide range of biodiversity-related questions in ecology, biogeography, and other disciplines (e.g., Soberon and Peterson 2004, Guralnick et al. 2007, Meyer et al. 2016). The information they represent is a valuable source of knowledge, in which individual researchers and institutions around the world have invested considerable amounts of time and resources (Wieczorek et al. 2012, Baskauf et al. 2016, Guralnick et al. 2018). However, since the circumstances and standards under which these records have been collected and digitized are usually unknown, a potential user must assess whether the data quality provided meets the requirements of the research question (Beck et al. 2013, Sterner and Franz 2017). Consequently, this demands data cleaning tools (hereafter: DC tool) that are able to standardize data and identify and remove errors from the database. Developing appropriate DC tools is thus a long-standing area of development in biodiversity informatics (e.g., Chapman et al. 2000, Kadmon et al. 2004, Araújo and Guisan 2006, Zizka et al. 2020). 
Errors in records may occur mainly along three dimensions: taxonomy, space, and time (Meyer et al. 2016) and may significantly affect common downstream analyses such as species distribution model (SDMs) (e.g., Gueta and Carmel 2016, Tessarolo et al. 2017, Hijmans and Elith 2019, Zizka et al. 2019). In the taxonomic dimension, resolving misspellings (Zermoglio et al. 2016) and reconciling the synonymy of taxonomic names (Alroy 2002, Wortley and Scotland 2004) pose a significant challenge. The related widespread and particularly challenging problem is misidentified specimens, estimated at about 50% for tropical plant specimens (Goodwin et al. 2015) and ranging from 5% to nearly 60% , e.g., in the Zoological Record database (Meier and Dikow 2004). In the spatial dimension, errors in and low precision of coordinates e.g., from rounding of the decimal digits, swapped latitude and longitude, missing coordinates, or coordinates with zero-values are common spatial data-quality problems (e.g., Yesson et al. 2007, Otegui et al. 2013, Topel et al. 2017). In the temporal dimension, older records may be considered of lower quality in terms of geospatial accuracy than those collected more recently (Tessarolo et al. 2017, Zizka et al. 2020). For instance, Stropp et al. (2016) showed that most records of flowering plants collected in Africa before the 1960s were filtered out during data cleaning due to poor data quality. Another issue associated with aging records is that over time the probability increases that populations no longer persist at a given sampling location (Meyer et al. 2016). Even for experts, identifying and cleaning such errors and data quality issues manually is in many cases impracticable, given that data sets may contain thousands to millions of records. Therefore, targeted DC strategies based on well-explained instructions and automated DC tools that produce standardized and reproducible high-quality data, especially for inexperienced users, are in high demand (Zizka et al. 2019). 
Conventional SDMs and related downstream applications of digitally accessible records depend on high-quality data, a number of different DC standards and DC tools have been published recently (e.g., Guisan et al. 2017, Raes and Aguirre-Gutierrez 2018, Araújo et al. 2019). Data scientists and biodiversity informaticians approached the development of DC solutions from several angles: (1) DC tools that solve thematically limited requirements, like retrieving, evaluating, formatting, completing, and organizing data. This type of DC solution was - partly or fully - implemented in the widely used R package Tidyverse (Wickham and Grolemund 2017, Wickham et al. 2019) that was not designed specifically for coordinate records, or specialized packages such as CoordinateClearer (Zizka et al. 2019), rgbif (Chamberlain et al. 2020), and the GBIF occurrence-search application (GBIF.org 2020). (2) Manuals tailored to support creating data for SDMs, and often particular R packages are an integral part of such manuals (e.g., Chapman 2005, Guisan et al. 2017, Hijmans and Elith 2019). Such manuals consist of verbal explanations and coded instructions, which the user can apply (e.g., per the R package dismo). While the newly developed and recently updated methods for automated cleaning of records are promising, their effect on commonly applied species distribution models remains poorly examined (see: Schmidt-Lebuhn et al. 2013, Hijmans et al. 2017, Zizka et al. 2020).  
[bookmark: _Hlk68758667][bookmark: _Hlk68512717]In our study, we investigated the performance of different pipelines that use different DC tools and how these different pipelines affect downstream SDMs employing GBIF data for North American Ephedra as a test case. With presently about nearly 1.9 billion species records worldwide, GBIF is the largest and one of the most frequented public aggregators for biodiversity data, and it is often the primary data source for many researchers (Guralnick et al. 2018, Hobern et al. 2019, Zizka et al. 2020). Thus, we selected the GBIF records as input to the six pipelines. In this context, we address three questions:
1. How do the six pipelines (P1 to P6) differ in their performance?
2. How do differences in pipeline data affect downstream species distribution models and diversity maps (observed versus predicted)?
3. How does the pipeline data differ from expert data (observed and predicted) assuming that the expert data represent the most accurate? Ephedra environmental and geographical range?
We analyzed to what extent the data from the pipelines lead to different species constellations and numbers in the grid cells (counted and measured using Pearson’s correlation coefficient). We visualized the differences in diversity maps created from stacked SDM’s (sSDM). Finally, we discuss how realistic the results from GBIF data and expert data are in terms of reflecting the environmental or geographical extent of the Ephedra species’ ranges.
MATERIAL AND METHODS
[bookmark: _Hlk68788039][bookmark: _Hlk68758421][bookmark: _Hlk56602728]North America Ephedra species (Ephedraceae, Gnetales; Cutler 1939; Stevenson 1993, Table S1.1, Figure 3 A to C), are characteristic components of arid and semi-arid regions of the southwestern USA and Mexico, with a long evolutionary history, and serve as the model taxon for this study. The species share a morphologically reduced, uniform growth habit with mostly leafless, photosynthetic stems (Stevenson 1993). 
THE PIPELINES
