References
Abo Gamar, M. I., Kisiala, A., Emery, R. J. N., Yeung, E. C., Stone, S. L., & Qaderi, M. M. (2019). Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana . Planta, 250(4), 1191-1214.
Akram, N.A., Waseem, M., Ameen, R. & Ashraf, M. (2015) Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiologica, 38, 3.
Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseussubjected to drought and heat stress. Biomolecules, 10(1).
Amrutha, S., Parveen, A., Muthupandi, M., Sivakumar, V., & Dasgupta, M. G. (2019). Variation in morpho-physiological, biochemical and molecular responses of twoEucalyptus species under short-term water stress. Acta Botanica Croatica, 78(2).
Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., . . . Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8, 69.
Aref, I. M., Ahmed, A. I., Khan, P. R., El-Atta, H. A., & Iqbal, M. (2013). Drought-induced adaptive changes in the seedling anatomy of Acacia ehrenbergiana andAcacia tortilis subsp. raddiana . Trees, 27(4), 959-971.
Ashraf, M. (2010). Inducing drought tolerance in plants: recent advances. Biotechnology Advances,28(1), 169-183.
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216.
Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., . . . Tang, X. (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies-a mini review. Environmental Science and Pollution Research, 22(23), 18318-18332.
Avashthi, H., Pathak, R. K., Pandey, N., Arora, S., Mishra, A. K., Gupta, V. K., . . . Kumar, A. (2018). Transcriptome-wide identification of genes involved in Ascorbate-Glutathione cycle (Halliwell-Asada pathway) and related pathway for elucidating its role in antioxidative potential in finger millet (Eleusine coracana (L.)). 3 Biotech, 8(12), 499-499.
Basal, O., Szabó, A., & Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress.Current in Plant Biology, 22, 100135.
Baudouin, E., Poilevey, A., Hewage, N. I., Cochet, F., Puyaubert, J., & Bailly, C. (2016). The significance of hydrogen sulfide for Arabidopsis seed germination.Frontiers in Plant Science, 7, 930.
Ben Hassine, A., Ghanem, M. E., Bouzid, S., & Lutts, S. (2008). An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimusL. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Journal of Experimental Botany, 59(6), 1315-1326.
Bertrand, A., Dhont, C., Bipfubusa, M., Chalifour, F.-P., Drouin, P., & Beauchamp, C. J. (2015). Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Applied Soil Ecology, 87, 108-117.
Buezo, J., Sanz-Saez, Á., Moran, J. F., Soba, D., Aranjuelo, I., & Esteban, R. (2019). Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments. Physiologia Plantarum, 166(1), 88-104.
Chao, D. Y., Gable, K., Chen, M., Baxter, I., Dietrich, C. R., Cahoon, E. B., . . . Salt, D. E. (2011). Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana . Plant Cell, 23(3), 1061-1081.
Charon, C., Sousa, C., & Kondorosi, C. A. (1999). Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti . The Plant Cell, 11(10), 1953-1965.
Chen, H., & Jiang, J.-G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA), 309-319.
Chen, J., Liu, Y. Q., Yan, X. W., Wei, G. H., Zhang, J. H., & Fang, L. C. (2018). Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicology and Environmental Safety, 162, 312-323.
Chen, J., Shang, Y. T., Wang, W. H., Chen, X. Y., He, E. M., Zheng, H. L., & Shangguan, Z. (2016). Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings.Frontiers in Plant Science, 7, 1173.
Chen, J., Shang, Y. T., Zhang, N. N., Zhong, Y., Wang, W. H., Zhang, J. H., & Shangguan, Z. (2018). Sodium hydrosulfide modifies the nutrient ratios of soybean (Glycine max ) under iron deficiency.Journal of Plant Nutrition and Soil Science, 181(2), 305-315.
Chen, J., Wu, F. H., Shang, Y. T., Wang, W. H., Hu, W. J., Simon, M., . . . Zheng, H. L. (2015). Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. Journal of Experimental Botany, 66(21), 6605-6622.
Chen, J., Wu, F. H., Wang, W. H., Zheng, C. J., Lin, G. H., Dong, X. J., . . . Zheng, H. L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62(13), 4481-4493.
Cotado, A., Munne-Bosch, S., & Pinto-Marijuan, M. (2020). Strategies for severe drought survival and recovery in a Pyrenean relict species. Physiologia Plantarum, 169(2), 276-290.
Das, A., Rushton, P. J., & Rohila, J. S. (2017). Metabolomic profiling of soybeans (Glycine maxL. ) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants, 6(2), 21.
Ding, H., Ma, D., Huang, X., Hou, J., Wang, C., Xie, Y., et al. (2019). Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum, 41, 123.
Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., . . . Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26(8), 2006-2017.
Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., Barba-Espin, G., . . . Hernandez, J. A. (2011). Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 62(8), 2599-2613.
Farooq, M. A., Niazi, A. K., Akhtar, J., Saifullah, Farooq, M., Souri, Z., . . . Rengel, Z. (2019). Acquiring control: the evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353-369.
Ferguson, B. J., & Mathesius, U. (2014). Phytohormone regulation of legume-rhizobia interactions.Journal of Chemical Ecology, 40(7), 770-790.
Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M. (2010). Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology , 52(1) , 61-76.
Fernandez, O., Urrutia, M., Bernillon, S., Giauffret, C., Tardieu, F., Le Gouis, J., . . . Gibon, Y. (2016). Fortune telling: metabolic markers of plant performance.Metabolomics, 12(10), 158.
Fishbeck, K., Evans, H. J., Boersma, L. L. (1973). Measurement of nitrogenase activity of intact legume symbionts in situ using the acetylene reduction assay. Agronomy Journal , 65(3), 429-433.
Furlan, A. L., Bianucci, E., Castro, S., & Dietz, K. J. (2017). Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science, 263, 12-22.
Gomes, F. P., Oliva, M. A., Mielke, M. S., Almeida, A.-A. F., & Aquino, L. A. (2010). Osmotic adjustment, proline accumulation and cell membrane stability in leaves ofCocos nucifera submitted to drought stress. Scientia Horticulturae, 126(3), 379-384.
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269.
Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2007). Metabolomics of temperature stress.Physiologia Plantarum , 132(2), 220-235.
Hajiboland, R., Cheraghvareh, L., & Poschenrieder, C. (2017). Improvement of drought tolerance inTobacco (Nicotiana rustica L. ) plants by silicon.Journal of Plant Nutrition, 40(12), 1661-1676.
Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L., & Li, Z. (2013). Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Science, 210, 1-9.
Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Frontiers in Plant Science, 8, 1061.
Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249-268.
Hasanuzzaman, M., Nahar, K., Gill, S. S., Alharby, H. F., Razafindrabe, B. H., & Fujita, M. (2017). Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress inBrassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Frontiers in Plant Science, 8, 115.
Hasanuzzaman, M., Nahar, K., Rohman, M. M., Anee, T. I., Huang, Y., & Fujita, M. (2018). Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanzen,70(4), 185-194.
Hérouart, D., Baudouin, E., Frendo, P., Harrison, J., Santos, R., Jamet, A., . . . Puppo, A. (2002). Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-rhizobium symbiosis? Plant Physiology & Biochemistry, 40(6-8), 619-624.
Honda, K., Yamada, N., Yoshida, R., Ihara, H., Sawa, T., Akaike, T., & Iwai, S. (2015). 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure inArabidopsis . Plant and Cell Physiology, 56(8), 1481-1489.
Husen, A., Iqbal, M., & Aref, I. M. (2017). Plant growth and foliar characteristics of faba bean (Vicia faba L. ) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. Journal of Environmental Biology, 38(2), 179-186.
Janet, I., & Sprent. (1972). The effects of water stress on nitrogen-fixing root nodules. New Phytologist, 71(3), 451-460.
Jha, Y., & Subramanian, R. B. (2018). Chapter 12 - effect of root-associated bacteria on soluble sugar metabolism in plant under environmental stress. Plant Metabolites and Regulation Under Environmental Stress (pp. 231-240): Academic Press.
Ji, T., Li, S., Li, L., Huang, M., Wang, X., Wei, M., . . . Yang, F. (2018). Cucumber phospholipase D alpha gene overexpression in tobacco enhanced drought stress tolerance by regulating stomatal closure and lipid peroxidation. BMC Plant Biology, 18(1), 355.
Jiao, Y., Bai, Z., Xu, J., Zhao, M., Khan, Y., Hu, Y., & Shi, L. (2018). Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots. Plant Physiology and Biochemistry, 126, 187-196.
Jin, Z., & Pei, Y. (2015). Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 2015, 397502.
Kang, L., Wang, Y. S., Uppalapati, S. R., Wang, K., Tang, Y., Vadapalli, V., . . . Mysore, K. S. (2010). Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis . Plant Journal, 56(2), 336-349.
Kaya, C., Ashraf, M., & Akram, N. A. (2018). Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime.Environmental Science and Pollution Research, 25(13), 12612-12618.
Khan, M. N., Mobin, M., Abbas, Z. K., & Siddiqui, M. H. (2017). Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis.Nitric Oxide, 68, 91-102.
Kilaru, A., Herrfurth, C., Keereetaweep, J., Hornung, E., Venables, B. J., Feussner, I., & Chapman, K. D. (2011). Lipoxygenase-mediated oxidation of polyunsaturated N-acylethanolamines in Arabidopsis . Journal of Biological Chemistry, 286.
Kolupaev, Y. E., Firsova, E. N., Yastreb, T. O., Ryabchun, N. I., & Kirichenko, V. V. (2019). Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russian Journal of Plant Physiology,66(1), 59-66.
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608.
Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs . metabolism and the role of ATP. Annals of Botany, 89(7), 871-885.
Li, B., Feng, Y., Zong, Y., Zhang, D., Hao, X., & Li, P. (2020). Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiology and Biochemistry, 154, 105-114.
Li, Y., Pan, F., & Yao, H. (2019). Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. Journal of Soils and Sediments,19(4), 1948-1958.
Li, Z. G., Ding, X. J., & Du, P. F. (2013). Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. Journal of Plant Physiology, 170(8), 741-747.
Li, Z. G., Min, X., & Zhou, Z. H. (2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation.Frontiers in Plant Science, 7, 1621.
Lima, Cristina, Silva, Ferreira-Silva, Sérgio, Luiz, . . . Leite. (2018). Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environmental and Experimental Botany, 149, 59-69.
Liu, Y. S., Geng, J. C., Sha, X. Y., Zhao, Y. X., Hu, T. M., & Yang, P. Z. (2019). Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.). Frontiers in Plant Science,10, 538.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCt method.Methods, 25(4), 402-408.
Loskutov, I. G., Shelenga, T. V., Konarev, A. V., Shavarda, A. L., Blinova, E. V., & Dzubenko, N. I. (2017). The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Russian Journal of Genetics: Applied Research, 7(5), 501-508.
Luo, S., Calderón-Urrea, A., Yu, J., Liao, W., Xie, J., Lv, J., . . . Tang, Z. (2020). The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant and Soil,449(1-2), 1-10.
Marcela, S., Andrea, G., Facundo, R. A., & E., S.-M. G. (2015). Plant survival in a changing Environment: the role of nitric oxide in plant responses to abiotic stress.Frontiers in Plant Science, 6.
Matos, M. C., Campos, P. S., Passarinho, J. A., Semedo, J. N., Marques, N. M., Ramalho, J. C., & Ricardo, C. P. (2010). Drought effect on photosynthetic activity, osmolyte accumulation and membrane integrity of two Cicer arietinum genotypes. Photosynthetica, 48(2), 303-312.
Meng, N., Yu, B.-J., & Guo, J.-S. (2016). Ameliorative effects of inoculation with Bradyrhizobium japonicum on Glycine max and Glycine soja seedlings under salt stress. Plant Growth Regulation, 80(2), 137-147.
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses.Plant, Cell & Environment, 33(4).
Mostofa, M. G., Rahman, A., Ansary, M. M., Watanabe, A., Fujita, M., & Tran, L. S. (2015). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 5, 14078.
Munawar, A., Akram, N. A., Ahmad, A. & Ashraf, M. (2019). Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Scientia Horticulturae , 254, 7-13.
Munné-Bosch, S., & Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217(5), 758-766.
Nanda, R., & Agrawal, V. (2016). Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl . Environmental and Experimental Botany, 125, 31-41.
Naz, H., Akram, N. A. & Ashraf, M. (2016). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus ) plants under water-deficit conditions. Pakistan Journal of Botany, 48, 877-883.
Niu, Y., Wang, Y., Li, P., Zhang, F., Liu, H., & Zheng, G. (2012). Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1mutants of Arabidopsis thaliana . Acta Physiologiae Plantarum, 35(4), 1189-1200.
Park, E. J., Jekni, Z., PINO, M.-T., Murata, N., & Chen, H. H. (2010). Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell & Environment,30(8), 994-1005.
Parvin, S., Uddin, S., Fitzgerald, G. J., Tausz-Posch, S., Armstrong, R., & Tausz, M. (2019). Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant and Soil, 436(1-2), 587-606.
Paula, Cerezini, Biana, Harumi, Kuwano, Michele, . . . Fernanda. (2016). Strategies to promote early nodulation in soybean under drought. Field Crops Research, 196, 160-167.
Puppo, A., Pauly, N., Boscari, A., Mandon, K., & Brouquisse, R. (2013). Hydrogen peroxide and nitric oxide: key regulators of the legume-rhizobium and mycorrhizal symbioses.Antioxidants & Redox Signaling, 18(16), 2202-2219.
Qian, P., Sun, R., Ali, B., Gill, R.A., Xu, L. & Zhou, W. (2014). Effects of hydrogen sulfide on growth, antioxidative capacity, and ultrastructural changes in oilseed rape seedlings under aluminum toxicity. Journal of Plant Growth Regulation, 33, 526-538.
Qu, L., Huang, Y., Zhu, C., Zeng, H., Shen, C., Liu, C., . . . Pi, E. (2016). Rhizobia-inoculation enhances the soybean’s tolerance to salt stress. Plant and Soil, 400(1), 209-222.
Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F., & Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell & Environment, 37(5), 1059-1073.
Rotaru, V., & Sinclair, T. R. (2009). Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environmental and Experimental Botany,66(1), 94-99.
Sato, Y., Masuta, Y., Saito, K., Murayama, S., & Ozawa, K. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa . Plant Cell Reports, 30(3), 399-406.
Shan, C. J., Zhang, S. L., Li, D. F., Zhao, Y. Z., Tian, X. L., Zhao, X. L., . . . Liu, R. Q. (2011). Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiologiae Plantarum, 33(6), 2533.
Shan, C., Zhang, S., & Ou, X. (2018). The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 255, 1257-1262.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012, 1-26.
Shen, G., Ju, W., Liu, Y., Guo, X., & Fang, L. (2019). Impact of urea addition and rhizobium inoculation on plant resistance in metal contaminated soil. International Journal of Environmental Research and Public Health, 16(11), 1955.
Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2010). Metabolomics for plant stress response.Physiologia Plantarum, 132(2), 199-208.
Stanton, K. M., & Mickelbart, M. V. (2014). Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic Res, 1, 14033.
Sun, Y. L., Li, F., Su, N., Sun, X. L., Zhao, S. J., & Meng, Q. W. (2010). The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica, 48(3), 400-408.
Tatiana, Verni, Jiyoung, Kim, Lisa, Frances, . . . Sun. (2015). The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell, 27(12), 3410-3424.
