References
Abo Gamar, M. I., Kisiala, A., Emery,
R. J. N., Yeung, E. C., Stone, S. L., & Qaderi, M. M. (2019). Elevated
carbon dioxide decreases the adverse effects of higher temperature and
drought stress by mitigating oxidative stress and improving water status
in Arabidopsis thaliana . Planta, 250(4), 1191-1214.
Akram, N.A., Waseem, M., Ameen, R. & Ashraf, M. (2015) Trehalose
pretreatment induces drought tolerance in radish (Raphanus
sativus L.) plants: some key physio-biochemical traits. Acta
Physiologica, 38, 3.
Alhaithloul, H. A., Soliman, M. H.,
Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2019). Changes in
ecophysiology, osmolytes, and secondary metabolites of the medicinal
plants of Mentha piperita and Catharanthus roseussubjected to drought and heat stress. Biomolecules, 10(1).
Amrutha, S., Parveen, A., Muthupandi,
M., Sivakumar, V., & Dasgupta, M. G. (2019). Variation in
morpho-physiological, biochemical and molecular responses of twoEucalyptus species under short-term water stress. Acta
Botanica Croatica, 78(2).
Anjum, S. A., Ashraf, U., Tanveer, M.,
Khan, I., Hussain, S., Shahzad, B., . . . Wang, L. C. (2017). Drought
induced changes in growth, osmolyte accumulation and antioxidant
metabolism of three maize hybrids. Frontiers in Plant Science, 8,
69.
Aref, I. M., Ahmed, A. I., Khan, P.
R., El-Atta, H. A., & Iqbal, M. (2013). Drought-induced adaptive
changes in the seedling anatomy of Acacia ehrenbergiana andAcacia tortilis subsp. raddiana . Trees, 27(4),
959-971.
Ashraf, M. (2010). Inducing drought
tolerance in plants: recent advances. Biotechnology Advances,28(1), 169-183.
Ashraf, M., & Foolad, M. R. (2007).
Roles of glycine betaine and proline in improving plant abiotic stress
resistance. Environmental and Experimental Botany, 59(2),
206-216.
Ashraf, U., Kanu, A. S., Mo, Z.,
Hussain, S., Anjum, S. A., Khan, I., . . . Tang, X. (2015). Lead
toxicity in rice: effects, mechanisms, and mitigation strategies-a mini
review. Environmental Science and Pollution Research, 22(23),
18318-18332.
Avashthi, H., Pathak, R. K., Pandey,
N., Arora, S., Mishra, A. K., Gupta, V. K., . . . Kumar, A. (2018).
Transcriptome-wide identification of genes involved in
Ascorbate-Glutathione cycle (Halliwell-Asada pathway) and related
pathway for elucidating its role in antioxidative potential in finger
millet (Eleusine coracana (L.)). 3 Biotech, 8(12),
499-499.
Basal, O., Szabó, A., & Veres, S.
(2020). Physiology of soybean as affected by PEG-induced drought stress.Current in Plant Biology, 22, 100135.
Baudouin, E., Poilevey, A., Hewage,
N. I., Cochet, F., Puyaubert, J., & Bailly, C. (2016). The significance
of hydrogen sulfide for Arabidopsis seed germination.Frontiers in Plant Science, 7, 930.
Ben Hassine, A., Ghanem, M. E.,
Bouzid, S., & Lutts, S. (2008). An inland and a coastal population of
the Mediterranean xero-halophyte species Atriplex halimusL. differ in their ability to accumulate proline and
glycinebetaine in response to salinity and water stress. Journal
of Experimental Botany, 59(6), 1315-1326.
Bertrand, A., Dhont, C., Bipfubusa,
M., Chalifour, F.-P., Drouin, P., & Beauchamp, C. J. (2015). Improving
salt stress responses of the symbiosis in alfalfa using salt-tolerant
cultivar and rhizobial strain. Applied Soil Ecology, 87, 108-117.
Buezo, J., Sanz-Saez, Á., Moran, J.
F., Soba, D., Aranjuelo, I., & Esteban, R. (2019). Drought tolerance
response of high-yielding soybean varieties to mild drought:
physiological and photochemical adjustments. Physiologia
Plantarum, 166(1), 88-104.
Chao, D. Y., Gable, K., Chen, M.,
Baxter, I., Dietrich, C. R., Cahoon, E. B., . . . Salt, D. E. (2011).
Sphingolipids in the root play an important role in regulating the leaf
ionome in Arabidopsis thaliana . Plant Cell, 23(3),
1061-1081.
Charon, C., Sousa, C., & Kondorosi,
C. A. (1999). Alteration of enod40 expression modifies Medicago
truncatula root nodule development induced by Sinorhizobium
meliloti . The Plant Cell, 11(10), 1953-1965.
Chen, H., & Jiang, J.-G. (2010).
Osmotic adjustment and plant adaptation to environmental changes related
to drought and salinity. Environmental Reviews, 18(NA), 309-319.
Chen, J., Liu, Y. Q., Yan, X. W.,
Wei, G. H., Zhang, J. H., & Fang, L. C. (2018). Rhizobium inoculation
enhances copper tolerance by affecting copper uptake and regulating the
ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene
expression in Medicago sativa seedlings. Ecotoxicology and
Environmental Safety, 162, 312-323.
Chen, J., Shang, Y. T., Wang, W. H.,
Chen, X. Y., He, E. M., Zheng, H. L., & Shangguan, Z. (2016). Hydrogen
sulfide-mediated polyamines and sugar changes are involved in hydrogen
sulfide-induced drought tolerance in Spinacia oleracea seedlings.Frontiers in Plant Science, 7, 1173.
Chen, J., Shang, Y. T., Zhang, N. N., Zhong, Y., Wang, W. H., Zhang, J.
H., & Shangguan, Z. (2018). Sodium hydrosulfide modifies the nutrient
ratios of soybean (Glycine max ) under iron deficiency.Journal of Plant Nutrition and Soil Science, 181(2), 305-315.
Chen, J., Wu, F. H., Shang, Y. T.,
Wang, W. H., Hu, W. J., Simon, M., . . . Zheng, H. L. (2015). Hydrogen
sulphide improves adaptation of Zea mays seedlings to iron
deficiency. Journal of Experimental Botany, 66(21), 6605-6622.
Chen, J., Wu, F. H., Wang, W. H.,
Zheng, C. J., Lin, G. H., Dong, X. J., . . . Zheng, H. L. (2011).
Hydrogen sulphide enhances photosynthesis through promoting chloroplast
biogenesis, photosynthetic enzyme expression, and thiol redox
modification in Spinacia oleracea seedlings. Journal of
Experimental Botany, 62(13), 4481-4493.
Cotado, A., Munne-Bosch, S., &
Pinto-Marijuan, M. (2020). Strategies for severe drought survival and
recovery in a Pyrenean relict species. Physiologia
Plantarum, 169(2), 276-290.
Das, A., Rushton, P. J., & Rohila,
J. S. (2017). Metabolomic profiling of soybeans (Glycine maxL. ) reveals the importance of sugar and nitrogen metabolism under
drought and heat stress. Plants, 6(2), 21.
Ding, H., Ma, D., Huang, X., Hou, J., Wang, C., Xie, Y., et al. (2019).
Exogenous hydrogen sulfide alleviates salt stress by improving
antioxidant defenses and the salt overly sensitive pathway in wheat
seedlings. Acta Physiologiae Plantarum, 41, 123.
Dong, S., Jiang, Y., Dong, Y., Wang,
L., Wang, W., Ma, Z., . . . Liu, L. (2019). A study on soybean responses
to drought stress and rehydration. Saudi Journal of Biological
Sciences, 26(8), 2006-2017.
