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Abstract

This paper develops a data-driven autonomous method for detection of fatigue

damage and classification of the associated damage risk in mechanical structures,

based on ultrasonic signal energy. The underlying concept is built upon atten-

uation of the signal and stability of the attenuation process. The attenuation

provides pertinent information for damage quantification, whereas the stability

represents resistance towards the fatigue damage growth. The proposed neu-

ral network (NN) model has been trained using the scaled conjugate-gradient

back-propagation method. The NN model is capable of damage detection and

damage classification into five classes of increasing risk. The Daubechies wavelet

transform has been used to reduce the noisy pattern of the ultrasonic signal en-

ergy by using the associated approximation coefficients. The results show that

the proposed method of approximation signal energy can detect and classify the

damage with an accuracy of up to ∼ 98.5%.

Keywords: Fatigue damage detection, Risk classification, Signal energy,

Daubechies wavelet transform, Neural networks
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1. Introduction

Structural integrity of large-scale engineering systems (e.g, power plants,

chemical processing plants, and transportation systems) deteriorates over time

due to various types of degradation, which may cause irreversible damage in

critical structures. According to Farrar and Wonden [1], the damage is the cu-5

mulative effect of changes that, upon initiation in a system, potentially degrade

the system performance; this damage may lead to a failure unless appropriate

timely actions are taken. Such damage in structural materials can evolve either

at a micro-scale level from inherent local and global defects (e.g., voids and

inclusions), or at a macro-scale level (e.g., corrosion and cracks). Of all types10

of structural damage, perhaps the most critical [2] is the fatigue damage that

is caused by fluctuating stresses, which can be well below the respective yield

points. It is well known [2, 3] that ∼ 90% of the structural failures occur due to

fatigue; in general, fatigue failures evolve through three stages: defect, damage,

and fracture.15

Two essential factors for mitigation of fatigue damage are damage-tolerant

design and nondestructive inspection. An example of damage tolerance is the

ability to resist the onset of fracture in material from pre-existent flaws. The

methodology of the damage tolerance is vital especially for components whose

failure could lead to a catastrophic loss of life or property. On the other hand,20

nondestructive inspections estimate the service life and/or inspection intervals

under defined loading conditions and service schedule and type. Nondestruc-

tive inspection evaluates structural integrity by detecting damaged components

that must be repaired or replaced. Because of the limitation of using inspec-

tion techniques and the difficulties in locating/detecting internal defects, the25

damage-tolerant design provides additional protection against premature frac-

ture by incorporating the available information on structural design and mate-

rial properties such that subcritical crack growth can be controlled and the final

fracture can be avoided. Therefore, it is important to incorporate methods of

nondestructive inspection and damage tolerance in the maintenance process to30
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ensure the operational reliability of machinery components.[4, 5]

The nondestructive evaluation (NDE) techniques that are widely used in

practice are visual testing, ultrasonic testing, eddy current, magnetic particle,

radiography, and dye penetrant [6]. In this paper, two NDE techniques have

been used to study fatigue crack detection and growth. The first one is visual35

testing which is the most common technique for detecting surface damage, par-

ticularly when employed with lighting aids and magnification. The second one

is ultrasonic testing which uses high-frequency sound waves to penetrate deep

inside the structure to detect internal flaws and surface cracks.

Investigation of the reasons for damage resistance is very important for im-40

proving the damage-tolerant strategy. There is a large volume of open-source

literature describing the role of the crack-tip plastic zone as one of the causes

for material resistance against the crack driving force. During the crack prop-

agation in polycrystalline alloys (e.g. aluminum), locally plastic deformation

occurs around the area of a stressed crack tip. Thus, the fatigue damage of a45

cracked structure is significantly influenced by the size and shape of the plasti-

cally deformed zone. It is well known that the toughness of the material plays

a major role in the plastic zone size, where the plastic zone size at the crack tip

increases as the toughness of the material increases [7, 8].