The six pipelines aimed to identify the native North American Ephedra species in the GBIF data and validate their coordinates by removing errors that we expected to affect the downstream analyses (See Table 1 for template filters details). A collective pipeline template optimized the aggregator data and ensured comparability across six different pipeline instances. The template’s process chain consisted of three steps, each using one or more DC tools: (1) data retrieval from GBIF, (2) standardization of records, and (3) removal of data errors (Figure 1, Table 1). The selected DC tools (GBIF filter application, written instructions, or R packages) or their most recent updates were released between 2005 and 2020 and are free of charge. In the template setup, we followed the data cleaning recommendations given by the authors of the respective DC tools. Overarching best-practice guidelines for response variables (Araujo et al. 2019) that we adapted to our study served to design the pipeline’s filters. The six pipelines used R code (R Core Team 2013), except for the direct data retrieval from the GBIF web interface. The template’s workflow permitted the DC tools to only partially fulfill the requirements to highlight their differences. 
We downloaded 46,384 worldwide distributed Ephedra records from GBIF on November 18, 2020 (gbif.org 2020). We selected records from Mexico and the USA, ranked as species, derived from field observations and herbarium vouchers (“basis of records” categories). Coordinates containing only NAs or zeros were excluded. To prevent imprecise coordinates from locality descriptions on old herbarium vouchers and digitized map points, we limited the collection years from 1945 (end of the second world war) to the present. We used only validated coordinates with no less than four decimal places to fit 30 arc minutes grid cells for the same reasons. Non-native Ephedra species (Stevenson 1993) were excluded, as were specimens assigned to water bodies, country and province centroids, urban areas, and biodiversity institutions contained coordinates from unlikely localities. We searched for duplicates based on the variables: species, coordinates, and collection date, respectively, and removed them. We created a raw data baseline P0 for comparison from this data. Using the P0, we were able to identify the totality of questionable records and the feasibility degree to which each pipeline could remove questionable records. P0 comprised 13,889 records allocated to North America by GBIF country code and served as control data. 
Pipeline P1 (Table 2) required the web-based GBIF application to manually filter a subset of 9,484 records specifying the criteria that the GBIF application was able to process (Table 2). Upon manual user request, GBIF downloaded the data into the userspace (GBIF 2020a). In pipeline P2 and pipeline P3, the R package rgbif v2.1.0 (Chamberlain et al. 2020) retrieved 6,687 records into the userspace. The dismo v1.2.2 package (Hijmans et al. 2020) provided GBIF access and retrieved 46,384 records for pipeline P4. In P3 and P4, an R package retrieved GBIF records, and one or more R packages or code contributed standardization and error removal functionality (P3: rgbif for data retrieval / CoordinateCleaner, Zizka et al. 2019 / dplyr, Wickham et al. 2019; and P4: dismo for data retrieval / basic R). Like P0, pipelines P5 and P6 used the complete GBIF data set (GBIF 2020). Their DC tools standardized the data and eliminated errors (P5: dplyr package; P6: dplyr package / CoordinateCleaner package). For P6, we used verbal instructions from Chapman (2005; manual-guided filtering), translated to R code to identify and clean data errors (Table 2). Finally, we manually removed two false-positive occurrence points (Figure 2, Marker 2) from the P4, P5, and P6 data sets hidden in the data sets, and we found them challenging to be automatedly recognized. 
DOWNSTREAM ANALYSIS: SPECIES DISTRIBUTION MODELS
After passing the pipelines, we quantified how the cleaned pipeline data sets differed regarding eliminated errors and retained records and how downstream SDMs and sSDMs reflected these differences in the observed and predicted Ephedra ranges. We assessed the eliminated errors (categories and numbers), which included potentially misidentified species and invalid coordinates (NAs or missing values), false-positives like non-native species and implausible localities, and duplicate records (see: Table 1). We analyzed the retained records and errors in the cleaned pipeline data sets, and we explored the retained records and errors (see: Table 2). As control data to evaluate the degree to which each pipeline had removed questionable records served the P0 data and thoroughly prepared expert data (Ickert-Bond 2016). In addition, we used the expert data to compare the SDMs and sSDMs from the downstream analyses against and measure deviations, assuming that the expert data represented the most realistic Ephedra environmental and geographical range (“gold standard”, Araujo et al. 2019). The expert data comprised 704 standardized records of twelve Ephedra species from herbarium vouchers and a few observations from North America. The records contained confirmed taxa, examined coordinates, and detailed locality descriptions comparable to field-collected data.
For the SDMs and sSDMs, we created a polygon grid of 4017 grid cells (resolution: 30 arc minutes, reference system: WGS84) from wrld_simple, comprising Mexico and the USA (Used R packages: maptools, Bivand and Lewin-Koh 2017, raster, Hijmans et al. 2016). We used the grid to extract the grid IDs and the relevant predictor variables for the species' occurrence points in the expert data. We built a presence-absence table from the single species. To calculate the number of co-occurring observed species, we summed-up presences of all species per grid cell. Next, we collated potential predictor variables for the SDMs (using R packages ade4, Bougeard & Dray 2018 and corrplot, Wei et al. 2017). For this, we imported nineteen temperature (bio1 to bio11) and precipitation (bio12 to bio19) from CHELSA (Karger et al. 2017, CHELSA 2020), as well as elevation data as a proxy for landscape heterogeneity (GMTED 2020) and plant-available water data (Zhang et al. 2018). From their habitat description, we assumed the variables being ecologically relevant for the Ephedra species (e.g., Cutler 1939, Stevenson 1993)). We cropped the data to the grid extent and aggregated the environmental data to the grid resolution using the mean function in sp (version 1.4-5, Pebesma and Bivand 2005, Bivand et al. 2013), and we extracted the predictor data for each occurrence point using the package raster (Hijmans et al. 2016).
