AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP
Miguel Hernandez
Miguel Hernandez
Full Professor
Joined Oct 2021 · Spain

Public Documents 2
Using decomposition of the nonlinear operator for solving non-differentiable problems
Eva G. Villalba
Miguel Hernandez

Eva G. Villalba

and 3 more

September 23, 2022
From decomposition method for operators, we consider Newton-like iterative processes for approximating solutions of nonlinear operators in Banach spaces. These iterative processes maintain the quadratic convergence of Newton's method. Since the operator decomposition method has its highest degree of application in non-differentiable situations, we construct Newton-type methods using symmetric divided differences, which allow us to improve the accessibility of the methods. Experimentally, by studying the basins of attraction of these methods, observe an improvement in the accessibility of derivative-free iterative processes that are normally used in these non-differentiable situations, such as the classic Steffensen's method. In addition, we study both the local and semi-local convergence of the Newton-type methods considered.
About a fixed-point-type transformation to solve quadratic matrix equations using the...
Natalia Romero
Miguel Hernandez

Natalia Romero

and 1 more

October 02, 2021
In this paper, we study the simplest quadratic matrix equation: $\mathcal{Q}(X)=X^2+BX+C=0$. We transform this equation into an equivalent fixed-point equation and based on it we construct the Krasnoselskij method. From this transformation, we can obtain iterative schemes more accurate than successive approximation method. Moreover, under suitable conditions, we establish different results for the existence and localization of a solution for this equation with the Krasnoselskij method. Finally, we see numerically that the predictor-corrector iterative scheme with the Krasnoselskij method as a predictor and the Newton method as corrector method, can improves the numerical application of the Newton method when approximating a solution of the quadratic matrix equation.
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy