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Recently, the rovibronic absorption and emission spectra of diatomic molecules dressed by
medium-intensity laser fields have been discussed. By computing the total absorption probability
as a function of dressing wavelength an asymmetric line shape has been obtained strongly resem-
bling to the well-known Fano line shape. Applying two-state analytical and three-state numerical
models the shape of the total absorption probability function is explained. Further confirmation of
the model based results is provided by high resolution accurate numerical computations using large
number of basis functions.

I. INTRODUCTION

Asymmetric spectral line shapes first emerged in atomic physics, when two quantum mechanically coupled transition
paths from a given ground state to an isolated discrete excited state and to a characterless continuum of states interfere
with each other. The eigenstates and/or transitions associated with the asymmetric line shape are neither purely
discrete nor purely continuous, but show a mixed character and are referred to as autoionising resonances. They were
discovered experimentally by Beutler [1], and later Fano generalized the theory by deriving analytic formula for the
asymmetric line shape [2], hence the name is “Fano line shape”. Subsequent to Fano’s work, the asymmetric Fano
profile has been observed in a wide variety of phenomena. It emerges e.g. in the field of molecular [3–13], nuclear
[14, 15] and solid state [16–18] physics, however, the mechanism is quite different for each example. In addition, the
Fano resonances are also key elements in the optics of plasmonic nanostructures [19–24] and metamaterials [25].

Recently, we have investigated the light-dressed rovibronic spectrum of the Na2 molecule [26, 27]. The dressing
process was described within the Floquet framework [28, 29] and assuming that the dressing field was turned on
adiabatically [30, 31], i.e., its envelope varies much slower than the rovibronic timescales characterizing the molecule.
We have computed the field-dressed rovibronic absorption spectra of this system in which we were able to identify the
direct signatures of the light-induced conical intersection (LICI) as well, which originate from the strong rovibronic
coupling in the field-dressed adiabatic electronic states and the nonadiabatic coupling induced by the LICI [26].

In these works [26, 27], less attention has been paid to the dressing-field wavelength dependence of the field dressed
absorption probability, however, this quantity shows quite an interesting shape. In spite of the lack of a continuum
channel in the model, an asymmetric line shape can be visualized in the quantity of total absorption probability versus
dressing wavelength (see Fig. 2), which resembles to the well known “Fano-like profile” [1, 2].

The goal of the present work is to understand and explain the origin of the asymmetric line shape of the total
absorption probability function of light-dressed molecules by unveiling the physical mechanism behind the adiabatic
light dressing process of molecules. Although at first sight it shows some similarities with the Fano line shape,
the present phenomenon is definitely something different because i) there is no continuum channel present in the
model and ii) there are separate numerical simulations for each dressing-field wavelength, and in this sense the total
absorption probability can not be seen as a standard spectrum.

II. FIELD-DRESSED STATES AND TRANSITION AMPLITUDES

The two step process and the numerical method were discussed in detail previously in [26]. Here, only the dressing
Hamiltonian and some relevant details on the numerical calculations are briefly summarized. Using the dipole ap-
proximation and considering only the ground V1(R) = X1

∑+
g and the first excited V2(R) = A1

∑+
u electronic states
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of Na2 molecule, the time-dependent (TD) Hamiltonian of the system can be written in Floquet framework [28, 29]
and can be obtained in a block diagonal form after neglecting the off-resonant light-matter coupling terms. The Nth
block of the Hamiltonian is

Ĥ(N) =

[
− ~2

2µ

∂2

∂R2
+

L2
θϕ

2µR2

]
⊗
[

1 0
0 1

]
+

[
V1(R) +N~ω (F0/2)d(R)cosθ

(F0/2)d(R)cosθ V2(R) + (N − 1)~ω

]
(1)

where R and (θ, ϕ) are the molecular vibrational and rotational coordinates, respectively, µ is the reduced mass, and
Lθϕ denotes the angular momentum operator of the nuclei. One of the rotational coordinates, θ, denotes the angle
between the polarization direction of the laser light and the direction of the transition dipole. F0 and ω are the
amplitude and the frequency of the dressing laser field, respectively, d(R) is the transition dipole matrix element in
the body-fixed frame. The potential energies V1(R) and V2(R) and the transition dipole moment were taken from
[32, 33]. The field-dressed eigenfunctions |ΨFD

i (N) > and quasi-energies EFDi (N) can be obtained by determining the
eigenpairs of the Hamiltonian of eq 1. The eigenfunctions |ΨFD

i (N) >can be expanded as the linear combination of
products of field-free molecular rovibronic eigenstates (denoted by |jνJ >, where the molecule is in the jth electronic,
νth vibrational, and Jth rotational state, and j = 1 and j = 2 stand for the ground and first excited electronic states,
respectively) and the Fourier vectors of the Floquet states, that is

|ΨFD
i (N) >=

∑
J,ν

ci,1νJ |1νJ > |N > +
∑
J,ν

ci,2νJ |2νJ > |N − 1 > (2)

where |N > is the Nth Fourier vector of the Floquet state and ci,jνJ are the expansion coefficients obtained by
diagonalizing the Hamiltonian of eq 1 after representing it in the basis of the field-free rovibrational states. Figure 1
displays the field-dressed diabatic potential energy curves of the V1(R) and V2(R) electronic states of Na2 as well as
the vibrational probability densities of the |1 0 0〉|N〉, |2 2 1〉|N−1〉 and |2 9 1〉|N〉 states.

To obtain the field-dressed rovibronic spectrum one has to compute the transition amplitudes between field-dressed
states |ΨFD

i (N) > and |ΨFD
j (N ′) > within the framework of first-order time-dependent perturbation theory. These

are as follows

< ΨFD
i (N)|d̂ cos θ|ΨFD

j (N ′) >=
∑

J,ν,J,,ν,

c∗i,1νJcj,2ν′J′ < 1νJ |d̂ cos θ|2ν′J ′ > δN,N ′−1 (3)

+
∑

J,ν,J,,ν,

c∗i,2νJcj,1ν′J′ < 2νJ |d̂ cos θ|1ν′J ′ > δN,N ′+1

where d̂ is the electric dipole moment operator.
The first term represents the field-dressed absorption and the corresponding intensity of transitions can be obtained

as

Ii,j ∝ |
∑

J,ν,J,,ν,

c∗i,1νJcj,2ν′J′ < 1νJ |d̂ cos θ|2ν′J ′ > |2. (4)

In what follows, we compute absorption spectra obtained from a single |ΨFD
i (N) >field-dressed state, which we

assume to be populated adiabatically from the field-free ground state, |1 0 0 >, by switching on the dressing field slowly.
Our working formula is eq 4 and the stick spectra are convolved with a Gaussian function with standard deviation
of σ = 50cm−1. We performed numerical simulation for several different dressing wavelengths and intensities, the
results are displayed on the right side of Fig. 2. Striking at first sight, that in the spectrum horizontal streaks
appear suggesting that the intensity of the spectrum depends on the wavelength of the dressing field. This trend looks
characteristic and independent from the dressing field intensity but towards higher intensities additional pronounced
patterns emerge.

To understand and quantify the above mentioned phenomenon further investigations are needed and therefore, we
compute the total absorption probability Itot =

∑
j Ii,j as well. Assuming that the ci,kνJ expansion coefficients in

eq 4 are real, we can obtain the following formula for the total absorption probability as function of dressing field
wavelength
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Itot =
∑

J,ν,J ′,ν′

(c2i,1νJT (1νJ |2ν′J ′)2 + 2
∑
J1,ν1

ci,1νJci,1ν1J1
T (1νJ |2ν′J ′)T (1ν1J1|2ν′J ′)

 . (5)

Here (J1 6= J or ν1 6= ν) and T (1νJ |2ν′J ′), T (1ν1J1|2ν′J ′) are the expressions of the corresponding transition dipole
matrix elements. The computed total absorption probabilities are shown on the left side of Fig. 2 for three different
dressing field intensities. It is eye catching that their asymmetric line shape resembles that of a Fano resonance. In
order to explain this finding on Fig. 2, a two-state analytical and a three-state numerical model are introduced and
examined.

III. RESULTS AND DISCUSSIONS

In this section a two-state analytical and three-state numerical model will be discussed so as to understand the
structure and shape of the total absorption probability function. For supporting the results given by these models,
an accurate N-state numerical calculations will also be provided.

A. Two-state analytical model

The model to be discussed here is a 2×2 diabatic potential matrix of the following type:

V =

[
VX W
W VA − ~ωL

]
. (6)

Here VX and VA are the potential energies which are coupled by a laser pulse of frequency ωL and W is the light-
matter coupling term. This matrix can easily be diagonalized to obtain the adiabatic eigenstates and eigenenergies

by using the two-dimensional orthogonal matrix U =

[
cosϕ sinϕ
− sinϕ cosϕ

]
. Here ϕ = 1

2 arctan 2W
VA−VX−~ωL

is the mixing

angle which is identical, up to an additive constant, to the ADT (adiabatic-to-diabatic transformation) angle. The
corresponding dressed eigenstates and eigenenergies are as follows:

ψl =
(

cosϕ, − sinϕ
)( ψX |1〉

ψA |0〉

)
; ψu =

(
sinϕ, cosϕ

)( ψX |1〉
ψA |0〉

)
(7)

and

V± =
VA + VX + ~ωL

2
±

√
(VA − VX − ~ωL)

2

2
+W 2. (8)

The spectral intensities between the different light-dressed states can be obtained as a straightforward application of

eq 5. These are: Il,u ∝ α2· cos4 ϕ = α2·
(

2W 2

4W 2+∆2−∆
√

(4W 2+∆2)

)2

; Iu,l ∝ α2· sin4 ϕ = α2·
(

2W 2

4W 2+∆2+∆
√

(4W 2+∆2)

)2

and Iu,u = Il,l ∝ α2· cos2 ϕ sin2 ϕ = α2· W 2

4W 2+∆2 = α2· 1

4+( ∆
W )

2 , where α =< ψX |d̂ cos θ|ψA > and ∆ = VA−VX−~ωL.
Let us define I1 which is equal to Il,u if VA ≥ VX+~ωL or Iu,l otherwise, and I2 = Iu,u = Il,l. Then the total absorption
can be obtained as:

Itot = I1 + I2 ∝ α2 ·

{
cos2(ϕ) if VA ≥ VX + ~ωL
sin2(ϕ) otherwise

= α2 · 2W 2

4W 2 + ∆2 − |∆|
√

4W 2 + ∆2
. (9)

A two-state model and the different spectral intensities are presented in Fig. 3. On the upper panel, the light dressing
process is visualized for different values of the tuning function ∆(ωL). We show how the corresponding adiabatic
dressed energies (Vl = V− , Vu = V+) are located to each other and with respect to the field-free VX , VA energies for
the different values of the tuning function ∆(ωL) S 0 . Note, that in the field-free case, the diabatic ground state is
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located at the bottom. As a result of dressing, the order of diabatic states can change (see in middle panel of Fig.
3 at ∆ = 0). Accordingly, the field-free ground state will no longer be at the bottom, and therefore, the order of
the corresponding adiabatic state from which the spectrum is computed also changes. It can be seen that in case of
∆(ωL) < 0 and ∆(ωL) > 0, the corresponding ψu, Vu and ψl, Vl states, respectively, are located closer to the field-free
ground states, therefore the dressed spectrum is measured from the ψu state if ∆(ωL) < 0 and from the ψl state if
∆(ωL) > 0. However, this is not unequivocal in the case of ∆(ωL) = 0, when the ψX |1〉 and ψA |0〉 diabatic states
are degenerate. In this situation the adiabatic approximation can not be applicable anymore. The corresponding
adiabatic energies and spectra for different situations are shown in the middle and lower panel of Fig. 3, respectively.
The black dotted line shows (in middle panel) the adiabatic states from which the total absorption Itot is measured
(in lower panel). It can be seen that there is a discontinuity at ∆(ωL) = 0 of the derivative of the total absorption
intensities, moreover the Iu,uand Il,l functions possess Lorenzian shape.

Note, that there is only a significant mixing between the diabatic states as long as the value of ∆ is comparable to
or less than the value of the W coupling strength. This requirement is more easily fulfilled in the three state model
discussed in the next section.

B. Three-state numerical model

The relevant 3×3 diabatic V matrix is given in the form

V =

 VX0 0 W
0 VX2 βW
W βW VA − ~ωL

. (10)

Here VX0
, VX2

and VA are the potential energies which are coupled by a laser pulse of frequency ωL . W is the
light-matter coupling term and the value of the β parameter is < ψX2

|d̂ cos θ|ψA > / < ψX0
|d̂ cos θ|ψA >. The

corresponding dressed eigenstates are as follows:

ψl =
(
cl,X0

, cl,X2
, cl,A

) ψX0
|1〉

ψX2
|1〉

ψA |0〉

 , (11)

ψm =
(
cm,X0 , cm,X2 , cm,A

) ψX0 |1〉
ψX2 |1〉
ψA |0〉

 ,

ψu =
(
cu,X0 , cu,X2 , cu,A

) ψX0 |1〉
ψX2 |1〉
ψA |0〉

 .

In this numerical model ψX0 , ψX2 and ψA are the diabatic wavefunctions that may correspond to the |1 0 0〉, |1 0 2〉
and |2 6 1〉 states of the Na2 molecule, respectively. β measures the ratio of the dipole matrix elements obtained with
different diabatic wavefunctions which can be approximated by similar ratio of the corresponding spherical functions

β ≈ 〈Y
0
1 | cos θ|Y 0

2 〉
〈Y 0

1 | cos θ|Y 0
0 〉

= 2/
√

5 ≈ 0.9. In this three-state model, the adiabatic eigenstates (ψl, ψm, ψu) and eigenenergies

(Vl, Vm, Vu) are calculated numerically. The arrangement of the adiabatic eigenenergies are displayed on the upper
panel of Fig. 4. Similarly to the two-state model, the spectrum is measured again from that adiabatic state which
corresponds to the field-free ground state. But after the dressing process, the field-free ground state will no longer
be at the bottom, the corresponding adiabatic state from which the spectrum is measured also changes. This is
shown in the second panel of Fig. 4 in which the black dotted lines denote the energy of the corresponding adiabatic
initial states. The total absorption spectrum is visualized in the third panel of Fig. 4. If ∆ < 0 the total absorption
probability is calculated from the middle adiabatic state, while in case of ∆ > 0, from the lower adiabatic one.
Similarly to the two-state model, at ∆ = 0 the corresponding diabatic states are degenerated, therefore the adiabatic
approximation can not be applied. It is clearly noticeable that the function of total absorption jumps at ∆ = 0. The
lower panel of Fig. 4 displays the coefficients of the diabatic wavefunctions. Applying eq. 5 for the three-state model,
it can easily be seen that the shape of the total absorption function is determined by the value of the cm,x0

and cm,x2

coefficients when ∆ < 0, while by the value of the cm,x0
and cm,x2

coefficients, when ∆ > 0. At ∆ < 0 the value of
cm,x0

is positive, while the value of cm,x2
is negative, but both continuously decrease as ∆→ 0. Therefore, the square

of their sum is monotonically decreasing. In case of ∆ > 0, the value of both coefficients are positive, the square of
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their sum increases for a while, reaches a maximum, and then begins to decrease. As a result, we obtained, at least
in some sense, a similar shape to the Fano profile, which originates from a basically different process.
In Fig. 5 total absorption probabilities for several different coupling strengths are displayed. It is striking that the
shapes of the curves at ∆ < 0 interval, regardless of the value of the coupling strengths, are similar and always
monotonically decrease. However, on the right side at ∆ > 0, the trend is different. Here, moving from the small
coupling values to the larger ones, the symmetrically shaped curves turn slowly to asymmetric ones. The increasing
coupling strength mixes the cm,x0

and cm,x2
coefficients more and more, resulting, at some point of ∆ > 0, significantly

larger and larger values for the square of their sum. If this amount reaches its maximum, a peak is formed, then the
curves slowly decrease, forming shapes that resemble Fano resonances. To demonstrate the similarity with the Fano
profile, in Fig. 5 at ∆ > 0, the Fano fitted curves are also displayed. Apart from the largest coupling strength, an
almost perfect fit has been achieved.