Faize, M., Burgos, L., Faize, L.,
Piqueras, A., Nicolas, E., Barba-Espin, G., . . . Hernandez, J. A.
(2011). Involvement of cytosolic ascorbate peroxidase and
Cu/Zn-superoxide dismutase for improved tolerance against drought
stress. Journal of Experimental Botany, 62(8), 2599-2613.
Farooq, M. A., Niazi, A. K., Akhtar,
J., Saifullah, Farooq, M., Souri, Z., . . . Rengel, Z. (2019). Acquiring
control: the evolution of ROS-induced oxidative stress and redox
signaling pathways in plant stress responses. Plant Physiology and
Biochemistry, 141, 353-369.
Ferguson, B. J., & Mathesius, U.
(2014). Phytohormone regulation of legume-rhizobia interactions.Journal of Chemical Ecology, 40(7), 770-790.
Ferguson, B. J., Indrasumunar, A.,
Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M.
(2010). Molecular analysis of legume nodule development and
autoregulation. Journal of Integrative Plant Biology ,
52(1) , 61-76.
Fernandez, O., Urrutia, M.,
Bernillon, S., Giauffret, C., Tardieu, F., Le Gouis, J., . . . Gibon, Y.
(2016). Fortune telling: metabolic markers of plant performance.Metabolomics, 12(10), 158.
Fishbeck, K., Evans, H. J., Boersma, L. L. (1973). Measurement of
nitrogenase activity of intact legume symbionts in situ using the
acetylene reduction assay. Agronomy Journal , 65(3), 429-433.
Furlan, A. L., Bianucci, E., Castro,
S., & Dietz, K. J. (2017). Metabolic features involved in drought
stress tolerance mechanisms in peanut nodules and their contribution to
biological nitrogen fixation. Plant Science, 263, 12-22.
Gomes, F. P., Oliva, M. A., Mielke,
M. S., Almeida, A.-A. F., & Aquino, L. A. (2010). Osmotic adjustment,
proline accumulation and cell membrane stability in leaves ofCocos nucifera submitted to drought stress. Scientia
Horticulturae, 126(3), 379-384.
Gupta, A., Rico-Medina, A., &
Caño-Delgado, A. I. (2020). The physiology of plant responses to
drought. Science, 368(6488), 266-269.
Guy, C., Kaplan, F., Kopka, J.,
Selbig, J., & Hincha, D. K. (2007). Metabolomics of temperature stress.Physiologia Plantarum , 132(2), 220-235.
Hajiboland, R., Cheraghvareh, L., &
Poschenrieder, C. (2017). Improvement of drought tolerance inTobacco (Nicotiana rustica L. ) plants by silicon.Journal of Plant Nutrition, 40(12), 1661-1676.
Hao, L., Wang, Y., Zhang, J., Xie,
Y., Zhang, M., Duan, L., & Li, Z. (2013). Coronatine enhances drought
tolerance via improving antioxidative capacity to maintaining higher
photosynthetic performance in soybean. Plant Science, 210, 1-9.
Hasanuzzaman, M., Nahar, K., Anee, T.
I., & Fujita, M. (2017). Exogenous silicon attenuates cadmium-induced
oxidative stress in Brassica napus L. by modulating AsA-GSH
pathway and glyoxalase system. Frontiers in Plant Science, 8,
1061.
Hasanuzzaman, M., Nahar, K., Anee, T.
I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and
physiological role in environmental stress tolerance. Physiology
and Molecular Biology of Plants, 23(2), 249-268.
Hasanuzzaman, M., Nahar, K., Gill, S.
S., Alharby, H. F., Razafindrabe, B. H., & Fujita, M. (2017). Hydrogen
peroxide pretreatment mitigates cadmium-induced oxidative stress inBrassica napus L.: an intrinsic study on antioxidant defense and
glyoxalase systems. Frontiers in Plant Science, 8, 115.