Tian, B., Qiao, Z., Zhang, L., Li, H. & Pei, Y. (2016). Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. Plant Physiology and Biochemistry, 109, 293-299.
Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids,35(4), 753-759.
Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., . . . Rastetter, E. B. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry , 58(1), 1-45.
Wang, X. (2004). Lipid signaling.Current Opinion in Plant Biology, 7 (3), 329-336.
Wang, Y., Li, L., Cui, W., Xu, S., Shen, W., & Wang, R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa ) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil, 351(1), 107-119.
Wang, Y., Zhang, Z., Zhang, P., Cao, Y., Hu, T., & Yang, P. (2016). Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.).Plant and Soil, 402(1), 247-261.
Watanabe, A., Okazaki, K., Watanabe, T., Osaki, M., & Shinano, T. (2013). Metabolite profiling of mizuna (Brassica rapa L. var. Nipponsinica) to evaluate the effects of organic matter amendments. Journal of Agricultural and Food Chemistry, 61(5), 1009-1016.
Yang, C., Zhao, W., Wang, Y., Zhang, L., Huang, S., & Lin, J. (2020). Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi. Microorganisms,8(3).
Yang, R., Howe, J. A., & Golden, B. R. (2019). Calcium silicate slag reduces drought stress in rice (Oryza sativa L .). Journal of Agronomy and Crop Science,205(4), 353-361.
Yin, L., Wang, S., Li, J., Tanaka, K., & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling ofSorghum bicolor . Acta Physiologiae Plantarum, 35(11), 3099-3107.
Yoo, C. Y., Pence, H. E., Jin, J. B., Miura, K., Gosney, M. J., Hasegawa, P. M., & Mickelbart, M. V. (2010). The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1 . Plant Cell, 22(12), 4128-4141.
Zhang, H., Jiao, H., Jiang, C. X., Wang, S. H., Wei, Z. J., Luo, J. P., & Jones, R. L. (2010). Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiologiae Plantarum, 32(5), 849-857.
Zhang, H., Prithiviraj, B., Charles, T. C., Driscoll, B. T., & Smith, D. L. (2003). Low temperature tolerantBradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area.European Journal of Agronomy, 19(2), 205-213.
Zhang, H., Ye, Y. K., Wang, S. H., Luo, J. P., Tang, J., & Ma, D. F. (2009). Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regulation, 58(3), 243-250.
Zhang, L., & Becker, D. F. (2015). Connecting proline metabolism and signaling pathways in plant senescence. Frontiers in Plant Science, 6, 552.
Zhang, N. N., Zou, H., Lin, X. Y., Pan, Q., Zhang, W. Q., Zhang, J. H., . . . Chen, J. (2020). Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean.Plant Cell & Environment, 43(5), 1130-1147.
Zhang, W., Tian, Z., Pan, X., Zhao, X., & Wang, F. (2013). Oxidative stress and non-enzymatic antioxidants in leaves of three edible canna cultivars under drought stress.Horticulture, Environment, and Biotechnology, 54(1), 1-8.
Zhang, X., Xu, Y., & Huang, B. (2019). Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea ). Plant Cell & Environment, 42(3).
Zhao, J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. Journal of Experimental Botany, 66(7), 1721-1736.
Zou, H., Zhang, N. N., Lin, X. Y., Zhang, W. Q., Zhang, J. H., Chen, J., & Wei, G. H. (2020). Hydrogen sulfide is a crucial element of the antioxidant defense system inGlycine maxSinorhizobium fredii symbiotic root nodules.Plant and Soil, 449(1), 209-231.
Zou, H., Zhang, N. N., Pan, Q., Zhang, J. H., Chen, J., & Wei, G. H. (2019). Hydrogen sulfide promotes nodulation and nitrogen fixation in soybean-rhizobia symbiotic system.Molecular Plant-Microbe Interactions, 32(8), 972-985.