The crack propagation is significantly influenced by the plasticity-induced50

crack closure mechanism. For the plane stress case, the volume elements in the

plastic zone are extended and primarily balanced by an out-of-the-plane flow of

the material such that, the thickness of the plastic zone is reduced. Generally,

the plasticity-induced crack closure under plane stress case can be described as a

result of an additional material layer behind the crack tip, which can be viewed55

as a wedge that is inserted in the crack path, where it decreases the deformation

of the cyclic plastic at the crack tip and consequently the fatigue crack growth

rate [9, 10].

This paper introduces a novel methodology for the damage-tolerant design

that largely relies on the detection of the fatigue damage and classification of60

the damage risk. This methodology consists of two different approaches. The
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first approach relies on the responses of ultrasonic testing (UT) signals, which

estimates the energy of each UT signal to provide vital information about the

crack onset and the crack size. The signal attenuation leads to crack detection

because part of the signal is reflected due to the creation of the new crack sur-65

faces. On the other hand, the stability of the attenuated ultrasonic signal refers

to the resistance of the crack growth. The size of fatigue damage is assumed

to be small when the signal attenuation is small and the stability period of the

signal attenuation is long. The reason for this long period is the resistance of the

crack growth, where the attenuated signals that are received during this period70

are similar. Therefore, the phenomenon of crack propagation can be illustrated

using the energy of UT signals. This paper proves that as fatigue damage pro-

gresses, the signal attenuation becomes higher and the stability period of the

attenuation decreases.The second approach makes use of a neural network to

build an automated system that can detect the onset of fatigue damage and75

classify the risk based on the amount of the signal energy and the transition of

this amount ( the period of the signal stability).

In recent years, considerable developments in the field of computational

power and the development of powerful statistical learning algorithms have led

to a renewed interest in machine learning (ML) techniques in a variety of en-80

gineering applications. One potential advantage of using ML techniques is to

predict the interdependencies and relationships of complex problems which are

very difficult to apply using conventional modeling techniques. Many inde-

pendent studies have shown the importance of ML techniques to identify and

classify structural crack severity.Ljubov and Helle [11] used a deep learning neu-85

ral network and the random forest method to detect the depth or location of

cracks. Fang et al. [12] found that the neural network using frequency response

functions (FRFs) as input data can evaluate damage conditions with very good

accuracy in the cantilever. Alqahtani and Ray [13] employed convolutional neu-

ral networks (CNN) for crack damage detection in polycrystalline alloys, their90

CNN model successfully detects and classifies the severity of the damage into

three classes. Rageh [14] developed a framework of automated damage detection
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to identify stiffness degradation that results from the fatigue cracks propagation

in stringer-to-floor beam connection of the riveted steel railway bridges. Pandey

and Barai [3] applied different ANN architectures to identifying damage in a 21-95

bar bridge truss. Wu et al. [15] investigated the use of a neural network (NN)

to identify member damage in a 3-story building frame. Zapico [16] studied

the damage assessment of steel structures using the ANN method. Most of the

researches has shown that NNs provide a good assessment for damage identi-

fication, generally when the generated data are simulated numerically and are100

error-free.

The major contributions of this paper are delineated as follows:-

1. Fatigue damage detection & classification: This research topic has been

investigated by using NDE methods such as those based on ultrasonic test-

ing (UT) and optical metrology (OP), where the ultrasonic signal energy105

has been used to classify the risk of the damage into five classes, based on

the signal attenuation and the stability of the signal attenuation.

2. Performance enhancement by NN-based pattern classification: The perfor-

mance of the signal energy-based model has been improved by applying

the wavelet transform technique of Daubechies [17], where the approxi-110

mation coefficients of the signal energy are used as an input data for the

model instead of the original signal energy data.

The paper is organized into five sections. Section 2 describes the laboratory

apparatus to validate the NDT in real time. Section 3 illustrates the methodol-

ogy adopted in this paper, including an overview of discrete wavelet transform115

and neural networks, which consists of the following four subsections: the con-

cept of the signal energy, an overview of discrete wavelet transform, a description

of the proposed classification methodology for damage-tolerant design, and an

overview of neural networks. Section 4 discusses the outputs of the proposed

damage-tolerant model. Section 5 summarizes and concludes the paper with120

recommendations for future research.
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2. Description of the Experimental Apparatus