Hasanuzzaman, M., Nahar, K., Rohman,
M. M., Anee, T. I., Huang, Y., & Fujita, M. (2018). Exogenous silicon
protects Brassica napus plants from salinity-induced oxidative
stress through the modulation of AsA-GSH pathway, thiol-dependent
antioxidant enzymes and glyoxalase systems. Gesunde Pflanzen,70(4), 185-194.
Hérouart, D., Baudouin, E., Frendo,
P., Harrison, J., Santos, R., Jamet, A., . . . Puppo, A. (2002).
Reactive oxygen species, nitric oxide and glutathione: a key role in the
establishment of the legume-rhizobium symbiosis? Plant Physiology
& Biochemistry, 40(6-8), 619-624.
Honda, K., Yamada, N., Yoshida, R.,
Ihara, H., Sawa, T., Akaike, T., & Iwai, S. (2015). 8-Mercapto-Cyclic
GMP mediates hydrogen sulfide-induced stomatal closure inArabidopsis . Plant and Cell Physiology, 56(8), 1481-1489.
Husen, A., Iqbal, M., & Aref, I. M.
(2017). Plant growth and foliar characteristics of faba bean
(Vicia faba L. ) as affected by indole-acetic acid under
water-sufficient and water-deficient conditions. Journal of
Environmental Biology, 38(2), 179-186.
Janet, I., & Sprent. (1972). The
effects of water stress on nitrogen-fixing root nodules. New
Phytologist, 71(3), 451-460.
Jha, Y., & Subramanian, R. B.
(2018). Chapter 12 - effect of root-associated bacteria on soluble sugar
metabolism in plant under environmental stress. Plant Metabolites
and Regulation Under Environmental Stress (pp. 231-240): Academic
Press.
Ji, T., Li, S., Li, L., Huang, M.,
Wang, X., Wei, M., . . . Yang, F. (2018). Cucumber phospholipase D alpha
gene overexpression in tobacco enhanced drought stress tolerance by
regulating stomatal closure and lipid peroxidation. BMC Plant
Biology, 18(1), 355.
Jiao, Y., Bai, Z., Xu, J., Zhao, M.,
Khan, Y., Hu, Y., & Shi, L. (2018). Metabolomics and its physiological
regulation process reveal the salt-tolerant mechanism in Glycine
soja seedling roots. Plant Physiology and Biochemistry, 126,
187-196.
Jin, Z., & Pei, Y. (2015).
Physiological implications of hydrogen sulfide in plants: pleasant
exploration behind its unpleasant odour. Oxidative Medicine and
Cellular Longevity, 2015, 397502.
Kang, L., Wang, Y. S., Uppalapati, S.
R., Wang, K., Tang, Y., Vadapalli, V., . . . Mysore, K. S. (2010).
Overexpression of a fatty acid amide hydrolase compromises innate
immunity in Arabidopsis . Plant Journal, 56(2), 336-349.
Kaya, C., Ashraf, M., & Akram, N. A.
(2018). Hydrogen sulfide regulates the levels of key metabolites and
antioxidant defense system to counteract oxidative stress in pepper
(Capsicum annuum L.) plants exposed to high zinc regime.Environmental Science and Pollution Research, 25(13),
12612-12618.
Khan, M. N., Mobin, M., Abbas, Z. K.,
& Siddiqui, M. H. (2017). Nitric oxide-induced synthesis of hydrogen
sulfide alleviates osmotic stress in wheat seedlings through sustaining
antioxidant enzymes, osmolyte accumulation and cysteine homeostasis.Nitric Oxide, 68, 91-102.
Kilaru, A., Herrfurth, C.,
Keereetaweep, J., Hornung, E., Venables, B. J., Feussner, I., &
Chapman, K. D. (2011). Lipoxygenase-mediated oxidation of
polyunsaturated N-acylethanolamines in Arabidopsis . Journal
of Biological Chemistry, 286.