The PCA was performed on the twelve species. First, we analyzed the number of dimensions explaining variances (using R packages FactoMineR, Husson et al. 2016, and factoextra, Kassambara & Mundt 2017). We identified the contributions of predictor variables to the dimensions (using R packages ade4, Bougeard & Dray 2018 and corrplot, Wei et al. 2017). From the 22 variables, we selected a subset of reasonably uncorrelated variables per species using the cor function (biomod2, Thuiller et al. 2014, Guisan et al. 2017). All variables were below the recommended threshold of 0.7 (Dormann et al. 2013; Table S1.3). We first tested univariate relationships between the predictor variables and the species occurrence on the pipeline and expert data sets. In a second step, we tested variables combinations using the indices AIC (Akaike information criterion), sigma, and log-likelihood, and Tjur’s R2 (Coefficient of Discrimination for binary outcomes; R package performance, Lüdecke et al. 2021) to identify the variables with the highest impact (Appendix: Table S.1.2). Finally, we fitted logistic regression models for the Ephedra occurrences using glm as the model and “binomial” as the distribution family. The threshold value of a high-performance index (0.9, Guisan et al. 2017) was used to evaluate the Receiver Operating Characteristic Curve (ROC) and the area under the curve (AUC) (R packages biomod2 and ROCR, Sing et al. 2005). Using the single-species SDMs of the predicted occurrences from the pipeline and the expert data, we stacked them to sSDMs (Calabrese et al. 2014, Guisan et al. 2017, Biber et al. 2020). The correlations between the observed and the predicted Ephedra occurrences were particularly interesting for answering how strongly the differences between the pipelines and the expert data affected the respective SDMs and sSDMs.
For similarities (or differences) between different datasets, we determined the correlations of the observed data using the numbers of records, occupied grid cells, and co-occurring species. We also determined how the probabilities of co-occurring species from SDMs and sSDMs predictions correlated, using Pearson's correlation coefficient (R package ggpubr, Kassambara& Kassambara 2020). We created map pairs (Examples, see: Figure 4) of the observed and predicted Ephedra distribution for the expert data and for each pipeline to visualize how realistically the models reflected the Ephedra species' range in North America (Appendix: Figure S1.3). 
RESULTS
[bookmark: _Hlk70248859][bookmark: _Hlk70344410][bookmark: _Hlk70412496][bookmark: _Hlk70753986]Data cleaning performances of different pipelines
In P0, 1,979 of 13,889 records (14.2%) were assigned to Mexico, and 11,910 records (85.8%) were assigned to the USA. Since several errors could simultaneously occur in the same record, 5,978 records (43.0%) contained missing coordinates. 4,329 P0 records (31.1%) were older than 1945, and 3,584 (25.8%) were duplicate records. Eight records of three species contained zero latitude and longitude coordinates that placed their occurrence points into the ocean near the West African coast. Three records revealed coordinate errors that we determined by comparing the verbatim locality description with the coordinates. There were few taxonomic false-positives (non-natives) or indeterminates. We identified a total of 55 records (0.4%) of Ephedra species of South American and Eurasian origins and 499 indeterminate records (genus Ephedra L.). (Table 2). After passing through the six different pipelines, the records for the downstream analyses varied considerably and ranged from 9,484 (P1) to 5,196 (P6). The pipelines removed from 4,405 (P1: 31.7%) to 8,693 (P6: 62.6%) records (Table 2). As identified in the error analysis of P0, the main filters in the pipelines were missing coordinates, the year of collection of the specimens in second place, and the duplicate data records in third place. P1 met four out of five and P2 three out of five standardization requirements. Both P1 and P2 still contained infraspecific ranks. The P2 data also contained other "basis of records" categories than specimens and observations (Table 2, Table S1.1). In contrast, P3 to P6 records were fully standardized.
P1 did not explicitly identify spatial errors in the GBIF filter application, but 3,386 of 5,978 records with missing coordinates (35.7%) were removed from other filters as a side effect so that 2,592 records with missing coordinates (27.3%) remained as errors in the P1 dataset. P1 still contained 33 (0.3%) South American and Eurasian species and 296 indeterminate records (3.1%). With two exceptions, the non-native species were documented from botanical gardens (e.g., Atlanta Botanical Garden, Denver Botanical Garden; Figure 2D, locality markers 3, 4, 10, and 11). We manually detected E. nevadensis at the University of Connecticut (Figure 2D, locality marker 2). This species is native to the Southwestern United States. Two – rather unexpected – localities were documented with two records from a shop in Berkeley (E. sinica, Figure 2D, locality markers 8 and 9) and one record from an herbal products shop in Seattle (E. sinica, Figure 2D, locality marker 1). Locality marker 12 referenced a misidentified specimen (E. distachya, Figure 2D) that does not naturally occur in Coahuila, Mexico. The specimen that locality marker marker 13 referenced (E. trifurcata, Figure 2D) might be a misidentification as the species is not naturally occurring in the state of Arizona, USA, or it is a misspelling of E. trifurca. The other pipelines did not contain introduced non-North American species or taxon levels other than species because the native species were already identified by a predefined checklist at the start of the pipeline (details see: Table 2, Table S1.1).
Except for excluding missing values in the coordinates, P2 removed no other spatial errors. P3 to P6 removed between 43.1% and 45.3% records of all spatial error types (e.g., the complete subset of 5,986 missing coordinates records). The CoordinateCleaner package (as DC tool present in P3 and P6) detected other spatial errors. The most critical CoordinateCleaner tests were for the occurrence of records of terrestrial taxa in the sea (298 records), for the urban area (257 records), and the degree to decimal conversion errors (278 records). Fifty-six urban area function-provided records represented valid native species occurrence points. Of the remaining records, 59 records were labeled as human observation from 2014 to 2020 via iNaturalist, and the other records were herbarium vouchers with coordinates but locality-wise undocumented. (DC results per pipeline, see: Table 2). Due to not meeting the sampling size criteria and only having nine records at the end of the data cleaning, we removed Ephedra coryi from all pipelines. 
Post-pipelines, the ade4 package can be regarded as a testing point for missing values in the coordinates. We found that the ade4 package indicates coordinates with missing values as invalid (we intentionally left this error type in the P1 data).
SDMs from expert data