This section describes the laboratory apparatus, as depicted in Figure 1,

which is built upon a computer-instrumented and computer-controlled fatigue

testing machine1, equipped with ultrasonic testing (UT) probes2, and a confo-125

cal microscope3, The objective of this investigation is to infer conclusions from

a synergistic combination of the heterogeneous measurement data, generated

from ultrasonic sensors and optical images (of the Alicona confocal microscope)

to improve the performance of the damage-tolerant design of mechanical struc-

tures. It is well known that a large part of the service life of ductile alloy130

structures under medium to high-cycle fatigue is consumed in crack initiation

stage [18]. Therefore, detecting the crack initiation helps to maintain the per-

formance of the structure and avoid the economic consequences of the structure

failure, where increasing the reliability of the structure and decreasing the main-

tenance cost is the overriding goal.

Figure 1: Picture of the experimental apparatus

135

1Manufacturer: MTS Systems Corporation, Berlin, NJ, USA
2Manufacturer: OLYMPUS, Shinjuku, Tokyo, Japan
3Manufacturer: Alicona Imaging GmbH, Dr.-Auner-Strasse 21a, 8074 Raaba/Graz, Austria
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All tested experiments were conducted in the laboratory environment at

room temperature to detect the initiation of small cracks, and to study the

growth behavior of the crack (e.g., crack size). All tests were performed on

specimens of 7075-T6 aluminum alloy.140

In the reported work, 21 experiments have been conducted to build an au-

tomated monitoring system for the fatigue damage properties of polycrystalline

materials. The dimensions of these specimens are 3 mm thick, 50 mm wide

with (1 mm×3.5 mm) slot cut at the edge. Figure 1 presents an experimental145

apparatus for the NDT evaluation which contains two different sensors that are

combined for information fusion to detect the damage initiation and to evaluate

the risk of the damaged structure.

The computer-controlled and computer-instrumented fatigue-testing machine

consists of the actuator, load cell, hydraulic system, and controller. Using this150

system, a specimen can be examined either under low-cycle or high-cycle fatigue

tests at variable amplitude and frequency of random loads. All experiments were

performed on tension-tension load cycles at 60 Hz. The target set-point load is

8000 N and the amplitude load is (+3500 N & -3500 N).

2.1. Ultrasonic testing:155

High-frequency acoustic pulse (15 MHz ultrasonic waves) is injected into

the specimen by a piezo-electric transducer called transmitter and received by

another piezo-electric transducer called the receiver which is located on the

other side of the transmitter. The strength of the signal is measured after it

has propagated through the material. The strength of the signal is influenced160

by some material features (e.g., the grain boundaries, voids, and inclusions)

that exist on the path of the propagated signals. However, the effect of the

preexisting flaws such as voids, inclusions, or grain boundaries on the signal

strength is stable. On the other hand, the strength of the signal is significantly

affected (decreasing) by the fatigue crack creation because part of the signals165

are reflected and are not propagated to the receiver.
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2.2. Optical metrology device:

The optical metrology device (Infinite-Focus, Alicona) provides 3D surface

measurement. In the Focus-Variation system of Alicona, the topographical and

color information are created from the variation of focus where the small depth170

of focus of an optical system is combined with vertical scanning. The vertical

resolution of the Infinite-Focus system reaches 20nm. The size of the generated

image using Alicona is 0.4 mm by 0.4 mm, as shown in figure 2, and each image

has 4,161,600 pixels. Thus, Alicona can detect micro-cracks, that are considered

to be the crack initiation regime.In this investigation, Alicona measurements175

were taken asynchronously with UT data to provide ground truth for UT signal

weakness. In the reported work, Alicona was used to provide evidence for the

fatigue damage initiation, as shown in figure 3. [19] [20]

Figure 2: 3D surface generated using Infinite-Focus deceive.

Figure 3: Damage detection using normalized signal energy data synchronized with evidence

from Alicona.
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3. Methodology

This section presents the methodology for fatigue damage detection and180

evaluation, improving the detection performance, classifying the damage risk,

and building an automated model for damage detection and classification using

a neural network.

3.1. Signal energy

In industry, ultrasonic testing is one of the most extensively used non-185

destructive methods for determining the minor and internal damages and defects

of mechanical structures. The response of UT signals usually leads to finding

the location of the damage and the severity of that damage, where the atten-

uation of the measured signals provides evidence for the detection of damage

(e.g., cracks). Figure 4 presents typical signal responses at the receiver end of190

an ultrasonic transducer for undamaged structure and damaged structure with

the severity of each damage, respectively.

In signal processing applications, signal energy is widely used for quantifying

signal strength. In this study, a decreasing trend in the signal strength serves to

detect the onset of fatigue damage. It follows from Figure 4 that, by applying

Eq. (1) on UT signals, the signal energy, E(t), of a cracked specimen is seen to

be less than that of a crack-free specimen.

E(t) =

∫ ∞
−∞
| x(t) |2 dt (1)

After estimating the signal energy of UT signals using Eq. (1), the outputs

should be standardized because the response the signal energy for all tested

specimens is similar, but the values of the energy may differ from one to another

as shown in Figure 5. The standardization is called a z-score, and it transforms

UT signal energy to have a mean of zero and a standard deviation of one. UT

signal energy can be standardized by using the following equation:

zn =
xn − x̄

S
(2)
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(a) Typical measured UT signal, healthy status of UT signal, all measured

signals are detected .

(b) Typical measured UT signal, Damage class-1 status of UT signal, most of

measured signals are detected, and few measured signals are reflected .

(c) Typical measured UT signal, Damage class-2 status of UT signal, some of

measured signals are detected, and some of the measured signals are reflected.

(d) Typical measured UT signal, Damage class-3 status of UT signal, few of

measured signals are detected, and most of the measured signals are reflected.

(e) Typical measured UT signal, Damage class-4 status of UT signal, all

measured signals are reflected .

Figure 4: Comparison between different statuses of typical UT signals.
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where, x̄ is the mean and S is the standard deviation.

195

(a) Smooth signal energy of experiment A.

(b) Smooth signal energy of experiment B.

(c) Smooth signal energy of experiment C.

Figure 5: The classification methodology of three experiments data,experiment A presents

five classes, experiment B shows three classes, and experiment C contains four classes.

3.2. Discrete Wavelet Transform:

As shown in Figure 3,

the measurements of signals energy present in nonstationary forms make the

estimation of the damage onset more difficult. However, the Bulk of the per-

tinent information in measurements exists in nonstationary forms and also has200

irregular wave structures. Therefore, it is preferable to decompose the signals
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into building blocks that are well localized at different levels of scales and time-

translations. In this task, the energy signals have been decomposed by digital

wavelet transform (DWT) [21, 22] that is suitable for analyzing nonstationary

measurements.205

Multiresolution analysis (MRA) [21, 22], which belongs to the class of DWT,

is suitable for decomposing UT signals into the approximation and the detail

parts of the signal. The approximation part characterizes the low-frequency

components of the signal, while the detail part represents the high-frequency

components of the signal. Each approximation of the signal is further orthogo-210

nally decomposed into a hierarchical set of details and approximations.

Figure 6 presents an example for the process of DWT, where the Haar low

pass filter H0 operation is represented by the following matrix

Figure 6: The block diagram of the two-channel analysis filter banks

H
(
0
n) =

1

2



1 1

1 1

..

..

1 1

1 1


∈ Rn×n (3)
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and the Haar high pass filter H1 operation can be represented as

H
(
1
n) =

1

2



1 −1

1 −1

..

1 −1

1 −1


∈ Rn×n (4)

215

The down-sampling operation is represented as the following matrix, this

step picks out the odd entries (i.e., first, third, etc.) of the matrices.

d(n) =



1 0 0 . . 0 0

0 0 1 . . 0 0

. . . . .

. . . . .

0 0 0 . . 1 0


∈ Rn

2 ×n (5)

The combined mathematical action of low pass filtering, followed by down-

sampling, is represented as

O
(
0
n) = d(n)H

(
0
n) =



1 1

1 1

..

..

1 1

1 1


∈ Rn

2 ×n (6)

Similarly, the combined mathematical action of high pass filtering, followed
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by down-sampling, is represented as

O
(
1
n) = d(n)H

(
1
n) =



1 1

1 −1

..