Kolupaev, Y. E., Firsova, E. N.,
Yastreb, T. O., Ryabchun, N. I., & Kirichenko, V. V. (2019). Effect of
hydrogen sulfide donor on antioxidant state of wheat plants and their
resistance to soil drought. Russian Journal of Plant Physiology,66(1), 59-66.
Krasensky, J., & Jonak, C. (2012).
Drought, salt, and temperature stress-induced metabolic rearrangements
and regulatory networks. Journal of Experimental Botany, 63(4),
1593-1608.
Lawlor, D. W. (2002). Limitation to
photosynthesis in water-stressed leaves: stomata vs . metabolism
and the role of ATP. Annals of Botany, 89(7), 871-885.
Li, B., Feng, Y., Zong, Y., Zhang,
D., Hao, X., & Li, P. (2020). Elevated CO2-induced
changes in photosynthesis, antioxidant enzymes and signal transduction
enzyme of soybean under drought stress. Plant Physiology and
Biochemistry, 154, 105-114.
Li, Y., Pan, F., & Yao, H. (2019).
Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to
nitrogen fertilizer application. Journal of Soils and Sediments,19(4), 1948-1958.
Li, Z. G., Ding, X. J., & Du, P. F.
(2013). Hydrogen sulfide donor sodium hydrosulfide-improved heat
tolerance in maize and involvement of proline. Journal of Plant
Physiology, 170(8), 741-747.
Li, Z. G., Min, X., & Zhou, Z. H.
(2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation.Frontiers in Plant Science, 7, 1621.
Lima, Cristina, Silva,
Ferreira-Silva, Sérgio, Luiz, . . . Leite. (2018). Antioxidant
protection and PSII regulation mitigate photo-oxidative stress induced
by drought followed by high light in cashew plants. Environmental
and Experimental Botany, 149, 59-69.
Liu, Y. S., Geng, J. C., Sha, X. Y.,
Zhao, Y. X., Hu, T. M., & Yang, P. Z. (2019). Effect of rhizobium
symbiosis on low-temperature tolerance and antioxidant response in
alfalfa (Medicago sativa L.). Frontiers in Plant Science,10, 538.
Livak, K. J., & Schmittgen, T. D.
(2001). Analysis of relative gene expression data using real-time
quantitative PCR and the 2 −ΔΔCt method.Methods, 25(4), 402-408.
Loskutov, I. G., Shelenga, T. V.,
Konarev, A. V., Shavarda, A. L., Blinova, E. V., & Dzubenko, N. I.
(2017). The metabolomic approach to the comparative analysis of wild and
cultivated species of oats (Avena L.). Russian Journal of
Genetics: Applied Research, 7(5), 501-508.
Luo, S., Calderón-Urrea, A., Yu, J.,
Liao, W., Xie, J., Lv, J., . . . Tang, Z. (2020). The role of hydrogen
sulfide in plant alleviates heavy metal stress. Plant and Soil,449(1-2), 1-10.
Marcela, S., Andrea, G., Facundo, R.
A., & E., S.-M. G. (2015). Plant survival in a changing Environment:
the role of nitric oxide in plant responses to abiotic stress.Frontiers in Plant Science, 6.
Matos, M. C., Campos, P. S.,
Passarinho, J. A., Semedo, J. N., Marques, N. M., Ramalho, J. C., &
Ricardo, C. P. (2010). Drought effect on photosynthetic activity,
osmolyte accumulation and membrane integrity of two Cicer
arietinum genotypes. Photosynthetica, 48(2), 303-312.
Meng, N., Yu, B.-J., & Guo, J.-S.
(2016). Ameliorative effects of inoculation with Bradyrhizobium
japonicum on Glycine max and Glycine soja seedlings under
salt stress. Plant Growth Regulation, 80(2), 137-147.
Miller, G., Suzuki, N.,
Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species
homeostasis and signalling during drought and salinity stresses.Plant, Cell & Environment, 33(4).
Mostofa, M. G., Rahman, A., Ansary,
M. M., Watanabe, A., Fujita, M., & Tran, L. S. (2015). Hydrogen sulfide
modulates cadmium-induced physiological and biochemical responses to
alleviate cadmium toxicity in rice. Scientific Reports, 5, 14078.
Munawar, A., Akram, N. A., Ahmad, A. & Ashraf, M. (2019). Nitric oxide
regulates oxidative defense system, key metabolites and growth of
broccoli (Brassica oleracea L.) plants under water limited
conditions. Scientia Horticulturae , 254, 7-13.
Munné-Bosch, S., & Peñuelas, J.
(2003). Photo- and antioxidative protection, and a role for salicylic
acid during drought and recovery in field-grown Phillyrea
angustifolia plants. Planta, 217(5), 758-766.
Nanda, R., & Agrawal, V. (2016).
Elucidation of zinc and copper induced oxidative stress, DNA damage and
activation of defence system during seed germination in Cassia
angustifolia Vahl . Environmental and Experimental Botany, 125,
31-41.
Naz, H., Akram, N. A. & Ashraf, M. (2016). Impact of ascorbic acid on
growth and some physiological attributes of cucumber (Cucumis
sativus ) plants under water-deficit conditions. Pakistan Journal
of Botany, 48, 877-883.
Niu, Y., Wang, Y., Li, P., Zhang, F.,
Liu, H., & Zheng, G. (2012). Drought stress induces oxidative stress
and the antioxidant defense system in ascorbate-deficient vtc1mutants of Arabidopsis thaliana . Acta Physiologiae
Plantarum, 35(4), 1189-1200.
Park, E. J., Jekni, Z., PINO, M.-T.,
Murata, N., & Chen, H. H. (2010). Glycinebetaine accumulation is more
effective in chloroplasts than in the cytosol for protecting transgenic
tomato plants against abiotic stress. Plant Cell & Environment,30(8), 994-1005.
Parvin, S., Uddin, S., Fitzgerald, G.
J., Tausz-Posch, S., Armstrong, R., & Tausz, M. (2019). Free air
CO2 enrichment (FACE) improves water use efficiency and
moderates drought effect on N2 fixation of Pisum
sativum L. Plant and Soil, 436(1-2), 587-606.
Paula, Cerezini, Biana, Harumi,
Kuwano, Michele, . . . Fernanda. (2016). Strategies to promote early
nodulation in soybean under drought. Field Crops Research, 196,
160-167.
Puppo, A., Pauly, N., Boscari, A.,
Mandon, K., & Brouquisse, R. (2013). Hydrogen peroxide and nitric
oxide: key regulators of the legume-rhizobium and mycorrhizal symbioses.Antioxidants & Redox Signaling, 18(16), 2202-2219.
Qian, P., Sun, R., Ali, B., Gill, R.A., Xu, L. & Zhou, W. (2014).
Effects of hydrogen sulfide on growth, antioxidative capacity, and
ultrastructural changes in oilseed rape seedlings under aluminum
toxicity. Journal of Plant Growth Regulation, 33, 526-538.
Qu, L., Huang, Y., Zhu, C., Zeng, H.,
Shen, C., Liu, C., . . . Pi, E. (2016). Rhizobia-inoculation enhances
the soybean’s tolerance to salt stress. Plant and Soil, 400(1),
209-222.
Rivero, R. M., Mestre, T. C.,
Mittler, R., Rubio, F., Garcia-Sanchez, F., & Martinez, V. (2014). The
combined effect of salinity and heat reveals a specific physiological,
biochemical and molecular response in tomato plants. Plant Cell &
Environment, 37(5), 1059-1073.
Rotaru, V., & Sinclair, T. R.
(2009). Interactive influence of phosphorus and iron on nitrogen
fixation by soybean. Environmental and Experimental Botany,66(1), 94-99.