The final number of predictors for the species ranged from four (Ephedra aspera) to ten (Ephedra viridis). The area under the curve (AUC) scored from 0.9355 (Ephedra antisyphilitica) to 0.9990 (Ephedra nevadensis) (AUC mean: 0.9825). The AIC indices decreased to a stable minimum value in the variables combination tests, indicating a reasonably high model performance. Therefore, we considered our models reasonably accurate to describe the distribution of the Ephedra species with the identified explanatory variables (Appendix: Table S1.2).
Observed and predicted distribution, across the pipelines
While the cleaned data sets differed by a maximum of 4,288 (P1 versus P6), the number of grid cells occupied by their records differed by only 26 grid cells. We observed similar occupancy patterns in the distribution maps regardless of the pipeline since most records were assigned to the same grid cells per species. Regardless of the pipeline, we observed highly similar occupancy patterns in the range maps as the vast majority of the records were allocated to the same set of grid cells per species. The number of occupied grid cells in the stacked Ephedra range maps varied between 636 and 610 (P1 versus P6 data, mean Pearson’s r across all pipelines =  0.9956), resulting in highly similar maps of observed Ephedra distribution (Figure 3, L2 and L4). Ephedra californica occurrence points occupied the identical grid cells across all six pipelines; therefore, the Pearson correlation coefficient was 1. In the other eleven Ephedra species, the occupancy of the grid cells varied slightly across the pipelines, depending on the respective pipelines compared. For example, in E. fasciculata, P1 differed from P6 with 49 versus 53 occupied grid cells (92.5% identical occupancy), while the occupancy in P2 and P3 in E. antisyphilitica was again identical (Pearson correlation coefficient: 1). The evaluation of the sSDMs showed that the grid cell occupancy patterns (observed occurrences) continued in the species distribution maps (predicted occurrences). Across the six pipelines, the predicted probability of Ephedra occurrence in the single-species models and the calculated number of species in the respective sSDM cells showed only minor differences (mean Pearson’s r = 0.9986, Figure 3, L5). The high correlation led to Ephedra distribution maps that also showed only minor differences (Figure 4; depicted are the maps of the least-cleaning P1 and the most-cleaning P6 showing only minor differences. The maps from the other pipeline data are close to P6. The control data map from the expert data shows the differences to the pipelines). 
Observed and predicted species distribution, pipelines versus expert data 
Observed species distributions correlated highly among the pipelines (mean Pearson’s r = 0.9173) but differed from the expert data (Pearson’s r = 0.6536; Figure 3, L4, Figure 4). The 704 records of the expert data were allocated to 358 grid cells compared to the pipeline data (610 to 636 grid cells; Figure 3, L2). The highest number of co-occurring species across the pipeline data was six (in ten different species combinations), while four (in four different species combinations) were found in the expert data. Across the pipelines, 294.5 of the average 630.5 grid cells (46.7%) showed occupancy by one species, compared to 265 of 358 grid cells (74.0%) of the expert data. 42.6 of the grid cells showed occupancy by four species (6.7%), compared to the maximum of four species (1.1%) of the expert data. Ten grid cells showed occupancy by the maximum of six species (1.6%) in the pipeline data.
Across the different pipelines, the observed diversity in the maps from the sSDMs showed a large Ephedra diversity center in California, Arizona, and Nevada. A smaller center was inferred for Texas and ran across the Mexican border into the states of Coahuila and Nuevo Léon. In contrast, the diversity patterns of the expert data, although similar in shape, were less distinct (Figure 4). From the pipelines and the expert data, all predictions showed mainly two distinct diversity centers: A large center in Southern California that continued to the North into Arizona and Nevada, and to the South into the Baja California and Sonora, with a predicted Ephedra diversity greater than seven species. A second diversity center emerged across the state of Texas, USA, and continued into the states of Chihuahua, Coahuila, Nuevo Léon, and Tamaulipas, Mexico, with a predicted Ephedra diversity of up to seven species.  
DISCUSSION
We analyzed the performance of six different data cleaning pipelines for digital point-occurrence records and the consequence on species distribution models, a common downstream application in macroecology. These six pipelines can be divided into two groups: P1, and P2 to P6, which differed significantly in the number of accepted species, the errors removed and the remaining records for the analyses (Table 2, Table S1.1). For example, P6 was the pipeline that removed the largest number of records, removed approximately twice as many records as the least-cleaning P1. P1 data differed from the other group by hosting seventeen non-native species in addition to the twelve native species, all of which were removed by the other pipelines. P1 also retained false-positive coordinates (e.g., sea, country capitals and centroids, biodiversity institutions, herbal shops) as well as geographic outliers and duplicates which were removed to different degrees by the pipelines of the other group (Table 2). (Question 1).  
Due to the low complexity of the data cleaning environment, P1 and P2 required only little effort to get their pipelines installed. Both pipelines did not achieve all the standardization and error elimination anticipated in the template design to reduce unwanted effects in the downstream analyses. P1 identified potential shortcomings in the data only in a few cases due to the limited options of the GBIF filter application. In contrast, P3 to P6 were more demanding in the required know-how, mainly when using the R packages and preparing the respective user environments but offered a more substantial functionality (Table 2).  The R packages tested for our purpose – generalists like dplyr and specialists like the CoordinateCleaner, especially in combination – performed the data cleaning well for coordinate errors that rendered records unusable for use in diversity models (missing values, identified by, e.g., dplyr, CoordinateCleaner, and ade4), or possibly problematic coordinates (e.g., occurrences in biodiversity institutes or country centroids, as identified by the CoordinateCleaner).