C. N-state numerical results

In realistic molecular systems it can be necessary to consider a large number of field-free eigenstates involved in the
dressing process. To investigate such an example, we turn our attention back to the light-dressed Na2molecule, for
which all the computational details can be found in [26]. In Fig. 6 we show total absorption probabilities as a function
of the dressing-light wavelength near the wavelength region, where the dressing field is resonant with the |241〉 ← |100〉
transition. The continuous line in Fig. 6 represents the total absorption from the light-dressed state, which is
connected to the |100〉 field-free ground state by the adiabatic theorem. The adiabatic one-to-one correspondence
between |100〉 and a specific light dressed state is unequivocal for off-resonant dressing-light wavelengths, in Fig. 6 the
correlating light-dressed states are the 56th and the 45th states, for blue- and red shifted wavelengths, respectively.
Near resonance, however, the many closely lying |10J〉 and |24J〉 states become strongly mixed and the adiabatic
theorem becomes less meaningful. This is clearly indicated by the several jumps in the continuous curve of Fig. 6.
Nonetheless, Fig. 6 demonstrates that even when a large number of field-free states are involved, by scanning through
resonance the character of the adiabatic light-dressed state changes, leading to the Fano-like line shape in the total
absorption, as predicted by the three-state model.

IV. CONCLUSIONS

Recently, a theoretical approach for simulating rovibronic absorption and emission spectra of diatomic molecules
dressed by medium-intensity laser fields has been developed [26, 27]. The showcase example was the homonuclear
sodium dimer molecule, which is a suitable for demonstrating and understanding various aspects of light-dressed
spectroscopy. By computing the total absorption probability as a function of dressing-field wavelength an asymmetric
line shape has been found strongly resembling to the well-known Fano profile. The present work is devoted to provide a
profound explanation for this behavior of the total absorption function by applying two-state analytical and three-state
numerical model.

To summarize the findings we may say the following. (i) First of all, our main conclusion is that the adiabatic dressing
approximation is not applicable at ∆ = 0 due to degeneracy of the diabatic states at this point. The adiabatic path
from which the spectrum is computed changes at ∆ = 0 and a jump may appear in the total absorption probability. (ii)
Due to the densely spaced rotational states, the significantly increasing interference terms (mixed product of diabatic
basis coefficients) lead to a peak in the interval of ∆ > 0, which reaches a maximum then slowly goes down with
further increasing the value of ∆. (iii) The above effect is significantly enhanced by increasing the coupling strength
which leads to a more efficient mixing of the coefficients providing the formation of even higher peaks. The higher
the coupling strength, the more prominent the effect. (iv) The total absorption probability can be an asymmetric,
but not continuous function. Despite its similarity to the well known Fano line shape, it is inherently different from
that one.

For supporting the results of the model studies, high-resolution accurate numerical calculations with large number
of diabatic basis functions were provided.
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Figure 1: Field-dressed diabatic potential energy curves (PECs) of Na2 obtained with a dressing-light wavelength of λ = 657
nm. The energy scale stands for quasienergy. Vibrational probability densities are drawn for the |1 0 0〉|N〉 (continuous black
line on the V1(R) + Nèω PEC), |2 2 1〉|N−1〉 (black dotted line on the V2(R) + (N − 1) èω PEC), and |2 9 1〉|N〉 (red dashed
line on the V2(R) + Nèω PEC) states. The vertical arrow represents absorption transition. The two product states with the
largest contribution to the field-dressed state correlating to |1 0 0〉 at F0 → 0 are |1 0 0〉|N〉 and |2 2 1〉|N − 1〉.
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Figure 5: The three-state numerical model. The total absorption probabilities and the different components of it calculated at
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W

− c;

a,b and c are parameters). The goodness of the fit is characterized by r2.
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a,b and c are parameters). The goodness of the fit is characterized by r2.


