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Introduction

The importance, in many fields of mathematics, of the inequalities of the type proved by Turán [1]

fn(x)fn+2(x)− [fn+1(x)]2 ≤ 0, n = 0, 1, 2, · · · , (1)

is the well known as Turán type inequalities[2].

Many Turán type inequalities have been investigated in the literature. For example, Joshi and Bissu [3]

presented some two-sided inequalities for the ratio of modified Bessel functions of the first kind in 1991. Recently,

Segura [4] introduced the bounds for ratios of modified Bessel functions associated with Turán type inequalities

in 2011. Baricz [5] recommended Turán type inequalities for q-hypergeometric functions in 2013.

Throughout this paper, let R and N be the sets of the real and integral numbers. The discrete version of

the well-known Cauchy-Schwarz inequality [6, 7]

(

n∑
i=1

aibi)
2 ≤

n∑
i=1

a2i

n∑
i=1

b2i , ai, bi ∈ R, (2)

and its integral representation in the space of continuous real-valued functions C ([a,b], R), i.e. the Cauchy-

Bunyakovsky-Schwarz (CBS) inequality [6, 7]

(

∫ b

a

[u(t)]
1
2 [v(t)]

1
2 dt)2 ≤ (

∫ b

a

u(t)dt)(

∫ b

a

v(t)dt), (3)

plays an important role in the different branches of modern mathematics.
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In 2006, Laforgia and Natalini [8] used the following form of the CBS inequality:

(

∫ b

a

g(t)[f(t)]
m+n

2 dt)2 ≤ (

∫ b

a

g(t)[f(t)]mdt)(

∫ b

a

g(t)[f(t)]ndt), (4)

to establish some new Turán type inequalities involving the special functions [9–12] as gamma, polygamma and

Riemann’s zeta function. Here f and g are the non-negative functions of a real variable and m, n ∈ R, R is the

set of real numbers, such that the involved integrals in (1) exist.

In 2018, Bhandari and Bissu presented a new form of the generalized CBS inequality [13]

(

∫ b

a

[u(t)]η[v(t)]η[r(t)]ηdt)2 ≤ (

∫ b

a

[u(t)]η−l[v(t)]η−m[r(t)]η−ndt)(

∫ b

a

[u(t)]η+l[v(t)]η+m[r(t)]η+ndt), (5)

in which η, l, m, n ∈ R, u, v, and r are real integrable functions such that the involved integrals in (5) exist.

In 2021, the supersine via Gauss hypergeometric series, proposed by author [14], was defined as

2Supersin1(a, b; c;x) =

∞∑
n=0

(a)2n+1(b)2n+1

(c)2n+1

(−1)nx2n+1

(2n+ 1)!

=
Γ(c)

2iΓ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1[(1− xt)−a − (1 + xt)−a]dt,

(6)

where a, b, c, x ∈ R, n ∈ N , and |x| < 1.

Meanwhile, the supercosine via Gauss hypergeometric series, proposed by author [14], was defined by

2Supercos1(a, b; c;x) =

∞∑
n=0

(a)2n(b)2n
(c)2n

(−1)nx2n

(2n)!

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 1Supercos0(a;−;xt)dt,

(7)

where a, b, c, x ∈ R, n ∈ N , and |x| < 1.

The aim of this paper is to study Turán type inequalities for the supersine and supercosine by using a new

form of the generalized CBS inequality.

The structure of the paper is as follows: In Section 2, some of main results about Turán type inequality

for the supersine and supercosine are obtained and proved in detail, In Section 3, we make a summary and

prospect of this paper.

Main results

In this section, we will focus on Turán type inequalities for the supersine and supercosine.

Theorem 1. Let b > |α|, c− b > |β| and |x| ≤ 1. Then Turán type inequality for the supersine is given as

[ 2Supersin1(a, b; c;x)]2 ≤ B(b− α, c− b− β)B(b+ α, c− b+ β)

[B(b, c− b)]2

× 2Supersin1(a− γ, b− α; c− (α+ β);x)

× 2Supersin1(a+ γ, b+ α; c+ (α+ β);x).

(8)

2



Proof. In the beginning, for (6), let u(t) = tb−1, v(t) = (1 − t)c−b−1 and r(t) = (1 − xt)−a − (1 + xt)−a.

Then the form of the supersine is as follows∫ 1

0

u(t)v(t)r(t)dt =

∫ 1

0

tb−1(1− t)c−b−1[(1− xt)−a − (1 + xt)−a]dt

=
2iΓ(b)Γ(c− b)

Γ(c) 2Supersin1(a, b; c;x).

