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Abstract

In the present study, the Modified Equal Width (MEW) wave equation is go-
ing to be solved numerically by presenting a new technique based on collocation
finite element method in which trigonometric cubic B-splines are used as ap-
proximate functions. In order to support the present study, three test problems;
namely, the motion of a single solitary wave, interaction of two solitary waves
and the birth of solitons are studied. The newly obtained results are compared
with some of the other published numerical solutions available in the literature.
The accuracy of the proposed method is discussed by computing the numerical
conserved laws as well as the error norms Lo and L.
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1 Introduction

In nature, phenomena which are nonlinear in its characteristics have a deter-
ministic role in various fields of science such as waves, fluid mechanics, plasma
physics, optics, solid state physics, kinetics and geogology. Especially, in wave
studies, all of the phenomena such as dispersion, dissipation, diffusion, reaction
and convection become important [1].

The widely used nonlinear modelling for wave phemona is Korteweg de-Vries
(KdV) [2] equation of the following form

U + 6uUy + Ugzy = 0.

Then comes regularised long wave (RLW) equation for describing nonlinear
dispersive wave phenomena of the form

Up + Uy + WUy — Ugyt = 0 (1)



widely accepted as an alternative to KdV equation. The third equation used for
modelling those wave phenomena is known as the equal width (EW) equation
and presented in the following form [3]

Up + Uy — Ugzt = 0

Finally comes the modified equal width (MEW) equation closely in relation
with the RLW (1) is given in the following form under the physical boundary
conditions © — 0 if x — 400

g + euluy — pggr = 0. (2)

Here t and x denote time and space coordinates, respectively € and 4 are positive
parameters and u is related to the vertical displacement of the water surface. In
order to obtain the numerical solutions of MEW (2) for « € [a, ], the following
boundary conditions

u(a,t) = u(b,t) =0,
ug(a,t) = uy (b, t) =0,
umwt(aa t) = ummt(ba t) = 07

and the following initial condition,
u(z,0) = f(z), a<z<b,

has been considered, where f(z) is a sufficently smooth function. The MEW
(2) equation has the following solitary wave solution

u(z,t) = Asech [k (x — xog — ct)] (3)

where k = 1/,/i and ¢ = A%/2. In the literature, solitary waves are defined
as traveling waves while retaining their shapes and speeds because of delicate
balance between nonlinearity and dispersive effects, whereas, a soliton is a very
special type of solitary wave, retaining its shape and speed even after colliding
with another wave [4]. Although, those solitary waves can have both positive
and negative amplitudes, their speed is positive and proportional to the square
of their amplitudes. Morover, as with RLW equation, since all of them have
the same number of waves k = 1/,/x, they also have the same width [5]. The
conservation constants of the MEW equation for the above boundary conditions
are found by Olwer [6] as follows
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In the literature, one can encounter several exact and approximate solutions of
the MEW equation given with various initial and boundary conditions.Among



others, Hamdi et al. [7] have obtained exact solitary wave solutions of the gener-
alized equal width wave equation. Wazwaz [1] have studied the MEW equation
and two of its variants with the help of tanh and sine-cosine methods. Esen and
Kutluay [8] have utilized a linearized numerical scheme based on finite differ-
ence method to find out solitary wave solutions of the one-dimensional MEW
equation. Raslan [9] solved generalized EW equation numerically by collocation
of cubic B-splines finite element method. Jin [10] has suggested an analytical
approach based on the homotopy perturbation method for solving the MEW
equation. Lu [11] has introduced variational iteration method for finding the
solutions of the MEW equation . Esen [12] has obtained numerical solution of
the one-dimensional MEW equation with the help of a lumped Galerkin method
using quadratic B-spline finite element method. Celikkaya [13] has used oper-
ator splitting method for numerical solution of modified equal width equation.
Essa [14] has applied multigrid method for the numerical solution of the modi-
fied equal width wave equation. Zaki [5] has taken the solitary wave interactions
for the MEW equation into consideration by collocation method based on quin-
tic B-spline finite elements and he [15] also found out the numerical solution
of the EW equation by using least-squares method .Karakog and Zeybek [16]
have obtained the numerical solutions of the generalized equal width (GEW)
wave equation by using lumped Galerkin approach with the cubic B-spline func-
tions and they [17] have also used quintic B-spline collocation algorithm with
two different linearization techniques. Roshan [18] has sought the solutions
for the equation by using the Petrov-Galerkin method. Geyikli and Karakog
[19] obtained numerical solutions of the MEW equation by using collocation
method with septic B-spline finite elements with three different linearization
techniques and they [20] have also utilized subdomain finite element method
with quartic B splines. Saka [21] has obtained numerical solutions for time split
the MEW equation and space split the MEW equation using quintic B-spline
collocation method. Karakog and Geyikli [22] have obtained a numerical so-
lution of the MEW equation using sextic B-splines. Geyikli and Karakog [23]
have applied Petrov—Galerkin method with the cubic B-splines for solving the
MEW equation. Karako¢ and Geyikli [24] have obtained numerical solution of
the modified equal width wave equation Karakog [25] has dealth with applying
the cubic B-spline function to develop a numerical method for approximating
the analytic solution of the MEW equation. Evans and Raslan [26] have ob-
tained solitary waves for the generalized equal width (GEW) equation. Kaplan
and Dereli [27] have solved GEW equation by using moving least squares col-
location method. Cheng [28] has applied the improved element-free Galerkin
method applied to the MEW equation. Baghan et al [29] have used finite dif-
ference method combined with differential quadrature method with Rubin and
Graves linearizing technique for the numerical solution of the MEW equation.
In a recently published article, Baghan et al [30] have presented a new perspec-
tive for the numerical solution of the MEW equation. One can see some recently
published articles about physical pheonema such as given in Refs [31]-[33].The
presented method has the advantage of using less computer storage capacity
and less running computational time. This resulted in accurate results in short