Sato, Y., Masuta, Y., Saito, K.,
Murayama, S., & Ozawa, K. (2011). Enhanced chilling tolerance at the
booting stage in rice by transgenic overexpression of the ascorbate
peroxidase gene, OsAPXa . Plant Cell Reports, 30(3),
399-406.
Shan, C. J., Zhang, S. L., Li, D. F.,
Zhao, Y. Z., Tian, X. L., Zhao, X. L., . . . Liu, R. Q. (2011). Effects
of exogenous hydrogen sulfide on the ascorbate and glutathione
metabolism in wheat seedlings leaves under water stress. Acta
Physiologiae Plantarum, 33(6), 2533.
Shan, C., Zhang, S., & Ou, X.
(2018). The roles of H2S and
H2O2 in regulating AsA-GSH cycle in the
leaves of wheat seedlings under drought stress. Protoplasma, 255,
1257-1262.
Sharma, P., Jha, A. B., Dubey, R. S.,
& Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and
antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012, 1-26.
Shen, G., Ju, W., Liu, Y., Guo, X.,
& Fang, L. (2019). Impact of urea addition and rhizobium inoculation on
plant resistance in metal contaminated soil. International Journal
of Environmental Research and Public Health, 16(11), 1955.
Shulaev, V., Cortes, D., Miller, G.,
& Mittler, R. (2010). Metabolomics for plant stress response.Physiologia Plantarum, 132(2), 199-208.
Stanton, K. M., & Mickelbart, M. V.
(2014). Maintenance of water uptake and reduced water loss contribute to
water stress tolerance of Spiraea alba Du Roi and Spiraea
tomentosa L. Hortic Res, 1, 14033.
Sun, Y. L., Li, F., Su, N., Sun, X.
L., Zhao, S. J., & Meng, Q. W. (2010). The increase in unsaturation of
fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt
tolerance in tomato. Photosynthetica, 48(3), 400-408.
Tatiana, Verni, Jiyoung, Kim, Lisa,
Frances, . . . Sun. (2015). The NIN transcription factor coordinates
diverse nodulation programs in different tissues of the Medicago
truncatula root. Plant Cell, 27(12), 3410-3424.
Tian, B., Qiao, Z., Zhang, L., Li, H. & Pei, Y. (2016). Hydrogen
sulfide and proline cooperate to alleviate cadmium stress in foxtail
millet seedlings. Plant Physiology and Biochemistry, 109,
293-299.
Verbruggen, N., & Hermans, C.
(2008). Proline accumulation in plants: a review. Amino Acids,35(4), 753-759.
Vitousek, P. M., Cassman, K.,
Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., . . . Rastetter,
E. B. (2002). Towards an ecological understanding of biological nitrogen
fixation. Biogeochemistry , 58(1), 1-45.
Wang, X. (2004). Lipid signaling.Current Opinion in Plant Biology, 7 (3), 329-336.
Wang, Y., Li, L., Cui, W., Xu, S.,
Shen, W., & Wang, R. (2012). Hydrogen sulfide enhances alfalfa
(Medicago sativa ) tolerance against salinity during seed
germination by nitric oxide pathway. Plant and Soil, 351(1),
107-119.
Wang, Y., Zhang, Z., Zhang, P., Cao,
Y., Hu, T., & Yang, P. (2016). Rhizobium symbiosis contribution to
short-term salt stress tolerance in alfalfa (Medicago sativa L.).Plant and Soil, 402(1), 247-261.
Watanabe, A., Okazaki, K., Watanabe,
T., Osaki, M., & Shinano, T. (2013). Metabolite profiling of mizuna
(Brassica rapa L. var. Nipponsinica) to evaluate the effects of
organic matter amendments. Journal of Agricultural and Food
Chemistry, 61(5), 1009-1016.
Yang, C., Zhao, W., Wang, Y., Zhang,
L., Huang, S., & Lin, J. (2020). Metabolomics analysis reveals the
alkali tolerance mechanism in Puccinellia tenuiflora plants
inoculated with arbuscular mycorrhizal fungi. Microorganisms,8(3).
Yang, R., Howe, J. A., & Golden, B.
R. (2019). Calcium silicate slag reduces drought stress in rice
(Oryza sativa L .). Journal of Agronomy and Crop Science,205(4), 353-361.
Yin, L., Wang, S., Li, J., Tanaka,
K., & Oka, M. (2013). Application of silicon improves salt tolerance
through ameliorating osmotic and ionic stresses in the seedling ofSorghum bicolor . Acta Physiologiae Plantarum, 35(11),
3099-3107.
Yoo, C. Y., Pence, H. E., Jin, J.
B., Miura, K., Gosney, M. J., Hasegawa, P. M., & Mickelbart, M. V.
(2010). The Arabidopsis GTL1 transcription factor regulates water
use efficiency and drought tolerance by modulating stomatal density via
transrepression of SDD1 . Plant Cell, 22(12), 4128-4141.
Zhang, H., Jiao, H., Jiang, C. X.,
Wang, S. H., Wei, Z. J., Luo, J. P., & Jones, R. L. (2010). Hydrogen
sulfide protects soybean seedlings against drought-induced oxidative
stress. Acta Physiologiae Plantarum, 32(5), 849-857.
Zhang, H., Prithiviraj, B., Charles,
T. C., Driscoll, B. T., & Smith, D. L. (2003). Low temperature tolerantBradyrhizobium japonicum strains allowing improved nodulation and
nitrogen fixation of soybean in a short season (cool spring) area.European Journal of Agronomy, 19(2), 205-213.
Zhang, H., Ye, Y. K., Wang, S. H.,
Luo, J. P., Tang, J., & Ma, D. F. (2009). Hydrogen sulfide counteracts
chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative
damage against osmotic stress. Plant Growth Regulation, 58(3),
243-250.
Zhang, L., & Becker, D. F. (2015).
Connecting proline metabolism and signaling pathways in plant
senescence. Frontiers in Plant Science, 6, 552.
Zhang, N. N., Zou, H., Lin, X. Y.,
Pan, Q., Zhang, W. Q., Zhang, J. H., . . . Chen, J. (2020). Hydrogen
sulfide and rhizobia synergistically regulate nitrogen (N) assimilation
and remobilization during N deficiency-induced senescence in soybean.Plant Cell & Environment, 43(5), 1130-1147.
Zhang, W., Tian, Z., Pan, X., Zhao,
X., & Wang, F. (2013). Oxidative stress and non-enzymatic antioxidants
in leaves of three edible canna cultivars under drought stress.Horticulture, Environment, and Biotechnology, 54(1), 1-8.
Zhang, X., Xu, Y., & Huang, B.
(2019). Lipidomic reprogramming associated with drought stress
priming-enhanced heat tolerance in tall fescue (Festuca
arundinacea ). Plant Cell & Environment, 42(3).
Zhao, J. (2015). Phospholipase D and
phosphatidic acid in plant defence response: from protein-protein and
lipid-protein interactions to hormone signalling. Journal of
Experimental Botany, 66(7), 1721-1736.
Zou, H., Zhang, N. N., Lin, X. Y.,
Zhang, W. Q., Zhang, J. H., Chen, J., & Wei, G. H. (2020). Hydrogen
sulfide is a crucial element of the antioxidant defense system inGlycine max –Sinorhizobium fredii symbiotic root nodules.Plant and Soil, 449(1), 209-231.
Zou, H., Zhang, N. N., Pan, Q.,
Zhang, J. H., Chen, J., & Wei, G. H. (2019). Hydrogen sulfide promotes
nodulation and nitrogen fixation in soybean-rhizobia symbiotic system.Molecular Plant-Microbe Interactions, 32(8), 972-985.