..

1 −1

1 −1


∈ Rn

2 ×n (7)

In summary, the filter bank is represented as

Approximation part: y
(
0
n) = O

(
0
n)x ∈ Rn (8)

Detail part: y
(
1
n) = O

(
1
n)x ∈ Rn (9)

In the reported work, the main objective of using DWT is smoothing the

signal energy such that the nonstationary form is eliminated. The low-pass fil-

tering serves the purpose of data smoothing by averaging adjacent entries of220

its input, and the difference between adjacent entries of its input is used in

high-pass filtering of the signal. The process of DWT is first applied to the

full-length vector of original data. Then, the outputs are smoothed and deci-

mated by half such that the output vector length is half the input vector length.

This process is continued until low-frequency smoothed data are reached as de-225

sired. Hence, each process of DWT provides a higher resolution of the data

while smoothing the remaining data. Figure 7 illustrates how the smoothing

data using DWT provides a better illustration for damage detection and risk

classification.[23],[24],[25],[26],[27],[13].

230
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(a) Typical measured UT signal energy of one experiment.

(b) Corresponding smooth signal energy data by DWT analysis.

Figure 7: Comparison between typical signal energy and corresponding level 5 approximation

coefficients of UT signals, the red dashed line shows the moment of the crack onset

3.3. Classification

All mechanical structures contain defects at the nano/microscale level, which

are usually hidden and may have been produced during the manufacturing pro-

cess. Identification of a fatigue failure at an initial stage is a challenging task

and hence prediction of onset of the next stage is uncertain and may often be235

ambiguous. These defects may differ from one component to another; hence the

damage initiation and its growth vary from a component to another. Figures 5

(a),(b)& (c) present the signal energy response for three individual specimens,

where the responses of signal energy during the fatigue damage growth for all

specimens are not the same. For example, the first attenuation of signal energy240

response of Figure 5(b)& (c) is severe, which means the size of the first detected

damage is large. On the other hand, the size of the first detected damage of

Figure 5(a) is small, because the attenuation of the energy response is small

as compared to those in Figure 5(b)& (c). Furthermore, the stability of signal
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energy responses may also differ from one specimen to another. For example,245

figure 5(b) presents three stability regions and classes of signal energy responses,

while Figures 5(c)&(a) show four and five classes, respectively.

The signal energy is estimated using equation (1). The best case of damage

risk evaluation in this study is presented in Figure 8, where the highest signal

energy characterizes the healthy condition class of the tested specimen. The250

healthy condition (i.e., crack-free component) is defined when the whole signal

is received by the receiver transducer as shown in Figure 4(a). The next highest

is the first damage class, where most of the signal is detected, but a small part of

the signal is reflected due to the damage initiation, as illustrated in Figure 4(b).

Below this comes the second damage class, where part of the signal is detected,255

while the other part is reflected because of the damage extension, as shown in

Figure 4(c). The next class is the third damage class, where a substantial part

of the signal is not transmitted, and just a few signals are detected, as shown in

Figure 4(d). The last part represents the fourth class where all UT signals are

practically reflected black. The length of each class depends on the stability of260

the attenuation which could refer to the constancy of the damage extension.

As shown in Figure 8, the classification strategy in this paper is defined based

on the attenuation and the stability of the signal energy responses where more

classes imply more resistance to the fatigue damage growth, and the higher the

risk of damage, the lower the UT signal energy responses. The best damage265

classification case of this investigation is where there are five classes, as shown

in Figure 5. Figure 9 presents the shape of the damage on the notch surface of

the specimen for each damage class.
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(a) Clarification of the damage growth and damage stability using smooth

energy signal data

(b) Smooth energy signal data classification of experiment A, the first area

from left side represents no risk (i.e., crack free), the second area represents

low risk, the third area represents medium risk, the fourth area represents high

risk, and the last area represents end-of-service-life (i.e., unusable or broken).

Figure 8: The classification strategy for the damage risk assessment of experiment A, the

attenuation of the signal and its stability determine the classification strategy
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Figure 9: Illustration of the fatigue damage size on the notch of the specimen for each class

using Alicona.

3.4. Artificial Neural Network

The artificial Neural network (ANN) is a computational method that at-270

tempts to mimic some of the functions of a human brain. The neural network is

composed of a set of nodes, while the human brain is composed of connections

of neurons. Hence, ANN imitates the most vital mechanism of the brain, which

is the neural association. The structure of ANN is significantly affected by the

connection process between nodes, and different types of connections can build275

different types of ANN. Feed-forward neural network is considered to be one of

the common types of ANN [28].

3.4.1. Feed-forward Neural Network

The sequence of processes in this neural network is in one direction such

that the ANN process starts from input nodes and ends at the output nodes.280

The neural network can be altered from a simple architecture to a very complex

architecture. The single-layer neural network is the simplest neural network ar-

chitecture. Figure 10 presents a single-layer neural network that consists of an

input layer and a hidden layer. The second type of neural network architecture

is known as a shallow or Vanilla multi-layer neural network, and it consists of an285

input layer, one hidden layer, and an output layer. However, when the hidden

18



Figure 10: Three different types of neural network architecture.

layers become more than one layer, the neural network architecture is often de-

fined as a deep neural network (DNN). As shown in the figure, the structure of

the neural network consists of more than one hidden layer, input layer, hidden

layers, and output layer. The reason for defining the hidden layers by that name290

is that they are not accessible from outside of the neural network [29].

Three major learning models are commonly used in neural network applica-

tions: supervised learning model, unsupervised learning model, and reinforce-

ment learning model:295

(i) Supervised learning is a learning rule that uses the training data to set

the neural network parameters, where these parameters are determined

based on already known output. The training data is represented usually

in pairs of input and target (known output).

(ii) Unsupervised learning is an independent learning process, where the input300

data that share similar features are joined to form clusters. In ANN under

unsupervised learning, the pattern of the input data determines the class

to which input data belongs. Thus, the features and patterns of the input

data must be discovered by the network itself to classify data in distinct

clusters by their similarity.305
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(iii) Reinforcement learning is a learning rule that sets the parameters of ANN

by interacting with the environment. This type of learning is essentially

built upon a trial and error learning method, because the data are gener-

ally not provided. The reinforcement learning technique depends on the

consequences of its actions and determines its actions that are largely de-310

pendent on its experience (exploitation) and the exploration of the latest

choices.

.

Figure 11 presents the basic operation process of the neural networks, where

the input data (x1, x2, x3) are multiplied by weights (w1, w2, w3) and added by315

a bias b before entering the node. The input data that has a significant effect

has a higher weight value and vice versa. The results of each node are expressed

as the following equations.

x =


x1

x2

x3

w =
[
w1w2w3

]
(10)

a = w ∗ x+ b = w1x1 + w2x2 + w3x3 + b (11)

y = φ(a) = φ(wx + b) (12)

where φ is the activation function, and the output of the node is computed using

an activation function [30].320
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Figure 11: An artificial neuron.

3.4.2. Activation function

The activation function is used to estimate the output of neural network

like yes or no. Based on the applied function, it maps the computed values in

between 0 to 1 or -1 to 1. The Rectified Linear Unit (ReLU) function is perhaps

the most used activation function in the artificial intelligent community, because325

it has been extensively used in deep learning and convolutional neural networks.

The ReLU, f(x) = max(x, 0), has no bounded output on the positive side such

that f(x) is zero when x is less than zero and f(x) is equal to x when x is

greater than or equal to zero. Also, the gradients of ReLU are always zeros and

ones, as shown in Figure 12 a.330

Another popular activation functions is the Sigmoid function that produces

an analogue (nonlinear) output, bounded between 0 and 1, as seen in Figure 12

b. The Sigmoid function is described by:

y =
1

1 + ea
(13)
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(a) The Rectified Linear Unit (ReLU) function.

(b) The Sigmoid function.

Figure 12: Popular activation functions used in NN

The information in the neural network system is stored in terms of weights.

These weights are adjusted during the training of the neural network based on

the value of the error, where the error is the difference between the output of

the neural networks and the correct output.[31] [32] [33] [34].