simulation time. More recently, Shallal et al [34] have obtained exact solutions
of the conformable fractional EW and MEW equations by a new generalized
expansion method.

In this article, the error norms Lo and Lo, are going to be used to compare
the differences between exact and approximate solutions. Those widely used
error norms Lo and L, are computed by the following formulae

u;xact _ (UN)J'

)

N 2
Ly = HUEIGCt_UNHQE hz ‘
J=0

Lo = Huemc’5 — UNHOO ~ mjax u?mc’f — (UN)J-’ .

In the present article, the MEW equation is going to be handled using finite
element trigonometric B-spline cubic collocation method. During the solution
process, a Rubin-Graves type linearization technique is going to be utilized
to overcome the nonlinear term appearing in the equation. Then the newly
obtained results are goning to be compared with some of those available in the
literature.

2 Implementation of the method for space dis-
cretization

The MEW equation is generally given in the following form
ut+au2uz—,uumt:0, a<x<b

together with the physical boundary conditions U — 0 as © — 400, in which
t is time , x is the space coordinate and p is a positive parameter. For the
considered problems, the appropriate boundary conditions will be chosen as

Ul(a,t) =0, U(b,t) =0,
Us(a,t) =0, U (b, t) = 0.

Let us consider the solution interval [a, b] is divided into N finite elements
having equal lengths using the nodal points x;, ¢ = 0(1)N in such a way that
a=x9 < <xzy =>band h = (2,41 — 2;). The trigonometric cubic B-
splines T3 (x) , (m = —1(1)N +1), at the knots z,, are defined over the interval
[a,8] by [39
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The set of trigonometric cubic B-splines {72 (z), T (2), ..., T8, ()} forms a

basis for the smooth functions defined over [a,b]. Therefore, an approximation
solution Uy (x,t) can be written in terms of the trigonometric cubic B- splines
as trial functions:

m—+2
Ula.t) = Un(at) = Y THa)) (4)

where §;(t)’s are unknown, time dependent quantities to be determined from
the boundary and trigonometric cubic B-spline collocation conditions. Each
trigonometric cubic B-spline covers four elements so that each element [x;, z;11]
is covered by four trigonometric cubic B-splines. For this problem, the finite
elements are identified with the interval [x;, 2;11]. Using the nodal values U, UZ-/
and U;/are given in terms of the parameter ; by:

Ui = 04151'71 + 04251' + 04151'+1
U, = p10i—1 + B10i41
U, =y16i-1 + 720; + 71641

where

oy = sin? (g) csc(h) cse <%> , s = (1—%2720%(11))’
3((1 4 3cos (b)) csc?(£)) 3cot? (&

_ _ )
TS (2cos(L) + cos (22)) 2= (2+4cos(h))’



During the solution process, firstly, for the time discretization forward finite
difference scheme and then for the space discritization finite element collocation
method based on trigonometric cubic B-spline basis functions are going to be
implemented.

3 Implementation of the method for time dis-
cretization

Now, the MEW wave equation is discretized as follows
up + euuy — Mgyt = 0.

For this purpose, the Crank-Nicolson type scheme is implemented. Firstly the
equation is discretized as,
ygntt —gn (U2U,)" L + (U2U,)" uptt-ur,

At T ° 2 At 0 (5)

where Rubin and Graves type linearization technique [36] is used at the left
hand side of the Eq. (5) to linearize the nonlinear terms as given below

(vru,)"tt =urtyrur + vrurttor + uruturtt - 20U UL,
Accordingly, the following iterative scheme is obtained

At
Ut 4 aT(U"“U"U;L +urutttur + urununrtt —utuntun) - puntt
At
=U"+ 57(U2Um)” — uU”,

This scheme results in a system of equations consisting of (N 4 1) equations
and (N + 3) unknowns. Using the appropriate boundary conditions given with
the problem, the unknowns lying outside the solution domain of the problem
are eliminated. Thus a solvable system of equations is obtained. Now utilizing
this system, the calculations are carried out until the desired time level. But
for this, first of all, the initial values of the unknowns at time ¢ = 0 are needed.
The following section will deal with this step of the solution process.

3.1 Initial state

The initial vector d° is determined from the initial and boundary conditions.
So the approximation Eq. (4) must be rewritten for the initial condition

N+1

Un(z,0)= Y (613 (2)

m=-—1



where the 8 ’s are unknown parameters. The initial numerical approximation
Un(z,0) is required to satisfy the following conditions:

Un(z,0) =U(x;,0), 1=0,1,..
(Un)z(a,0) =0, (Un)2(b,0) =

Thus, these conditions lead to the matrix equation
wd’ =b
where

d° = (80,61,02,...,0N—2,0n—-1,6n)"
and

b= (U(z0,0),U(x1,0),U(z2,0),...,U(xn-2,0),U(zn-1,0),U(zx,0))".

4 Numerical examples

In this section, three common test problems about the MEW equation are going
to be solved and the results will be compared with some of those available in
the literature. If the exact solution of the test problem is available, then the
accuracy of the numerical method is going to be controlled by using the error
norms Lo and L

4.1 Problem I: Motion of a single solitary wave

The solitary wave solution of the MEW Eq.(2) is given by
u(z,t) = Asech(klx — xo — vt])

where k = \/1/u, A = y/6v/e. This solution corresponds to motion of a
single solitary wave of magnitude A, initially centered at the position zy and
propagating to the right side with a constant velocity v. The solitary wave
type solution (3) of Eq. (2) is not only on a unbounded region, but also at the
same time it has a solitary wave solution on the closed interval a < x < b. The
three invariants I1, I and I3 satisfied by the MEW (2) equation are computed
as follows by taking U; and UJ,- as the mesh values calculated from numerical
solution

XN: th:{U%ru } L=rY U

j=0 j=0 j=0

For this problem the analytical values of the invariants are [5]
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In order to be able to make a comparison with some of the studies in the
literature, the parameters as t = 20, u = 1, g = 30, A = 0.25 and At = 0.05

are used. In Figure 1, the movement of solitary wave has been given for various
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Figure 1: The single solitary wave solutions for values of A = 0.25,0.50,0.75
and 1.0 at time tfipq = 20.

values of amplitudes A = 0.25, 0.5, 0.75 and 1. From the figure, it is seen that
the larger wave with large amplitude has traveled a long way because of its
faster velocity.

In Table 1, h = 0.1, At = 0.2, A =0.25, g = 30 are taken over the region
0 <2 <80 at times tyina = 5,10,15 and 20. The newly obtained results are
compared with some of those available in the literature. From the table it is
clearly seen that the present results are better or in good agreement with those
given in compared references.

In Table 2, h = 0.1, At = 0.05, A =0.25, xg = 30 are taken over the region
0 <2 <80 at times tfinq = 20. The newly obtained results are compared with
some of those available in the literature. One can see that the newly obtained
results are in good agreement with those given in references.

In Table 3, a comparison of the error norms Lo, Lo, and invariants Iy, I, I3
of Problem I with those in Ref. [8] for h = At = 0.01, A = 0.25,0.50,0.75,1.0
and zo = 30 on 0 < 2 < 80 at time ¢ 74,4 = 20. From the table one can see that
the present error norms are better than those compared ones.



Table 1: A comparison of the error norms Ly and L., of Problem I for h = 0.1,
At =0.2,A=0.25 290 =30 0n 0 <z <80 at times tf;nq = 5,10, 15, 20.