Accurate distribution data are essential for any SDM and the many comparable downstream analyses (Chapman et al. 2000, Kadmon et al. 2004, Araújo and Guisan 2006, Zizka et al. 2020). Therefore, a main aim of well-designed pipelines is to efficiently and automatedly generate cleaned data tailored to the specific research question (Zizka et al. 2020; Table 1). To answer this question, we mainly focused on comparing the outcomes of different pipelines that used well-known data retrieval or DC tools. The standardization filters served to unify the record structure across the pipelines. Although older herbarium vouchers or observations are as valuable as recent vouchers as they may document both a historical status and biodiversity changes over time (Meyer et al. 2016), the "collection year, older than 1945" filter, for example, was implemented to standardize the data but also to reduce expected general coordinate imprecisions up-front (Meyer et al. 2016, Zizka et al. 2020). However, removing taxonomic and spatial errors was at the core of both the pipeline data for the model-fitting and -building and the respective tools.  
Data cleaning performance differences, affecting down-stream analyses across the pipelines
Removing the non-native species, which consisted of only a few specimens, reduced the number of cleaned records only slightly (per species and overall). The non-native Ephedra species had hardly any noticeable effect in the occupied grid cells as co-occurring species because they were concentrated in a few places and in small numbers of species only (P1, Figure 3, L1 to L3, Figure 4: observed distribution). The low level of differences was confirmed by reasonably high correlation coefficients, which continued to even higher correlation coefficients regarding the predicted probability of species in sSDMs (Figure 3 L1 to L5). The removal of the missing values in the pipelines was important for the down-stream analyses, as the model fitting tool issued error messages, when identifying any in the provided data (R package ade4, Bougeard & Dray 2018). Although, we included the duplicate records filter to identify the number of duplicate records in the data, duplicate records had no effect on the fitted models. (Question 2).
The tested pipelines offer automated data cleaning in a standardized and reproducible way. Pipeline P1 supports all users but produces data which still contains serious taxonomic and spatial errors, while the pipelines P2 to P6 which rather support users with some programming experience (Zizka et al. 2019, Zizka et al. 2020) produce data qualities where a high number of errors were eliminated and which seem suitable for diversity model use (SDMs and sSDMs). 
Significant differences of the expert data and the GBIF data
The pipeline data properties differed noticeably from the expert data, e.g., in the involved species (P1 data: 29 species versus expert data, but also P2 to P6 data: 12 species). It differed in the number of records per species, the number of occupied grid cells after the observations were allocated to gridded range maps (Figure 3, L2), and regarding the number of co-occurring species. (Question 3). 
The aim when creating data for SDMs is to avoid bias and inaccuracies in taxonomic and distribution data. An effective means to overcoming bias and inaccuracies this is to build target data from field studies (Chapman 2005, Araujo et al 2019), a strategy that may also include expert data containing herbarium vouchers that were determined and evaluated with regard to their origin and locality in addition to observed specimens. As an alternative, biodiversity records are accessible in GBIF free of charge, but with limitations in data quality due to a number of known and unknown errors. Both expert and GBIF data each form the data layer (Vetter 1990, Bakshi 2012). The important difference between expert data and GBIF data is, however, that the expert data may be directly linked to the data modeling in the workflow as there are no data errors to be expected, while with the GBIF data an additional data cleaning layer has to be included in the workflow so that the data modeling can be meaningfully linked to the data layer. As a consequence, a user of GBIF data always has to plan additional effort for the data design, which includes the functional structure of the target data that is fit for use, and a pipeline to obtain it (Wirth and Hipp 2000, Zizka et al. 2019).
A major issue: Misidentified specimen that still hide in the data set
Comparing the quantities of the GBIF pipelines’ analysis data and the expert data shows that the expert data is roughly 11.8 %, or about 1/8th of the GBIF data (mean). From this ratio, we may assume that there are still many errors in the pipeline data, thus the visible differences in the maps (Figure 4). This point opens the question of how realistic the GBIF data is.  
No pipeline could identify taxonomic issues such as misidentifications or false-positives like non-native specimens in the data due to lack of information about their distributional status. We used expert know-how to assess the likeliness of taxonomic identities in recorded localities as there presently is no tool that possesses this functionality. Developing such a tool that resolves this issue might be challenging to establish from considering many names, from synonyms to misspellings (Zermoglio et al, 2016). A correction method that has already been introduced is that a data owner changes false positives identified in individual cases directly by notifying the provider. Generally, with the present interfaces to  GBIF, it cannot be avoided that misidentified taxa enter into the databases by, e.g., by citizen scientists. Interfaces preventing taxonomic or spatial errors before entering the aggregator need to be designed.
CONCLUSION
Our results suggest that the data from P1 show more differences from the pipelines P2 to P6 data than within this group. Depending on the pipeline, one-third (P1) to two-thirds (P6) of the GBIF records were identified as unsuitable for downstream biodiversity analyses. Importantly, these differences in the pipeline data did not translate into strong differences in downstream SDMs suggesting a remarkable robustness of these analyses towards data cleaning differences. In all pipelines, the increasingly condensed information from the occurrence data led to ever stronger correlations across the pipelines. 
Three addtional aspects emerged from the study. First, data cleaned by the GBIF web application is in need of further cleaning. Second, the R packages tested were convenient to use and removed incorrect or dubious coordinates as well. Third, it is presently difficult to identify misidentified specimens in the data aggregators. To overcome this difficulty, we suggest setting up processes to identify misidentified specimens or prevent new misidentified specimens from being entered into the data aggregators.