3.4.3. Back propagation335

During the training/learning phase of NN, the values of the weights (wij)

are adjusted to enhance the performance of the ANN model. Each cycle of the

training/learning phase refers to one epoch, where a set of input data is pro-

ceeded through the ANN architecture to create outputs of the NN. These out-

puts are compared with the desirable outputs. Based on the difference between

the produced outputs and the desired outputs, the error is estimated. In the

back-propagation process, the estimated error is passed in the reverse direction

of the NN architecture, from the output layer to the input layer, to re-adjusted
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weights by using the back-propagation algorithm. This technique is repeated

continuously for the next epochs until the desired error is accomplished. The

mean squared error of the ANN is expressed by:

JANN =
1

N

N∑
t=1

O∑
e=1

(T
ANN

(t, e)− y
ANN

(t, e))2 (14)

N: Number of trained data (input, output).

e: Index denotes the number of the output.

t: Index denotes the number of trained data.

O: Number of the ANN outputs.

T: The ANN target values.340

3.4.4. Gradient descent (GD)

Gradient descent method (e.g., steepest descent) is used to adjust the weights

in the direction of the performance function that declines most rapidly (e.g., the

most negative of the gradient). Equation 15 presents the adjustment of One of

the network weights by using the conjugate gradient (CG) algorithm.

wn+1 = wn − 2αJnEn (15)

n: Number of iteration.

J: Jacobian matrix of J
ANN

.

E: The computed error between ANN outputs and the target.345

Although the gradient descent (GD) is an important optimization method,

it has four main disadvantages: (i) the learning rate is low; (ii) the direction is

not perfect-scaled. Thus, the iterations number mostly depends on the scale of

the problem; (iii) determining the local minimum point could be missing, and350

(iv) highly influenced by noise [35][36].

3.4.5. Conjugate gradient (CG)

One of the methods that are established to improve the performance of the

GD algorithm is the conjugate gradient algorithms. All the conjugate gradient

23



algorithms are performed by searching in the steepest descent direction on the

first iteration. A line search is then implemented to find the optimal point

to reach along the current search direction. Then the next search direction

is established such that it is conjugate to prior search directions. Generally,

determining the new search direction requires a combination between the new

steepest descent direction and the previous search direction.

p0 = −g0 , where g = JTE (16)

wn+1 = wn + αnpn (17)

pn = −gn + βnpn−1 (18)

Where the parameter( βn ) is a constant which is calculated to force the suc-

cessive directions to be conjugate.

The types of CG algorithms are distinguished by the method in which the355

constant βn is calculated. Most of the conjugate gradient algorithms involve

a line search at each iteration. The line search technique is computationally

expensive because the network response to all training data is processed various

times for each search. In 1993, Moller established a method that overcomes

the time-consuming line search. This method is known as the scaled conjugate360

gradient algorithm (SCG). The basic concept of this method is to combine

the model-trust region approach, where the maximum distance is selected first,

followed by the direction, with the CG approach.[37] [38] [39].

In this study, the SCG algorithm is used to set ANN weights. Equations 19,

20 present βn parameter calculation and direction of the new search

βn =
|gn+1|2 − gTn+1gn

gTn gn
(19)

pn+1 = −gn+1 + βnpn (20)
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3.5. Neural network pattern recognition:

Pattern recognition is a process that is used to solve classification problems365

in the neural network. To solve a pattern recognition problem, the data must

be prepared, where a set of D input vectors is arranged as columns in a matrix.

Then, another set of D target vectors is arranged, such that target vectors in-

dicate the corresponding classes of the input vectors.[40]

370

To ensure that the neural network model is going to be effective, the training

dataset must satisfy two objectives; (i) Every group must be characterized so

that each group patterns is represented in the data set; (ii) statistical deviation

must be effectively represented within each class, where the neural network data

must contain the total range of data including noise [41].375

Figure 13 presents the necessary steps for building an NN model with a

shallow architecture.

Figure 13: The process of the neural network analysis.
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4. Results of Experimental Validation

This section presents the experimental results for validation of two NN mod-380

els. The first model presents the results of the NN model for the signal energy

data, and it is defined by the NNSE model. The second part shows the results

of the NN model for approximation coefficients of the UT signal energy, NNAC

model.

