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1. Introduction

In this paper, we study the following Cauchy problem of the sixth order gen-
eralized Boussinesq type equation in Rn, describing the surface waves in shallow
waters ( [1, 2])

utt −∆u + ∆2u−∆utt −∆3u = ∆f(u), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.2)

where the nonlinear term has the form f(u) = O(|u|p), p > 1.
Boussinesq’s theory was the first to give a satisfactory, scientific explanation

of the phenomenon of solitary waves discovered by Scott Russell [24]. The classical
Boussinesq equation can be written

utt − uxx + αuxxxx = (u2)xx, (1.3)

where α ∈ R depends on the depth of fluid and the characteristic speed of long
waves. Actually the classical Boussinesq equation is a dispersive equation for α > 0.
The dispersion comes from the term uxxxx. By taking advantage of the dispersion,
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the well-posedness and scattering of solutions to the Cauchy problem of (1.3) and
its generalized versions were established in [6, 8, 12, 14]. For other results on local
existence, finite time blowup, stability and instability of solitary waves and so
on, see [3, 5, 7, 13, 25, 33] and references therein. Also, the equation (1.3) with the
damped term −∂txxu were studied by many researchers, see [15,26] and so on.

Following the work of the Boussinesq equation (1.3), various of Boussinesq
type equations have been carried out to describe different physical process. For
example, Makhankov [17] modified (1.3) to describe ion-sound waves in plasma as
follows

utt − uxx − uxxtt = (u2)xx. (1.4)

Samsonov, Sokurinskaya [22] modified (1.3) and (1.4) to describe the nonlinear
waves propagation in waveguide with the possibility of energy exchange through
lateral surfaces of the waveguide as follows

utt − uxx + uxxxx − uxxtt = (u2)xx. (1.5)

Furthermore, Schneider and Wayne [23] modified (1.5) to model the water wave
problem with surface tension as below

utt − uxx + uxxxx − uxxtt + uxxxxtt = (u2)xx. (1.6)

For the Boussinesq type equations (1.4)-(1.6) and their generalized versions, all
are dispersive equations. The dispersions were regarded as the basic tool for the
existence and scattering, see [16,28,31]. The local existence and finite time blowup
were studied by [10, 32, 34]. For the equations (1.4)-(1.6) with the damped term
−utxx, there are also many results, see [11,19,20,30] and so on.

For the equation (1.1), it is also a Boussinesq type equation and dispersive
equation. But as far as we know, there are few results. Up to now, there are only
some results about the equation (1.1) with the damped term −∆ut. For example,
the initial boundary value problem was investigated in [35], they obtained the ex-
istence of strong solutions and the long time asymptotic. Later, [27,29] considered
the Cauchy problem, they established the global existence and asymptotic behav-
ior for small initial data. These results all depended on deeply the important role
of the dissipation term −∆ut. Inspired by the studies of Boussinesq type equations
(1.3)-(1.6), it is nature to ask whether we can use the dispersion in (1.1) to obtain
some fundamental mathematical results without the dissipation term −∆ut.

Let’s observe the dispersion in (1.1). By the method of the Green function,
we can transform the Cauchy problem (1.1)-(1.2) into an integral equation. Con-
sidering the Cauchy problem

{
∂ttG−∆G + ∆2G−∆Gtt −∆3G = 0,

G(x, 0) = 0, ∂tG(x, 0) = δ.
(1.7)

By the Fourier transform ·̂ in (1.7), one has
{

∂ttĜ + |ξ|2Ĝ + |ξ|4Ĝ + |ξ|2Ĝtt + |ξ|6Ĝ = 0,

Ĝ(ξ, 0) = 0, ∂tĜ(ξ, 0) = 1.
(1.8)

The characteristic equation of (1.8) is

τ2 + |ξ|2 + |ξ|4 + |ξ|2τ2 + |ξ|6 = 0,
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which implies

τ = ±ip(|ξ|),
where

p(|ξ|) = |ξ|
√

1 + |ξ|2 + |ξ|4
1 + |ξ|2 .

Thus, one can solve the Cauchy problem (1.8)

Ĝ(ξ, t) =
sin(tp(|ξ|))

p(|ξ|) , ∂tĜ(ξ, t) = cos(tp(|ξ|)).

The Duhamel principle implies that the solution of (1.1)-(1.2) is represented by

u(t) = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ t

0

∆
1−∆

G(t− τ) ∗ f(u)(τ)dτ, (1.9)

where ∂tG(t) and G(t) are defined as

∂tG(t) = F−1 cos(tp(|ξ|)), G(t) = F−1 sin(tp(|ξ|))
p(|ξ|) ,

and F−1 is the inverse Fourier transform. From the expression of the Green func-
tion G, the equation (1.1) exhibits a dispersion phenomenon which is due to the
presence of terms ∆u, ∆2u, ∆3u. This is closely related to the dispersive estimate
for the operator eitp(|∇|) defined by the Fourier integral

eitp(|∇|)f = F−1eitp(|ξ|)f̂ =
∫

Rn

ei(xξ+tp(|ξ|))f̂dξ. (1.10)

In order to describe the main results in this paper, we introduce some no-
tations and spaces. The dual number of r (1 6 r 6 ∞) is denoted by r′, i.e.
1
r + 1

r′ = 1. The notation f ∈ g(|∇|)X means g−1(|∇|)f ∈ X for a function space
X, where |∇| is defined by ˆ(|∇|f)(ξ) = |ξ|f̂(ξ). Lq = Lq(Rn) and W s,q(Rn) =
(1 − ∆)−

s
2 Lq(Rn)(1 6 q 6 ∞, s ∈ R) denote Lebesgue spaces and inhomo-

geneous Sobolev spaces, respectively. In particular, Hs = W s,2. Ḃs
r,q and Bs

r,q

(1 6 r, q 6 ∞, s ∈ R) represent the homogeneous and inhomogeneous Besov
spaces, respectively.

The first result in this paper is to obtain the dispersive estimate (1.10). The
strategy is described. We can use the stationary phase estimate to get the desired
decay estimate in R. Due to the symbol p(|ξ|) of the operator is a radial function,
we can use the Fourier transform of a radial function to reduce the problem to one
dimensional case in Rn(n > 2) . This way to deal with dispersive estimates has
been applied by many mathematicians [9, 16,31] an so on.

Theorem 1.1. If 2 6 r 6 ∞, then we have for f ∈ Θ−(1− 2
r )Ḃ

n
r

r′,1 ∩ Ḃ
n
r′
r′,1 that

‖eitp(|∇|)f‖L∞ . (1 + |t|)−n
2 (1− 2

r )‖f‖
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

,

where Θ is a operator defined by

Θg = F−1
(p′(|ξ|)
|ξ|

)−n−1
2 (p′′|ξ|))− 1

2 ĝ.
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By making use of the above dispersive estimate, we obtain the estimates in
L∞ space of linear part and nonlinear part associated to the equation (1.1), respec-
tively, which we apply to study the existence and decay of global small amplitude
solutions to the Cauchy problem (1.1)-(1.2) by the method of the contractive map-
ping principle.

Theorem 1.2. Suppose when n = 1 and 2 < r < 4 or when n > 2 and 2 < r < ∞,
s > n

r′ and

p > s, p >
2
r′

+ max{1,
1

n
2 (1− 2

r )
},

there exists small δ > 0 such that

‖u0‖
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1∩Hs

+ ‖u1‖
p(|∇|)

(
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1∩Hs

) 6 δ.

Then the Cauchy problem (1.1)-(1.2) possesses a unique solution u(x, t) ∈ C(R;Hs)
with a positive number ρ depending on p, δ, r such that

sup
t∈R

(1 + |t|)n
2 (1− 2

r )‖u‖L∞ + sup
t∈R

‖u‖Hs 6 ρ.

With the help of the representation of solutions (1.9) and the decay of solutions
in Theorem 1.2, we can construct the scattering of solutions.

Theorem 1.3. Let u(x, t) be the solution to the Cauchy problem (1.1)-(1.2) in
Theorem 1.2. Then there exists the unique solution u± of the linear equation cor-
responding to (1.1), i.e. f = 0, with initial data

û±0 = û0 +
∫ ±∞

0

sin(τp(ξ))
|ξ|2

p(|ξ|)(1 + |ξ|2) f̂(ξ, τ)dτ,

û±1 = û1 −
∫ ±∞

0

cos(τp(ξ))
|ξ|2

1 + |ξ|2 f̂(ξ, τ)dτ,

such that
‖u(t)− u±(t)‖Hs = O(|t|−θ(p−1)+1), t → ±∞,

where s, θ, p are the same in Theorem 1.2.

The paper is organized as follows. We obtain the dispersive estimate in Section
2 and establish the existence and decay of global solutions in Section 3. Section 4
is to construct the scattering of solutions obtained in Section 3.

Throughout this paper, we denote by R,Z the set of real numbers and integer
numbers, respectively. Positive constants C vary from line to line. A . B denote
A 6 CB, A ∼ B means that A . B and B . A hold at the same time.

2. The dispersive estimate

In this section, we aim to prove the dispersive estimate. Firstly, let us recall
the classical lemmas about the stationary phase estimate and Bessel function.

Lemma 2.1. [18,21] (Stationary phase estimate)
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(i) Suppose φ is a real-valued function and smooth in (a, b), satisfying |φ(k)(x)| >
1 for all x ∈ (a, b). Then∣∣∣∣∣

∫ b

a

eiλφ(x)dx

∣∣∣∣∣ 6 Ckλ−
1
k

holds when k > 2 or k = 1 and φ′(x) is monotonic.
(ii) Let h(x) be a smooth function in (a, b), then under the assumptions on φ in

(i), we have∣∣∣∣∣
∫ b

a

eiλφ(x)h(x)dx

∣∣∣∣∣ 6 Ckλ−
1
k (‖h‖L∞ + ‖h′‖L1).

Lemma 2.2. [18,21] (Properties of the Bessel function)
The Bessel function Bm(r)(0 < r < ∞,m > − 1

2 ) is

Bm(r) =
rm

2mΓ(m + 1
2 )π

1
2

∫ 1

−1

eirt(1− t2)m− 1
2 dt,

which has the properties
(i) Bm(r) 6 Crm and d

dr (r−mBm(r)) = −r−mBm+1(r).
(ii) r−

n−2
2 Bn−2

2
(r) = CnRe(eirh(r)), where h(r) is a smooth function satisfying

|∂k
r h(r)| 6 Ck(1 + r)−

n−1
2 −k, k > 0.

Then we recall the Littlewood Paley decomposition. Suppose ψ:Rn → [0, 1]
be a smooth radial cut-off function

ψ(ξ) =





1, |ξ| 6 1,
smooth, 1 < |ξ| < 2,

0, |ξ| > 2.

Set

η(N−1ξ) = ψ(N−1ξ)− ψ(2N−1ξ), (N ∈ 2Z),
then the Littlewood-Paley operator PN can be defined by

PNg = F−1(η(
ξ

N
)ĝ).

Furthermore, we define the operator P̃N by

P̃Ng = F−1

{(
η(

2ξ

N
) + η(

ξ

N
) + η(

ξ

2N
)
)

ĝ

}
,

then
P̃NPN = PN P̃N = PN .

From now on, we always set

Θ(|ξ|) =
(p′(|ξ|)
|ξ|

)−n−1
2 (p′′|ξ|))− 1

2 .

In order to prove Theorem 1.1, the embedding Ḃ0
∞,1 ↪→ L∞ implies that it is

enough to prove

‖eitp(|∇|)f‖Ḃ0
∞,1

. (1 + |t|)−n
2 (1− 2

r )‖f‖
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

, (2.1)
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Equivalently,

‖eitp(|∇|)PNf‖L∞

. (1 + |t|)−n
2 (1− 2

r )
(
Θ1− 2

r (N)N
n
r ‖P̃Nf‖Lr′ + N

n
r′ ‖P̃Nf‖Lr′

)
. (2.2)

Since

eitp(|∇|)PNf = eitp(|∇|)PN P̃Nf =
∫

Rn

ei(xξ+tw(ξ))η(
ξ

N
) ̂̃
PNfdξ, (2.3)

by the Hölder and Hausdorff-Young inequalities, we have for any 2 6 r 6 ∞ that

‖eitp(|∇|)PNf‖L∞ . ‖η(
ξ

N
)‖Lr′‖ ̂̃

PNf(ξ)‖Lr . N
n
r′ ‖P̃Nf‖Lr′ . (2.4)

Thus, it follows from (2.2) and (2.4) that we only need to prove that when |t| > 1,

‖eitp(|∇|)PNf‖L∞ . |t|−n
2 (1− 2

r )Θ1− 2
r (N)N

n
r ‖P̃Nf‖Lr′ . (2.5)

In order to prove the inequality (2.5), due to the proof of the case n = 1 is
rather easier than that of the case of n > 2, we divided our proof into the following
two lemmas.

Lemma 2.3. When n = 1 and 2 6 r 6 ∞ and |t| > 1, then

‖eitp(|∇|)PNf‖L∞ . |t|− 1
2 (1− 2

r )Θ1− 2
r (N)N

1
r ‖P̃Nf‖Lr′ .

Proof. By (2.3), the Hölder and Hausdorff-Young inequalities, we have

‖eitp(|∇|)PNf‖L∞ =
∥∥∥∥
∫

R
ei(xξ+tp(ξ))η(

ξ

N
) ̂̃
PNfdξ

∥∥∥∥
L∞

6
∥∥∥∥
∫

R
ei(xξ+tp(ξ))η(

ξ

N
)dξ

∥∥∥∥
L∞

‖ ̂̃
PNf‖L∞

.
∥∥∥∥
∫

R
ei(xξ+tp(ξ))η(

ξ

N
)ξ

∥∥∥∥
L∞

‖P̃Nf‖L1 . (2.6)

Next, we need to deal with the estimate of one dimensional oscillation integral∥∥∥∥
∫

R
ei(xξ+tp(ξ))η(

ξ

N
)dξ

∥∥∥∥
L∞

.

Let
Ψ(ξ) = xξ + tp(|ξ|),

then
Ψ′′(ξ) = tp′′(|ξ|) > 0.

We have by Lemma 2.1 (i) that

sup
x∈R

∣∣∣∣
∫

R
eitp(|ξ|)η(

ξ

N
)dξ

∣∣∣∣ . |t|− 1
2 |p′′(N)|− 1

2 . |t|− 1
2 Θ(N), (2.7)

where we have used the fact |p′′(|ξ|)| > Cp′′(N) for any |ξ| ∈ (N
2 , 2N). By (2.6)

and (2.7), we have

‖eitp(|∇|)PNf‖L∞ . |t|− 1
2 Θ(N)‖P̃Nf‖L1 . (2.8)

Setting r′ = 2 in (2.4), we have

‖eitp(|∇|)PNf‖L∞ . N
1
2 ‖P̃Nf‖L2 . (2.9)
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Interpolating (2.8) with (2.9) implies

‖eitp(|∇|)PNf‖L∞ . |t|− 1
2 (1− 2

r )Θ1− 2
r (N)N

1
r ‖P̃Nf‖Lr′ .

Thus we complete the proof of Lemma 2.3. ¤

Lemma 2.4. When n > 2 and 2 6 r 6 ∞ and |t| > 1, then

‖eitp(|∇|)PNf‖L∞ . |t|−n
2 (1− 2

r )Θ1− 2
r (N)N

n
r ‖P̃Nf‖Lr′ .

Proof. A similar estimate with (2.6) shows that

‖eitp(|∇|)PNf‖L∞ .
∥∥∥∥
∫

Rn

ei(xξ+tp(|ξ|))η(
ξ

N
)ξ

∥∥∥∥
L∞

‖P̃Nf‖L1 . (2.10)

Thus, it is necessary to obtain the estimate of the multidimensional oscillation
integral ∥∥∥∥

∫

Rn

ei(xξ+tp(|ξ|))η(
ξ

N
)dξ

∥∥∥∥
L∞

.

By changing the variable ξ 7→ Nξ and the scaling invariance of ‖ · ‖L∞ , we get∥∥∥∥
∫

Rn

ei(xξ+tp(|ξ|))η(
ξ

N
)dξ

∥∥∥∥
L∞

= Nn

∥∥∥∥
∫

Rn

ei(Nxξ+tp(|Nξ|))η(|ξ|)dξ

∥∥∥∥
L∞

= Nn

∥∥∥∥
∫

Rn

ei(xξ+tp(|Nξ|))η(|ξ|)dξ

∥∥∥∥
L∞

.

where supp η(ξ) ⊂ {ξ : 1
2 6 |ξ| 6 2}. Furthermore, the Fourier transform of a

radial function (see [21]) gives

Nn

∫

Rn

ei(xξ+tp(|Nξ|))η(|ξ|)dξ = Nn

∫ ∞

0

eitp(Nr)η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr.

Thus, we have∥∥∥∥
∫

Rn

ei(xξ+tp(|ξ|))η(
ξ

N
)dξ

∥∥∥∥
L∞

= Nn

∥∥∥∥
∫ ∞

0

eitp(Nr)η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr

∥∥∥∥
L∞

. (2.11)

Setting

JN (t, x) = Nn

∫ ∞

0

eitp(Nr)η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr,

we go to estimate the term ‖JN (t, x)‖L∞ . Some simple calculations give

p(r) = r

√
r4 + r2 + 1

1 + r2
,

p′(r) =
2r6 + 4r4 + 2r2 + 1

(1 + r2)
3
2 (r4 + r2 + 1)

1
2
,

p′′(r) =
r3(2r8 + 8r6 + 18r4 + 19r2 + 10)

(1 + r2)
5
2 (r4 + r2 + 1)

3
2

.

If |x| 6 2, let

Drg :=
1

itNp′(Nr)
d

dr
g, (D∗r)g := − 1

itN

d

dr
(

1
p′(Nr)

g),
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then
Dr(eitp(Nr)) = eitp(Nr).

Integrating by parts for any q ∈ Z+ implies

JN (t, x) = Nn

∫ ∞

0

eitp(Nr)η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr

= Nn

∫ ∞

0

Dq
r(e

itp(Nr))η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr

= Nn

∫ ∞

0

eitp(Nr)(D∗r)q(η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|))dr. (2.12)

By the chain rule of derivation, one has

(D∗r)q(η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|))

=
1

(−itN)q

q∑

k=0

Ck,qFq∂
q−k
r (η(r)rn−1(r|x|)−n−2

2 Bn−2
2

(r|x|)),

where

Fq =
∑

q1,...,qk∈Ξq
k

q∏

j=1

∂mj
r (

1
p′(Nr)

),

and

Ξq
k = {m1, ..., mq ∈ Z+ : 0 6 m1 6 m2 6 ... 6 mq,m1 + m2 + ... + mq = k}.

For any m > 0, r ∈ [ 12 , 2], we have

|∂m
r (

1
p′(Nr)

)| .
{

1, N < 1,
N−1, N > 1.

(2.13)

By (i) in Lemma 2.2, we have for |x| 6 2 and m > 0,

|∂m
r (η(r)rn−1(r|x|)−n−2

2 Bn−2
2

(r|x|))| . 1. (2.14)

It follows from(2.12)-(2.14) that

|JN (t, x)| .
{ |t|−qNn−q, N < 1,
|t|−qNn−2q, N > 1.

(2.15)

If |x| > 2, (iii) in Lemma 2.2 implies that

JN (t, x) = Nn

∫ ∞

0

eitp(Nr)η(r)rn−1(r|x|)−n−2
2 Bn−2

2
(r|x|)dr

= Nn

∫ ∞

0

eitp(Nr)η(r)rn−1(eir|x|h(r|x|) + e−ir|x|h(r|x|))dr

= JN1(t, x) + JN2(t, x), (2.16)

where

JN1(t, x) = Nn

∫ ∞

0

eit(p(Nr)+
r|x|

t )η(r)rn−1h(r|x|)dr,

JN2(t, x) = Nn

∫ ∞

0

eit(p(Nr)− r|x|
t )η(r)rn−1h(r|x|)dr.
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We focus on the case of t > 0. For JN1(t, x), we set

Ψ1(r) = p(Nr) +
r|x|
t

, Ω′1(r) = Np′(Nr) +
|x|
t

> 0.

From (iii) in Lemma 2.2, we obtain for |x| > 2 and m > 0,

|∂m
r (η(r)rn−1h(r|x|))| . |x|−n−1

2 . 1. (2.17)

With the help of stationary phase estimate as the case of |x| < 2, it follows from
(2.13) and (2.17) that for any q > 0,

|JN1(t, x)| .
{ |t|−qNn−q, N < 1,
|t|−qNn−2q, N > 1.

(2.18)

For JN2(t, x), we set

Ψ2(r) = p(Nr)− r|x|
t

, Ψ′2(r) = Np′(Nr)− |x|
t

, Ψ′′2(r) = N2p′′(Nr).

which implies that there exists one critical point

|x|
t

= Np′(Nr).

When
|x|
t

> 100 sup
r∈[ 12 ,2]

Np′(Nr) or
|x|
t

<
1

100
inf

r∈[ 12 ,2]
Np′(Nr),

then

Ψ′2(r) 6= 0, ∀r ∈ [
1
2
, 2].

Similar to the estimate of JN1(t, x), we have

|JN2(t, x)| .
{ |t|−qNn−q, N < 1,
|t|−qNn−2q, N > 1.