Data Accessibility
P0 data, and pipelines P4 (dismo-retrieved), P5 and P6 data: 46,384 worldwide distributed Ephedra records from GBIF,  https:// doi.org/10.15468/dl.2eg5ab
Pipeline P1 data, filtered by the GBIF web application: 9,484 North America-distributed Ephedra records from GBIF, https:// doi.org/10.15468/dl.r2cg62.
Pipelines P2 and P3 data (rgbif-retrieved): 6,687 North America-distributed Ephedra records from GBIF, https://datadryad.org/stash/share/QspgKk8RRlEXK6grxNgdzde8KmofVOJC4_N6cfIY_bQ
North American Ephedra Expert data, 704 North America-distributed Ephedra records
https://datadryad.org/stash/share/7X7EDIZLIgVLjkyF0XJoqYEvOER9k3q8vDic2CZN2jE
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Tables
[bookmark: _Ref69409316][bookmark: _Ref69409248][bookmark: _Ref50959567][bookmark: _Ref54007684]Table 1: The filters of the pipeline template. Categories: DUP = Duplicate records, FPS = False-positives, REC = Recording Errors, STD = Standardization.
	 
	Filter Categories
	Filter
	Requirement
	Rationale

	
	
	
	
	

	 
	STD
	Country range
	Spatial
	North America: Mexico and the USA

	
	STD
	Infraspecific rank
	Taxonomic
	Required rank: species (Claridge et al. 1997, Reydon 2019), infraspecific ranks (e.g., subspecies, hybrids) to be omitted.

	 
	STD
	Collection years
	Temporal
	1945 to 2020, as older records are more likely to contain erroneous coordinates (Zizka et al. 2020).

	 
	STD
	Basis of record
	Consistency
	Specimen and observations.

	 
	STD
	Occurrence status
	Consistency
	Presence data.

	 
	FPS
	Non-North American-native Ephedra species
	Taxon
	All non-native Ephedra species that are allocated to the North American countries either by mistake or are artificially introduced, e.g., to Botanical Gardens.

	 
	FPS/REC
	Zero or missing coordinates
	Spatial
	Zeroes and missing values may represent records with data entry errors. Missing values will cause error messages in ade4.

	 
	REC
	Longitude and latitude are equal
	Spatial
	Equal longitude and latitude may represent records with data entry errors.

	 
	DUP
	Duplicate records
	Consistency
	Duplicate records that may represent e.g., record copy errors.

	 
	FPS
	Country capitals
	Spatial
	Records that may contain the coordinates of the country capital.

	 
	FPS
	Country centroids
	Spatial
	Records that may contain the centroid coordinates of the country.

	 
	FPS
	GBIF headquarters
	Spatial
	Records that may contain the coordinates of the GBIF headquarters.

	 
	FPS
	Biodiversity institutions
	Spatial
	Records that may contain the coordinates of biodiversity institutions where the herbarium voucher is stored.

	 
	FPS
	Geographic outliers
	Spatial
	Geographic outliers that may represent misidentified specimen.

	 
	REC
	Urban areas
	Spatial
	Records from urban areas that may represent old data or vague locality descriptions.

	 
	REC
	dd.mm to dd.dd conversion errors
	Spatial
	Records with ddmm to dd.dd conversion error (misinterpretation of the degree sign as decimal delimiter).

	 
	REC
	Rasterized collections
	Spatial
	Records with a significant proportion of coordinates that might have a low precision.

	 
	FPS
	"Manual" removal of false-positives
	Consistency
	False-positives that have been overlooked by automatted error-removal, based on the knowledge that they are in the records.
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[bookmark: _Ref69814011]Table 2: Summary table of the pipelines data cleaning performances showing how the flagged records differed across the pipelines. Grey background: the pipeline performed the instructions and removed the flagged records. Since several errors could simultaneously occur in the same record, the removed records did not correspond to the sum of the identified errors. Filtered error categories: DUP = Duplicate records, FPS = False-positives, REC = Recording Errors, STD = Standardization. Other abbreviations: CC (P3/P6 Header) = R package CoordinateCleaner. 
	