Method tfinal L2 X 104 LOO X 104 Il _[2 I3
Present 5 1.276445  0.681926 0.7850300 0.1666259 0.0052058
10 1.319189  0.748057  0.7850300 0.1666259 0.0052058
15 1.385979  0.828043  0.7850300 0.1666259 0.0052058
20 1.471099 0.897036  0.7850300 0.1666259 0.0052058
Ref. [8] 5 0.682986  0.610149  0.7853976 0.1664731 0.0052083
10 1.362867 1.255591  0.7853984 0.1664732 0.0052083
15 2.036756  1.916829  0.7853976 0.1664733 0.0052083
20 2.701647  2.576377 0.7853977 0.1664736 0.0052083
Ref. [26] 5 0.473145 0.418872 0.7853712 0.1666095 0.0052078
10 0.990390 0.840128 0.7853424 0.1665994 0.0052072
15 1.499677  1.212955 0.7853751 0.1665922 0.0052067
20 2.021476  1.569539  0.7852864 0.1665818 0.0052061
Ref. [29] 5 0.011570  0.006221  0.7854014 0.1666672 0.0052084
10 0.010404 0.005784  0.7854008 0.1666668 0.0052084
15 0.022265 0.014353  0.7854038 0.1666680 0.0052084
20 0.011493 0.007664 0.7854013 0.1666670 0.0052084

Table 2: A comparison of the error norms Ls, Lo, and the invariants Iy, I, I3
of Problem I with some of the previous ones for h = 0.1, At = 0.05, A = 0.25,

2o =30 0on 0 <z <80 at time ¢ fina = 20.

Method L2 X 10d LOO X 10d Il IQ Ig
Present 0.146806  0.089667  0.7850300 0.1666259 0.0052058
Ref. [8] 0.269281  0.256997  0.7853977 0.1664735 0.0052083
Ref. [12 0.079694  0.046552 0.7853898 0.1667614 0.0052082
Ref. [13 0.175081  0.176288  0.7853982 0.1666666 0.0052083
Ref. [14 0.005208  0.005456  0.7853965 0.1666638 0.0052081
Ref. 20 0.051873  0.032113 0.7853967 0.1666664 0.0052083
Ref. [22 0.051774  0.032114 0.7853967 0.1666663 0.0052083
Ref. 23 0.080146 0.046121 0.7853967 0.1666663 0.0052083
Ref. |24 0.080098  0.046061  0.7853967 0.1666663 0.0052083
Ref. [25]1 0.175277 0.176465 0.7853966 0.1666662 0.0052083
Ref. [25|2 0.175270 0.176459 0.7853966 0.1666662 0.0052083
Ref. 26 0.290516  0.249892  0.7849545 0.1664765 0.0051995
Ref. |29 0.0016563 0.001194 0.7853979 0.1666671 0.0052084




Table 3: A comparison of the error norms Ls, L., and the invariants Iy, I, I of
Problem I with Ref. [8] for h = At = 0.01, A = 0.25,0.50,0.75,1.0 and 2y = 30
on 0 <z <80 at time tf;pq = 20.

A L2 X 10d LOO X 10d Il _[2 I3
0.25 Present 0.0014686 0.0009014 0.7853945 0.1666663 0.0052083
Ref. [8] 0.0026985 0.0026867 0.7853963 0.1666644 0.0052083
Exact 0.7853982 0.1666667 0.0052083

0.50 Present 0.0057187 0.0038677 1.5707889 0.6666650 0.0833329
Ref. [8] 0.0186465 0.0150972 1.5707920 0.6666588 0.0833333
Exact 1.5707963 0.6666667 0.0833333

0.75  Present 0.0229900 0.0149503 2.3561834 1.4999963 0.4218729
Ref. [8] 0.0519345 0.0366739 2.3561860 1.4999790 0.4218745
Exact 2.3561945 1.5000000 0.4218750

0.I0 Present 0.I010366 0.0626081 3.14I15779 2.6666660 1.3333267
Ref. [8] 0.1494558 0.0987068 3.1415790 2.6666350 1.3333310
Exact 3.1415927  2.6666667  1.3333333

4.2 Problem II: Interaction of two solitary waves

As a second test problem, Eq. (2) together with boundary conditions U — 0 as
x — £oo and the initial condition for all linearization techniques is considered
as

U(z,0) = Z Ajsech(k[z — x;])

Jj=1

where k = y/1/u. In order that the collision occurs, the solution domain is
taken as 0 < z < 80 for values of h = 0.1, At =02, u =1, Ay =1, Ay = 0.5,
x1 =15, 9 = 30. It is seen from Fig. 2 that the larger wave leaves the smaller
one its behind. In addition, there was no elastic collision because the waves
after the collision left small tail waves behind them. Because of this fact, these
two solitary waves are not considered as solitons [5]. Moreover, for values of
Ay =1, A, = 0.5, At = 0.2, a comparison has been made with those given in
Refs. [8] and [26].