(2.19)

When
1

100
inf

r∈[ 12 ,2]
Np′(Nr) 6 |x|

t
6 100 sup

r∈[ 12 ,2]

Np′(Nr),

then

|x| ∼ tNp′(Nr). (2.20)

By (ii) in Lemma 2.1, we have that

JN2(t, x) = Nn

∫ ∞

0

eitΨ2(r)η(r)rn−1h(r|x|)dr

. Nn(|tN2p′′(Nr)|)− 1
2 F (x), (2.21)

where

F (x) = sup
r∈[ 12 ,2]

|η(r)rn−1h(r|x|)|+
∫ ∞

0

|∂r(η(r)rn−1h(r|x|)|dr.

Let us estimate the function F (x). By (iii) in Lemma 2.2, we have

|F (x)| . |x|−n−1
2 .
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Inserting the above estimate into (2.21) and then using (2.20), we have

JN2(t, x) . Nn(|tN2p′′(Nr)|)− 1
2 |x|−n−1

2

. |t|− 1
2 Nn(N2p′′(Nr))−

1
2 (N |t|p′(Nr))−

n−1
2

. |t|−n
2
(p′(N)

N

)−n−1
2 (p′′(N))−

1
2

= |t|−n
2 Θ(N).

It follows from

Θ(N) =
(p′(N)

N

)−n−1
2 (p′′(N))−

1
2 ∼

{
N

n
2−2, N < 1,
1, N > 1,

(2.22)

and (2.11), (2.15), (2.18), (2.19) with q = n
2 that

sup
x∈Rn

|JN2(t, x)| . |t|−n
2 Θ(N). (2.23)

It follows from (2.10), (2.11) and (2.23) that

‖eitp(|∇|)PNf‖L∞ . |t|−n
2 Θ(N)‖P̃Nf‖L1 . (2.24)

Setting r′ = 2 in (2.4), we have

‖eitp(|∇|)PNf‖L∞ . N
n
2 ‖P̃Nf‖L2 . (2.25)

Interpolating (2.24) with (2.25) implies

‖eitp(|∇|)PNf‖L∞ . |t|−n
2 (1− 2

r )Θ1− 2
r (N)N

n
r ‖P̃Nf‖Lr′ .

Thus we complete the proof of Lemma 2.4. ¤

The proof of Theorem 1.1: It follows from Lemmas (2.3) and (2.4) that the
inequality (2.5) actually holds. By (2.4) and (2.5), we deduce that the inequality
(2.2) is valid, which results in the inequality (2.1) holds. Thanks to the embedding
Ḃ0
∞,1 ↪→ L∞, the result of Theorem 1.1 is proved.

In fact, the dispersive estimate in Theorem 1.1 is very useful to estimate the
linear part ‖(∂tG∗u0, G(t)∗u1)‖L∞ , but it is not enough to estimate the nonlinear
part

∥∥∥
∫ t

0
∆

1−∆G(t− τ) ∗ f(u)dτ
∥∥∥

L∞
, because we do not have the embedding Lr′ ↪→

Ḃ0
r′,1. In order to overcome the difficulty, we go to refine the dispersive estimate

in Theorem 1.1 by using the Besov space Ḃ0
r′,2 instead of the Besov space Ḃ0

r′,1.
Let us introduce the operators

{
Λα,β = Λα(1 + Λ2)

β−α
2 ,

Λ̂ = |ξ|.
It was known in [6] and [16] for any ε > 0 that

Λ−1
−ε,εḂ

0
∞,2 ↪→ L∞. (2.26)
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Corollary 2.5. If 2 6 r 6 ∞ and suppose w(|∇|) is a Lp(1 6 p 6 ∞) bounded
operator, then we have for f ∈ (w(|∇|)Θ)−(1− 2

r )Ḃ
n
r

r′,2 ∩ Ḃ
n
r′
r′,2 that

‖eitp(|∇|)w(∇)f‖L∞ .





‖Λ−ε,εf‖
Ḃ

n
r′
r′,2

, t ∈ R,

|t|−n
2 (1− 2

r )‖Λ−ε,εf‖
(w(|∇|)Θ)−(1− 2

r
)Ḃ

n
r

r′,2
, |t| > 1.

Proof. Since w(|∇|) is a L∞ bounded operator, we have

‖eitp(|∇|)w(∇)f‖L∞ . ‖eitp(|∇|)f‖L∞ .

By (2.4), we have for any ε > 0,

‖eitp(|∇|)PNf‖L∞ . N
n
r′ Λε,−ε(N)‖P̃NΛ−ε,ε(N)f‖Lr′ ,

which implies that

‖eitp(|∇|)PNΛ−ε,ε(N)f‖L∞ . N
n
r′ ‖P̃NΛ−ε,ε(N)f‖Lr′ . (2.27)

Taking the l2 norm in (2.27) and using the embedding (2.26) give that

‖eitp(|∇|)f‖L∞ . ‖eitp(|∇|)Λ−ε,εf‖Ḃ0
∞,2

. ‖Λ−ε,εf‖
Ḃ

n
r′
r′,2

. (2.28)

When |t| > 1, by (2.8)-(2.9) and (2.24)-(2.25), we have

‖eitp(|∇|)PNw(|∇|)f‖L∞ . |t|−n
2 Θ(N)w(N)‖P̃Nf‖L1 ,

and

‖eitp(|∇|)PNw(|∇|)f‖L∞ . ‖eitp(|∇|)PNf‖L∞ . N
n
2 ‖P̃Nf‖L2 ,

which deduce that

‖eitp(|∇|)PNw(|∇|)f‖L∞

. |t|−n
2 (1− 2

r )(Θw)1−
2
r (N)N

n
r Λε,−ε(N)‖P̃NΛ−ε,ε(N)f‖Lr′ ,

that is equivalent to

‖eitp(|∇|)PNΛ−ε,ε(N)w(|∇|)f‖L∞

. |t|−n
2 (1− 2

r )(Θw)1−
2
r (N)N

n
r ‖P̃NΛ−ε,ε(N)f‖Lr′ . (2.29)

Taking the l2 norm in (2.29) and using the embedding (2.26) give that

‖eitp(|∇|)w(|∇|)f‖L∞ . ‖eitp(|∇|)Λ−ε,εw(|∇|)f‖Ḃ0
∞,2

. |t|−n
2 (1− 2

r )‖Λ−ε,εf‖
(w(|∇|)Θ)−(1− 2

r
)Ḃ

n
r

r′,2
. (2.30)

It follows from (2.28) and (2.30) that the result of Corollary 2.5 holds. ¤

3. Existence and decay of solutions

In this section, we go to establish the global existence and decay of solutions
to the Cauchy problem (1.1)-(1.2). In the sequel, we always set

γ =
n

2
(1− 2

r
).
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3.1. The estimate of linear part

In this subsection, we aim to establish the L∞ and L2 estimates of linear part
associated to the Cauchy problem (1.1)-(1.2).

Lemma 3.1. If 2 6 r 6 ∞ and

u0 ∈ Θ−(1− 2
r )Ḃ

n
r

r′,1 ∩ Ḃ
n
r′
r′,1,

u1 ∈ p(|∇|)
(
Θ−(1− 2

r )Ḃ
n
r

r′,1 ∩ Ḃ
n
r′
r′,1

)
.

Then

‖(∂tG ∗ u0, G(t) ∗ u1)‖L∞

. (1 + |t|)−γ

(
‖u0‖

Θ−(1− 2
r

)Ḃ
n
r

r′,1∩Ḃ
n
r′
r′,1

+ ‖u1‖
p(|∇|)

(
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

)
)

.

Proof. We first focus on the estimate of ‖∂tG ∗ u0‖L∞ .

‖∂tG ∗ u0‖L∞ =
∥∥∥∥
∫

Rn

eixξcos(p(ξ)t)û0dξ

∥∥∥∥
L∞

=
∥∥∥∥
∫

Rn

eixξ eitp(ξ) + e−itp(ξ)

2
û0dξ

∥∥∥∥
L∞

∼
∥∥∥∥
∫

Rn

ei(xξ+tp(ξ))û0dξ

∥∥∥∥
L∞

=
∥∥∥eitp(|∇|)u0

∥∥∥
L∞

. (3.1)

Theorem 1.1 and (3.1) deduce that

‖∂tG ∗ u0‖L∞ . (1 + |t|)−γ‖u0‖
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

. (3.2)

Then we go to estimate ‖G(t) ∗ u1‖L∞ .

‖G(t) ∗ u1‖L∞ =
∥∥∥∥
∫

Rn

eixξ sin(p(ξ)t)
p(ξ)

û1dξ

∥∥∥∥
L∞

=
∥∥∥∥
∫

Rn

eixξ eitp(ξ) − e−itp(ξ)

2ip(ξ)
û1dξ

∥∥∥∥
L∞

∼
∥∥∥∥
∫

Rn

ei(xξ+tp(ξ)) 1
p(ξ)

û1dξ

∥∥∥∥
L∞

= ‖eitp(|∇|) 1
p(|∇|)u1‖L∞ . (3.3)

It follows from Theorem 1.1 and (3.3) that

‖G(t) ∗ u1‖L∞ . (1 + |t|)−γ‖u1‖
p(|∇|)

(
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

). (3.4)

Concluding (3.2) and (3.4) implies the Lemma 3.1 holds. ¤

Lemma 3.2. If s ∈ R and u0 ∈ Hs, u1 ∈ p(|∇|)Hs, then

‖(∂tG ∗ u0, G(t) ∗ u1)‖Hs . ‖u0‖Hs + ‖u1‖p(|∇|)Hs .
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Proof. By the Plancherel Theorem, we have

‖∂tG ∗ u0‖Hs = ‖(1−∆)
s
2 ∂tG ∗ u0‖L2 = ‖(1 + |ξ|2) s

2 cos(itp(|ξ|))û0‖L2

= ‖(1 + |ξ|2) s
2 û0‖L2 = ‖u0‖Hs .

Similarly, we also obtain

‖G(t) ∗ u1‖Hs = ‖u1‖p(|∇|)Hs .

Concluding the above two equations, we complete Lemma 3.2. ¤

3.2. The estimate of nonlinear part

In this subsection, we aim to establish the L∞ and L2 estimates of nonlinear
part associated to the Cauchy problem (1.1)-(1.2). Firstly, we recall the chain of
fractional derivation.

Lemma 3.3. ( [6, 11,28]) Suppose s with 0 6 s 6 p, then

‖∇sf(u)‖Lr 6 ‖u‖p−1

L(p−1)r1
‖∇su‖Lr2 ,

for r1 ∈ (1,∞], r2 ∈ (1,∞), 1/r1 + 1/r2 = 1. Furthermore,

‖f(u)‖Hs 6 ‖u‖p−1
L∞ ‖u‖Hs .

‖f(u)− f(v)‖L2 . (‖u‖p−1
L∞ + ‖v‖p−1

L∞ )‖u− v‖L2 .

Then with the help of the Lemma 3.3, we have

Lemma 3.4. Suppose when n = 1 and 2 6 r < 4 or when n > 2 and 2 6 r < ∞,
then we have for s > n

r′ that
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ fdτ

∥∥∥∥
L∞

.
∫ t

0

(1 + |t− τ |)−γ‖u‖p− 2
r′

L∞ ‖u‖
2
r′
Hsdτ.

Proof. Due to (3.3), we have
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ fdτ

∥∥∥∥
L∞

=
∥∥∥∥
∫ t

0

ei(t−τ)p(|∇|) ∆
p(|∇|)(1−∆)

fdτ

∥∥∥∥
L∞

6
∫ t

0

∥∥∥∥ei(t−τ)p(|∇|) ∆
p(|∇|)(1−∆)

f

∥∥∥∥
L∞

dτ.

Let us compute the pseudo-differential operator

∆
p(|∇|)(1−∆)

=
−|∇|2

1 + |∇|2 ·
√

1 + |∇|2
|∇|

√
1 + |∇|2 + |∇|4

=
−|∇|√

1 + |∇|2
√

1 + |∇|2 + |∇|4 .

Denote w(|∇|) by

ω(|∇|) =
|∇|√

1 + |∇|2
√

1 + |∇|2 + |∇|4 .

Thus, we have
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ fdτ

∥∥∥∥
L∞

6
∫ t

0

∥∥∥ei(t−τ)p(|∇|)w(|∇|)f
∥∥∥

L∞
dτ. (3.5)
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Since w(|∇|) is a −2 order pseudo-differential operator, it is a Lp(1 6 p 6 ∞)
bounded operator. By Corollary 2.5, we have∥∥∥ei(t−τ)p(|∇|)w(|∇|)f

∥∥∥
L∞

. ‖Λ−ε,εf‖
Ḃ

n
r′
r′,2

. (3.6)

When |t| > 1, by Corollary 2.5, we have∥∥∥ei(t−τ)p(|∇|)w(|∇|)f
∥∥∥

L∞
. |t− τ |−γ‖Λ−ε,εf‖

(w(|∇|)Θ)−(1− 2
r

)Ḃ
n
r

r′,2
. (3.7)

Now we analyze the norm ‖Λ−ε,εf‖
(w(|∇|)Θ)−(1− 2

r
)Ḃ

n
r

r′,2
. Due to

w(N) =
N

(1 + N2)
1
2
· 1
(N4 + N2 + 1)

1
2
∼

{
N, N < 1,

N−2, N > 1,
(3.8)

and

Λ−ε,ε(N) = N−ε(1 + N2ε) ∼
{

N−ε, N < 1,
N ε, N > 1,

(3.9)

it follows from (2.22) and (3.8)-(3.9) that

Θ1− 2
r (N)w1− 2

r (N)Λ−ε,ε(N) ∼
{

N
n
2−n

r−(1− 2
r )−ε, N < 1,

N−2(1− 2
r )+ε 6 Nε, N > 1.

(3.10)

By (3.9), we can get for s > n
r′ and ε > 0 small enough that

‖Λ−ε,εf‖
Ḃ

n
r′
r′,2

. ‖f‖
Ḃ

n
r′ −ε

r′,2
+ ‖f‖

Ḃ
n
r′ +ε

r′,2
. ‖f‖Bs

r′,2
. (3.11)

By (3.10), we have∥∥∥Θ1− 2
r w(1− 2

r )(|∇|)Λ−ε,εf
∥∥∥

Ḃ
n
r

r′,2
. ‖f‖

Ḃ
n
2 −(1− 2

r
)−ε

r′,2
+ ‖f‖

Ḃ
n
r

+ε

r′,2
. (3.12)

By some computations, we have{
s > max

{
2
r − 1

2 , 1
r′

}
= 1

r′ , n = 1, 2 6 r < 4,
s > max

{
n
2 − (1− 2

r ), n
r′

}
= n

r′ , n > 2, 2 6 r < ∞,

which combining with (3.12) shows that∥∥∥Θ1− 2
r w(1− 2

r )(|∇|)Λ−ε,εf
∥∥∥

Ḃ
n
r

r′,2
. ‖f‖Bs

r′,2
. (3.13)

By the embedding W s,r′ ↪→ Bs
r′,2(1 < r 6 2) and Lemma 3.3, we obtain

‖f‖Bs
r′,2

. ‖f‖W s,r′ . ‖u‖p−1

L
2(p−1)r

r−2
‖u‖Hs .

The interpolation of Lebesgue spaces implies that

‖u‖p−1

L
2(p−1)r

r−2
. ‖u‖p− 2

r′
L∞ ‖u‖

2
r′−1

Hs .

By the above inequalities, one has

‖f‖Bs
r′,2

. ‖u‖p− 2
r′

L∞ ‖u‖
2
r′
Hs . (3.14)

Thus it follows from (3.5)-(3.7) and (3.11)-(3.14) that
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ f(τ)dτ

∥∥∥∥
L∞

.
∫ t

0

(1 + |t− τ |)−γ‖u‖p− 2
r′

L∞ ‖u‖
2
r′
Hsdτ.

we complete the proof of Lemma 3.4. ¤
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Lemma 3.5. It holds that for s ∈ R,
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ f(τ)dτ

∥∥∥∥
Hs

6
∫ t

0

‖u‖p−1
L∞ ‖u‖Hsdτ.

Proof. By (3.5), we knows that
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ f(τ)dτ

∥∥∥∥
Hs

6
∫ t

0

∥∥∥ei(t−τ)p(|∇|)(1−∆)
s
2 w(|∇|)f

∥∥∥
L2

dτ.

By the fact w(|∇|) is a Lp(1 6 p 6 ∞) bounded operator, we have∥∥∥ei(t−τ)p(|∇|)(1−∆)
s
2 w(|∇|)f

∥∥∥
L2

.
∥∥(1−∆)

s
2 f

∥∥
L2 .