385

4.1. The model confusion matrices

Figures 14 (a) & (b) present respectively the confusion matrices of the orig-

inal data (i.e., signal energy) and its approximation coefficients for training,

testing, and validation. The outputs of the network models are around 90%,

which is excellent; the high numbers of correct responses are observed as the390

green squares, while the low numbers of fault responses are indicated by the red

squares. The lower right gray squares show the overall accuracy.

For the signal energy model, an accuracy of ∼ 90.9% is achieved for the

training data set, ∼ 89.6% for the validation data set, and ∼ 90.1% for the

testing data set; and the overall accuracy of the model is ∼ 90.6%. The model395

performance for classifying the first class is perfect (i.e., almost 100 %), while

almost 50 % of the fourth damage data were classified correctly, which signif-

icantly affect the overall model performance. This problem has been resolved

by smoothing the signal energy using DWT, which makes the data more sepa-

rable. As shown in the figure 8, the approximation signal energy model yields400

an accuracy of ∼ 98.5% for the training data set, ∼ 98.6% for the validation

data set, and ∼ 98.7% for the testing data set, and the overall accuracy of the

model is ∼ 98.5%. The overall performance of this model increases by almost

8.7% from the previous model; the rationale for the enhanced performance is

the improved classification performance for the last class.405
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(a) Confusion matrices of the signal energy model: ∼ 90.60% performance.

(b) Confusion matrices of the approximation signal energy model: ∼ 98.50%

performance.

Figure 14: Comparison of the neural networks model performance between of the the signal

energy and the approximation signal energy
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4.2. The model performance

Figures 15 (a) & (b) show the NN model performance for training, valida-

tion, and testing phases for the NNSE model and the NNAC model, respectively.

The performance is measured in terms of mean squared error. The best vali-

dation performance of the NNSE model fits the best value which is 0.054 after410

35 epochs, while the best validation performance of the NNAC model reaches

0.029 after 53 epochs. Although the performance of both models are acceptable

in many NN applications, the performance of NNAC model is significantly im-

proved by reducing the mean squared error which is ∼ 46.3% as compared to

the NNSE model, which is more applicable for some sensitive NN applications415

that do not accept errors.

(a) Best validation performance of the NNSE model.

(b) Best validation performance of the NNAC model.

Figure 15: Best validation performance for all experiments.
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4.3. Ther Error Histogram

Figures 16 (a) & (b) also display respectively the error histogram of the

NNES model and NNAC model for the training, validation and testing steps.

These figures show that the data fitting errors are located around zero, which420

is a reasonably good range.

(a) Error histogram of the first NN model.

(b) Error histogram of the second NN model.

Figure 16: Error histogram for all experiments.
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5. Conclusion

This paper has developed a neural network (NN)-based model for a damage-

tolerant design using the energy of the ultrasonic signals. Furthermore, this

paper has improved the performance of the NN model by smoothing the input425

data by using the discrete wavelet transform (db10). The proposed damage-

tolerant design makes use of the NN model to detect the fatigue damage and to

classify the damage into five classes of increasing risk, which are: no-risk (i.e.,

healthy), low-risk, medium-risk, high-risk, and end-of-service-life (i.e., unusable

or broken). The classification strategy, adopted in this paper, has been built430

upon the attenuation of the signal energy and the stability of this attenuation.

The attenuation depends on the size of the damage, while the stability of the

attenuation indicates the stationary characteristic of the damage size.

The overall performance of the NN model using the original data is around

90%. The difficult problem addressed by this model is classification of damage-4435

data, where almost half of these data are mis-classified. This problem is resolved

by smoothing the input data by using the discrete wavelet transform (db10).

The overall performance of the NN model by using smoothed data increased

by 8.7%, which reaches the level of 98.5% success. However, the generalization

of these results is subject to certain limitations. For instance, the number of440

the classes is significantly affected by the damage growth behavior, which is

influenced by the material properties, pre-existing defects, applied loads, and

environmental conditions.

Future studies are required to better understand the effects of crack initiation

and crack propagation on the signal energy of ultrasonic signals such that the445

NN model could classify the severity of the damage into many classes.
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