In Table 4, a comparison of the invariants Iy, I, Is of Problem II with Refs.
[8] and [26] is made for h = 0.1, At = 0.2 on 0 < z < 80 at various times. It
is clearly seen that the invariants are well preserved after the initial time untill
the end of run-time.

4.3 Problem III: The Maxwellian initial condition

As the last test problem, the initial Maxwellian pulse is considered with the
initial condition in solitary waves given by

u(z,0) = e (6)

10



U (xy

U (xt)

U (x

1.0 4
i t=25
1.0 =0
084 0.8
0.6 0.6
=
X
<
N _
0.4 04
024 0.2
004 0.0
. . . . . T T T T T
0 20 40 60 80 0 2 40 60 80
X X
1.0
1.0 4
t=45
0.8 t=35
0.8 -
0.6
0.6
x>
X
04 g
2 0.4 -
024 0.2
0.0+ 0.04
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
X X
1.0 1.0+ -
=55 =80
0.8 0.8
0.6
0.6 N
X
<
S 04
0.4
0.2
0.2
0.0
0.0
T T T T T 02 T T T T T
20 40 60 80 0 20 40 60 80
X X

Figure 2: The interaction of two solitary waves at times ¢ = 0, 25, 35,45, 55 and

80.

11




Table 4: A comparison of Problem IT with those from Refs. [8], [26] with h = 0.1,
At=020n0<z <80

t Present method [8]

[26]

I I I3 I I I3 !

I

I3

0 4712388 3.333336 1.416669 4.712388 3.329462 1.416669 4.712388
10 4.710180 3.331961 1.415419 4.712389 3.328927 1.416103 4.712022
20 4.710180 3.331341 1.414833 4.712387 3.328361 1.415523 4.711697
30 4.710181 3.329523 1.413184 4.712388 3.327818 1.413882 4.711242
40  4.710181 3.329690 1.413358 4.712385 3.327112 1.414050 4.711017
50 4.710180 3.330105 1.413629 4.712388 3.326632 1.414330 4.710804
55  4.710180 3.329860 1.413359 4.712386 3.326393 1.414062 4.710630
60 4.710180 3.329600 1.413079 4.712388 3.326228 1.413785

70 4.710180 3.329056 1.412516 4.712388 3.325891 1.413228

80 4.710180 3.328490 1.411954 4.712389 3.325434 1.412671

3.332357
3.324678
3.324210
3.346583
3.321250
3.320956
3.323628

1.416670
1.400768
1.401182
1.424847
1.398239
1.398729
1.399068

Table 5: The invariants I, Is, I3 of Problem III for various values of p at time
t=12.5.

I I I3 I I I
nw=0.5 n=0.1
Present 1.77235 1.87971  0.88597 1.77244 1.37783 0.88619
Ref. [13] 1.77245 1.88008 0.88623 1.77249 1.37774  0.88627

1 =0.05 p=0.02
Present  1.77246 1.31444 0.88644 177256 1.274240.88660
Ref. [13] 1.77254 1.31431 0.88639 1.77275 1.27458 0.88717
w = 0.005 w = 0.0025
Present 1.77311 1.23603  0.86783 1.76963 1.19626 0.81240

Ref. [13] 1.77465 1.25032  0.89902 1.77868 1.24930 0.92893

with the boundary condition

u(—20,0) = u(20,0) = 0, > 0.

Maxwellian initial condition (6) breaks up into a number of solitary waves de-
pending on values of p. The calculations are carried out for values of u = 0.5,
0.1, 0.05, 0.02, 0.005, 0.0025, h = 0.05, At = 0.01 and ¢t = 12.5. Figure 3
shows Maxwellian initial condition for those parameters on —20 < x < 20 at
time trinal = 12.5.

In Table 5, a comparison of the invariants I, Is, I3 of Problem III with Refs.
[13] for various values of p = 0.5, 0.1, 0.05, 0.02, 0.005, 0.0025 and h = 0.05,
At = 0.01 and t = 12.5 is presented.

12
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Figure 3: Maxwellian initial condition for h = 0.05, At = 0.01, u = 0.5, 0.1,
0.05, 0.02, 0.005, 0.0025 on —20 < z < 20 at time tjpq = 12.5.
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5

Conclusion

In this paper, numerical solutions of the MEW equation based on the trigono-
metric cubic B-spline finite element have been presented. Three test problems
are worked out to examine the performance of the algorithms. The performance
and accuracy of the method is shown by calculating the error norms Lo and L.
For each linearization technique, the error norms are sufficiently small and the
invariants are satisfactorily constant in all computer runs. The computed results
show that the present method is a remarkably successful numerical technique
for solving the MEW equation and advisable for getting numerical solutions of
other types of non-linear equations.
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