(9)

On the basis of the inequality (5), we can receive

(

∫ 1

0

tη(b−1)(1− t)η(c−b−1)[(1− xt)−a − (1 + xt)−a]ηdt)2

≤
∫ 1

0

t(η−l)(b−1)(1− t)(η−m)(c−b−1)[(1− xt)−a − (1 + xt)−a]η−ndt

×
∫ 1

0

t(η+l)(b−1)(1− t)(η+m)(c−b−1)[(1− xt)−a − (1 + xt)−a]η+ndt.

(10)

Consequently, the following results can be obtained by applying (9) and (10),

[ 2Supersin1(ηa, η(b− 1) + 1; η(c− 2) + 2;x)]2

≤ [Γ{η(c− 2) + 2}]2

[Γ{η(b− 1) + 1}]2[Γ{η(c− b− 1) + 1}]2

× Γ[(η − l)(b− 1) + 1]Γ[(η −m)(c− b− 1) + 1]

Γ[(η − l)(b− 1) + (η −m)(c− b− 1) + 2]

× Γ[(η + l)(b− 1) + 1]Γ[(η +m)(c− b− 1) + 1]

Γ[(η + l)(b− 1) + (η +m)(c− b− 1) + 2]

× 2Supersin1((η − n)a, (η − l)(b− 1) + 1; (η − l)(b− 1) + (η −m)(c− b− 1) + 2;x)

× 2Supersin1((η + n)a, (η + l)(b− 1) + 1; (η + l)(b− 1) + (η +m)(c− b− 1) + 2;x).

(11)

If p1 = η(b−1)+1, p2 = η(c− b−1)+1, p3 = ηa, q1 = l(b−1), q2 = m(c− b−1), and q3 = na in inequality

(11), then Turán type inequality for the supersine can be written as

[ 2Supersin1(p3, p1; p1 + p2;x)]2 ≤ [Γ(p1 + p2)]2

[Γ(p1)]2[Γ(p2)]2
Γ(p1 − q1)Γ(p2 − q2)

Γ[(p1 − q1) + (p2 − q2)]

Γ(p1 + q1)Γ(p2 + q2)

Γ[(p1 + q1) + (p2 + q2)]

× 2Supersin1(p3 − q3, p1 − q1; (p1 − q1) + (p2 − q2);x)

× 2Supersin1(p3 + q3, p1 + q1; (p1 + q1) + (p2 + q2);x).

(12)

Using the relationship between beta and gamma functions

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
, m, n > 0, (13)

Turán type inequality can also be shown in the following form

[ 2Supersin1(p3, p1; p1 + p2;x)]2 ≤ B(p1 − q1, p2 − q2)B(p1 + q1, p2 + q2)

[B(p1, p2)]2

× 2Supersin1(p3 − q3, p1 − q1; (p1 − q1) + (p2 − q2);x)

× 2Supersin1(p3 + q3, p1 + q1; (p1 + q1) + (p2 + q2);x),

(14)
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where p1 > |q1|, p2 > |q2| and |x| ≤ 1.

When η = 1, the inequality (11) reduces to following inequality for the supersine

[ 2Supersin1(a, b; c;x)]2 ≤ [Γ(c)]2

[Γ(b)]2[Γ(c− b)]2

× Γ[b− l(b− 1)]Γ[(c− b)−m(c− b− 1)]

Γ[c− l(b− 1)−m(c− b− 1)]

× Γ[b+ l(b− 1)]Γ[(c− b) +m(c− b− 1)]

Γ[c+ l(b− 1) +m(c− b− 1)]

× 2Supersin1((1− n)a, b− l(b− 1); c− l(b− 1)−m(c− b− 1);x)

× 2Supersin1((1 + n)a, b+ l(b− 1); c+ l(b− 1) +m(c− b− 1);x).

(15)

Suppose l(b − 1) = α, m(c − b − 1) = β, na = γ, b > |α|, c − b > |β| and |x| ≤ 1. Then, through (13) the

inequality (15) transforms to the much nicer version of Turán type inequality for the supersine as follows

[ 2Supersin1(a, b; c;x)]2 ≤ B(b− α, c− b− β)B(b+ α, c− b+ β)

[B(b, c− b)]2

× 2Supersin1(a− γ, b− α; c− (α+ β);x)

× 2Supersin1(a+ γ, b+ α; c+ (α+ β);x).

(16)

Theorem 2. For b > |λ|, c− b > |µ| and |x| ≤ 1, we have Turán type inequality for the supercosine

[ 2Supercos1(a, b; c;x)]2 ≤ B(b− λ, c− b− µ)B(b+ λ, c− b+ µ)

[B(b, c− b)]2

× 2Supercos1(a− ω, b− λ; c− (λ+ µ);x)

× 2Supercos1(a+ ω, b+ λ; c+ (λ+ µ);x).

(17)

Proof . At first, basing on (6), if u(t) = tb−1, v(t) = (1− t)c−b−1, and r(t) = 1Supercos0(a;−;xt), we have

∫ 1

0

u(t)v(t)r(t)dt =

∫ 1

0

tb−1(1− t)c−b−1 1Supercos0(a;−;xt)dt

=
Γ(b)Γ(c− b)

Γ(c) 2Supercos1(a, b; c;x).

(18)

By the generalized CBS inequality, the following inequality for the supercosine can be written as

(

∫ 1

0

tη(b−1)(1− t)η(c−b−1)[ 1Supercos0(a;−;xt)]η)2

≤
∫ 1

0

t(η−l)(b−1)(1− t)(η−m)(c−b−1)[ 1Supercos0(a;−;xt)]η−ndt

×
∫ 1

0

t(η+l)(b−1)(1− t)(η+m)(c−b−1)[ 1Supercos0(a;−;xt)]η+ndt.

(19)
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Thus, the following results can be obtained by applying (18) and (19),

[ 2Supercos1(ηa, η(b− 1) + 1; η(c− 2) + 2;x)]2

≤ [Γ{η(c− 2) + 2}]2

[Γ{η(b− 1) + 1}]2[Γ{η(c− b− 1) + 1}]2

× Γ[(η − l)(b− 1) + 1]Γ[(η −m)(c− b− 1) + 1]

Γ[(η − l)(b− 1) + (η −m)(c− b− 1) + 2]

× Γ[(η + l)(b− 1) + 1]Γ[(η +m)(c− b− 1) + 1]

Γ[(η + l)(b− 1) + (η +m)(c− b− 1) + 2]

× 2Supercos1((η − n)a, (η − l)(b− 1) + 1; (η − l)(b− 1) + (η −m)(c− b− 1) + 2;x)

× 2Supercos1((η + n)a, (η + l)(b− 1) + 1; (η + l)(b− 1) + (η +m)(c− b− 1) + 2;x).

(20)

Next, let p1 = η(b− 1) + 1, p2 = η(c− b− 1) + 1, p3 = ηa, q1 = l(b− 1), q2 = m(c− b− 1), and q3 = na in

inequality (20). Then we can receive Turán type inequality for the supercosine as follows:

[ 2Supercos1(p3, p1; p1 + p2;x)]2 ≤ [Γ(p1 + p2)]2

[Γ(p1)]2[Γ(p2)]2
Γ(p1 − q1)Γ(p2 − q2)

Γ[(p1 − q1) + (p2 − q2)]

Γ(p1 + q1)Γ(p2 + q2)

Γ[(p1 + q1) + (p2 + q2)]

× 2Supercos1(p3 − q3, p1 − q1; (p1 − q1) + (p2 − q2);x)

× 2Supercos1(p3 + q3, p1 + q1; (p1 + q1) + (p2 + q2);x).

(21)

On the other hand, for p1 > |q1|, p2 > |q2| and |x| ≤ 1, Turán type inequality for the supercosine can also

be expressed in the following form by applying (13),

[ 2Supercos1(p3, p1; p1 + p2;x)]2 ≤ B(p1 − q1, p2 − q2)B(p1 + q1, p2 + q2)

[B(p1, p2)]2

× 2Supercos1(p3 − q3, p1 − q1; (p1 − q1) + (p2 − q2);x)

× 2Supercos1(p3 + q3, p1 + q1; (p1 + q1) + (p2 + q2);x).

(22)

After that, suppose η = 1. Then inequality (20) can be simplified to the following inequality

[ 2Supercos1(a, b; c;x)]2 ≤ [Γ(c)]2

[Γ(b)]2[Γ(c− b)]2

× Γ[b− l(b− 1)]Γ[(c− b)−m(c− b− 1)]

Γ[c− l(b− 1)−m(c− b− 1)]

× Γ[b+ l(b− 1)]Γ[(c− b) +m(c− b− 1)]

Γ[c+ l(b− 1) +m(c− b− 1)]

× 2Supercos1((1− n)a, b− l(b− 1); c− l(b− 1)−m(c− b− 1);x)

× 2Supercos1((1 + n)a, b+ l(b− 1); c+ l(b− 1) +m(c− b− 1);x).

(23)

Finally, for l(b − 1) = λ, m(c − b − 1) = µ, na = ω, b > |λ|, c − b > |µ| and |x| ≤ 1, by using (13) Turán

type inequality (23) for the supercosine can be further simplified to

[ 2Supercos1(a, b; c;x)]2 ≤ B(b− λ, c− b− µ)B(b+ λ, c− b+ µ)

[B(b, c− b)]2

× 2Supercos1(a− ω, b− λ; c− (λ+ µ);x)

× 2Supercos1(a+ ω, b+ λ; c+ (λ+ µ);x).

(24)
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Conclusion

In our work we had addressed the theorems about Turán type inequalities for the supersine and supercosine

and proved it by using a new form of the generalized CBS inequality. This paper will strongly promote the

rapid development of the field of special functions.
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