	Data retrieved by
	GBIF
	GBIF
	rgbif
	rgbif
	dismo
	GBIF
	GBIF

	
	Data cleaned by
	GBIF (control data)
	GBIF
	rgbif
	rgbif, 
CC
	dismo, 
R code
	dplyr
	dplyr, CC, 
R code

	
	Input: Number of retrieved records
	46,384
	46,384
	6,730
	6,730
	46,384
	46,384
	46,384

	
	Pipeline
	P0
	P1
	P2
	P3
	P4
	P5
	P6

	STD
	In-scope countries: MX, US
	13,889
	9,484
	6.730
	6.730
	13,889
	13,889
	13,889

	STD
	Occurrence status: presence
	default
	default
	default
	default
	default
	default
	default

	STD
	Taxon rank: species
	13,140
	9,041
	6,618
	6,687
	13,140
	13,140
	13,140

	STD
	Infraspecific ranks
	704
	443
	69
	69
	704
	704
	704

	STD
	Collection years: >1944
	9,560
	9,484
	6,687
	6,687
	9,560
	9,560
	9,560

	STD
	Basis of record: observations, specimen
	13,762
	9,484
	6,660
	6,660
	13,762
	13,762
	13,762

	STD
	Other basis of records
	127
	NA
	27
	27
	NA
	127
	127

	STD
	Native Ephedra species, sample size < 50 occ points
	93
	53
	9
	9
	93
	93
	93

	
	North American-native Ephedra species
	13,240
	9,104
	6,678
	6,618
	13,240
	13,240
	13,240

	FPS
	Non-native Ephedra species
	55
	31
	NA
	NA
	55
	55
	55

	REC
	Not identifiable (e.g., genus level, fossil)
	501
	296
	NA
	NA
	501
	501
	501

	REC
	NULL coordinates (Missing values)
	5,978
	2,592
	5,978
	5,986
	5,978
	5,978
	5,986

	FPS
	Zero coordinates
	8
	8
	8
	
	8
	8
	

	[bookmark: _Hlk80544160]REC
	Longitude and latitude are equal
	22
	8
	8
	8
	22
	22
	22

	DUP
	Duplicate records (species,longitude,latitude,year,month,day)
	3,584
	1,086
	1,226
	1,226
	3,584
	3,584
	3,584

	FPS
	Country capitals
	1
	1
	0
	0
	1
	1
	1

	REC
	Country centroids
	23
	9
	8
	8
	23
	23
	23

	REC
	GBIF headquarters
	0
	0
	0
	0
	0
	0
	0

	REC
	Biodiversity institutions
	36
	33
	19
	19
	36
	36
	36

	FPS
	Geographic outliers
	35
	12
	12
	12
	35
	35
	35

	REC
	Sea coordinates
	228
	146
	67
	67
	228
	228
	228

	REC
	Urban areas
	298
	193
	165
	165
	298
	298
	298

	REC
	dd.mm to dd.dd conversion errors
	278
	202
	0
	0
	278
	278
	278

	REC
	Rasterized collections, possibly reduced coordinate precision
	NA
	NA
	NA
	Y
	NA
	NA
	Y

	FPS
	Unidentified false-positives (manually identified and removed)
	NA
	NA
	NA
	NA
	 1
	2
	2

	 
	Output: Number of cleaned records
	13,889
	9,484
	6,687
	5,198
	5,396
	5,395
	5,196
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[bookmark: m_4018958261837316201_m_6822098440198156][bookmark: _Ref71216429][bookmark: _Ref68723715][bookmark: _Ref53991195]Figure 1. Workflow of the pipelines and the downstream analyses. The pipelines’ part comprised the following sections: Data Retrieval, Standardization, and Error Removal. The Downstream Analysis featured the Predictor Variables Extraction, the Model Fitting, the Model Building (SDMs, sSDMs) and Evaluation, and the Correlation Analysis, developed from the pipeline data P1 to P6 and the expert data. R packages used in the course of the workflow are in italics. (a) Observed species distribution from GBIF P1 data. (b) Observed species distribution from expert data. Filter categories: DUP = Duplicate records, FPS = False-positives, REC = Recording Errors
[bookmark: _Ref56505605][image: ] 
[bookmark: _Ref70249344]Figure 2. A-C: North America-native Ephedra specimen (female specimen with seeds). E. antisyphilitica, E. nevadensis, and E. trifurca (left to right).  D: Examples of taxonomic and spatial errors identified in the Ephedra data. Filter categories of the following markers: False-positives. Markers 1, 8, and 9 were specimens from shops in Seattle and Berkeley. Markers 3, 4, 10, and 11 were non-native species from botanical gardens and scientific institutes. Marker 2 pointed to a North America-native species at the University of Connecticut, NY. Markers 5 to 7 showed coordinate errors that the verbatim locality description can only identify. The species at markers 12 and 13 were misidentified, as the documented species do not occur naturally at these localities. The data for the map derived from the P1, post-cleaning. Color coding of the map: P1 observed distribution (see: Figure 4). 

[image: ]
[bookmark: _Ref71217659]Figure 3. Information condensing pyramid of the pipelines and the expert data. The data show an increasingly higher correlation from the bottom to the top of the pyramid, which results from data transformations into an increasingly higher-condensed species occurrence information state. The 358 grid cells into which the expert records were allocated correspond to the correlation of 0.6536 of P1 data and expert data (dashed box). L1 to L5: Condensing levels of the data.
[image: ]
[bookmark: _Ref71219317]Figure 4. Stacked species distribution maps based on cleaned GBIF data from pipelines P1, P6, and expert data. Depicted are the maps of the least-cleaning P1 and the most-cleaning P6 that show only minor differences (the maps from the other pipeline data are close to P6). The control data map from the expert data shows differences to the pipelines). Left: Observed distribution. Occurrence points after passing the pipelines, allocated to grid cells of a stacked range map of all Ephedra species. The expert map shows less occupied grid cells (n = 358) than P1 (n = 636) resulting in a smaller range. Right: Map of the predicted probability of species from sSDMs. The colour keys show highly correlated patterns of each data quality (P1, P6, and expert data: 0 to 12 species, Pearson’s r = 0.9173).

Appendix
Table S1.1: Ephedra species in the pipelines P1 to P6 at the end of the pipelines (record numbers). We retained the North America native species (Stevenson 1993) in the box for the downstream analyses and removed species outside the box, depending on exclusion criteria (Table 1, e.g., from other Geographies (GEO): EAs = Eurasia, SAm = South America). P0 data included all Ephedra records allocated to North America and served as the uncleaned control data to which we compared the other pipelines P1 to P6.
	Taxon
	GEO
	P0
	P1
	P2
	P3
	P4
	P5
	P6

	Ephedra antisyphilitica
	NAm
	612
	375
	211
	185
	187
	187
	184

	Ephedra aspera 
	NAm
	1,994
	1,478
	1,170
	835
	919
	920
	837

	Ephedra californica
	NAm
	1,959
	1,325
	1,045
	846
	854
	854
	846

	Ephedra compacta
	NAm
	183
	152
	128
	117
	119
	119
	117

	Ephedra cutleri
	NAm
	158
	116
	96
	64
	64
	64
	64

	Ephedra fasciculata 
	NAm
	245
	184
	158
	119
	129
	129
	119

	Ephedra funerea
	NAm
	328
	198
	146
	113
	113
	113
	113

	Ephedra nevadensis
	NAm
	1,845
	1,264
	952
	666
	672
	672
	664

	Ephedra pedunculata
	NAm
	211
	103
	75
	66
	70
	70
	66

	Ephedra torreyana
	NAm
	1,210
	811
	571
	435
	445
	445
	435

	Ephedra trifurca
	NAm
	1,658
	1,094
	849
	683
	731
	731
	682

	Ephedra viridis
	NAm
	2,632
	1,857
	1,286
	1,060
	1,083
	1,083
	1,060

	Ephedra coryi 
	NAm
	93
	53
	9
	9
	9
	9
	9

	Ephedra miocenica (fossil) 
	NAm
	2
	
	
	
	
	
	

	Ephedra L. (indeterminates)
	NAm
	499
	296
	
	
	
	
	

	Ephedra hybrid
	NAm
	9
	
	
	
	
	
	

	Ephedra form and variety
	NAm
	196
	147
	
	
	
	
	

	Ephedra altissima
	EAs
	4
	2
	
	
	
	
	

	Ephedra distachya  
	EAs
	4
	3
	
	
	
	
	

	Ephedra equisetina
	EAs
	3
	3
	
	
	
	
	

	Ephedra fedtschenkoae
	EAs
	1
	1
	
	
	
	
	

	Ephedra fragilis
	EAs
	3
	1
	
	
	
	
	

	Ephedra gerardiana 
	EAs
	4
	4
	
	
	
	
	

	Ephedra major 
	EAs
	1
	1
	
	
	
	
	

	Ephedra monosperma
	EAs
	1
	1
	
	
	
	
	

	Ephedra przewalskii
	EAs
	2
	2
	
	
	
	
	

	Ephedra regeliana
	EAs
	1
	1
	
	
	
	
	

	Ephedra sinica
	EAs
	8
	3
	
	
	
	
	

	Ephedra americana
	SAm
	3
	2
	
	
	
	
	

	Ephedra andina
	SAm
	2
	
	
	
	
	
	

	Ephedra chilensis
	SAm
	2
	2
	
	
	
	
	

	Ephedra frustillata
	SAm
	1
	1
	
	
	
	
	

	Ephedra triandra
	SAm
	2
	
	
	
	
	
	

	Ephedra trifurcata
	SAm
	11
	3
	
	
	
	
	

	Ephedra tweedieana 
	SAm
	2
	1
	
	
	
	
	

	Totals
	
	13,889
	9,484
	6,696
	5,198
	5,395
	5,396
	5,196





Table S1.2: Uncorrelated CHELSA environmental variables (CHELSA 2020) and plant-available water (PAWM), used to fit and build the diversity models of the twelve NAm Ephedra species. 
	 
	E. antisyphilitica
	E. aspera
	E. californica
	E. compacta
	E. cutleri
	E. fasciculata
	E. funerea
	E. nevadensis
	E. pedunculata
	E. torreyana
	E. trifurca
	E. viridis
	 

	PAWM
	
	
	 
	
	
	
	 
	
	
	 
	
	 
	plant-available water

	bio2
	 
	
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	Mean diurnal range

	bio4
	
	 
	 
	
	 
	 
	
	 
	
	 
	
	 
	Temperature seasonality

	bio5
	
	
	
	 
	
	
	
	 
	
	
	
	
	Max. temperature of the warmest month (°C)

	bio6
	
	
	
	
	 
	 
	 
	 
	
	
	 
	 
	Min Temperature of Coldest Month (°C)

	bio7
	 
	
	
	
	
	
	 
	
	 
	
	 
	
	Temperature annual range (°C)

	bio8
	
	
	 
	
	
	 
	 
	 
	
	
	 
	 
	Mean temperature of wettest quarter (°C)

	bio10
	
	
	 
	
	 
	 
	
	
	 
	 
	
	 
	Mean Temperature of Warmest Quarter (°C)

	bio11
	 
	 
	 
	 
	
	
	
	
	
	 
	
	
	Mean Temperature of Coldest Quarter (°C)

	bio13
	
	
	 
	
	
	
	 
	
	
	
	 
	 
	Precipitation of wettest month
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Figure S1.3: Observed occurrences and predicted ranges of each North American Ephedra species, from expert data.
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