By Lemma 3.3, we obtain∥∥(1−∆)
s
2 f(u)

∥∥
L2 . ‖u‖p−1

L∞ ‖u‖Hs .

Concluding the above inequalities completes the proof of Lemma 3.5 ¤

3.3. Existence and decay of global small amplitude solutions

In this subsection, we establish the existence and decay of global small am-
plitude solutions. Let us introduce a metric space

χs,θ
ρ = {u ∈ L∞(R;L∞) ∩ L∞(R;Hs)| sup

t∈R
(1 + |t|)γ‖u‖L∞ + sup

t∈R
‖u‖Hs 6 ρ}

with the metric defined by

d(u, v) = ‖u− v‖L∞(R;L2).

By the standard way, the metric space (χs,θ
ρ , d) is a complete metric space, see [6].

Then in order to prove the Theorem 1.2, we recall a primary lemma.

Lemma 3.6. ( [6, 11,28]) For any a, b > 0 and max{a, b} > 1, it holds
∫ t

0

(1 + t− s)−a(1 + s)−bds 6 C(1 + t)−min{a,b}.

The proof of Theorem 1.2: Consider the mapping M ,

M(u) = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ t

0

∆
1−∆

G(t− τ) ∗ f(u)(τ)dτ. (3.15)

Let u ∈ χs,θ
ρ . By using Lemmas 3.1 and 3.4, we have

‖M(u)‖L∞ 6 ‖∂tG(t) ∗ u0 + G(t) ∗ u1‖L∞ +
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ f(u)(τ)dτ

∥∥∥∥
L∞

. (1 + |t|)−γ

(
‖u0‖

Θ−(1− 2
r

)Ḃ
n
r

r′,1∩Ḃ
n
r′
r′,1

+ ‖u1‖
p(|∇|)

(
Θ−(1− 2

r
)Ḃ

n
r

r′,1∩Ḃ
n
r′
r′,1

)
)

+
∫ t

0

(1 + |t− τ |)−γ‖u‖p− 2
r′

L∞ ‖u‖
2
r′
Hsdτ. (3.16)

According to the information of space χs,θ
ρ , we have from (3.16) that

‖N(u)‖L∞ . (1 + |t|)−γδ + ρp

∫ t

0

(1 + |t− τ |)−γ(1 + |τ |)−(p− 2
r′ )γdτ. (3.17)
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The condition p > 2
r′ + max{1, 1

γ } implies that

(p− 2
r′

)γ > max{γ, 1}. (3.18)

Combining (3.17) and (3.18) with Lemma 3.6 deduces that for small enough δ and
ρ, it holds

sup
t∈R

(1 + |t|)γ‖M(u)‖L∞ . δ + ρp 6 ρ

2
. (3.19)

Using Lemmas 3.2 and 3.5 in (3.15) deduces that for small enough δ and ρ,

‖M(u)‖Hs 6 ‖∂tG(t) ∗ u0 + G(t) ∗ u1‖Hs +
∥∥∥∥
∫ t

0

∆
1−∆

G(t− τ) ∗ f(u)(τ)dτ

∥∥∥∥
Hs

. δ +
∫ t

0

‖u‖p−1
L∞ ‖u‖Hsdτ

. δ + ρp

∫ t

0

(1 + |τ |)−(p−1)γdτ. (3.20)

The fact 1 < r′ < 2 and inequality (3.18) imply that

(p− 1)γ > (p− 2
r′

)γ > max{γ, 1}. (3.21)

By (3.20)-(3.21), we have

‖M(u)‖Hs . δ + ρp 6 ρ

2
. (3.22)

Therefore, the inequalities (3.19) and (3.22) mean that

M : χs,θ
ρ 7→ χs,θ

ρ .

For any u, v ∈ χs,θ
ρ , by Lemma 3.3, we have

‖f(u)− f(v)‖L2 . (‖u‖p−1
L∞ + ‖v‖p−1

L∞ )‖u− v‖L2 .

Then

‖M(u)−M(v)‖L2 .
∫ t

0

‖f(u)− f(v)‖L2dτ

. ρp−1d(u, v)
∫ t

0

(1 + |τ |)−(p−1)θdτ . ρp−1d(u, v), (3.23)

which implies that for small enough ρ, M is a contractive mapping in space χs,θ
ρ .

Therefore, the existence and uniqueness of solution u ∈ χs,θ
ρ to (1.1)-(1.2)

have been established by the contraction mapping principle. From the standard
argument, we can extend u(t) ∈ L∞(R;Hs) to u(t) ∈ C(R;Hs). Thus we complete
the proof of Theorem 1.2.
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4. Scattering

In this section, we go to establish the scattering of solutions obtained in
Section 3.

The proof of Theorem 1.3: Let u± solve the Cauchy problem

utt −∆u + ∆2u−∆utt −∆3u = 0,

u(x, 0) = u±0 (x), ut(x, 0) = u±1 (x).

Then u± can be expressed by

u± = ∂tG(t) ∗ u±0 + G(t) ∗ u±1 .

Equivalently,

û± = cos(tp(|ξ|))û±0 +
sin(tp(|ξ|))

p(|ξ|) û±1 .

By the definition of initial data (u±0 , u±1 )) in Theorem 1.3, we have

û± = cos(tp(|ξ|))û0 +
sin(tp(|ξ|))

p(|ξ|) û1

+
∫ ±∞

0

(cos(tp(|ξ|)) sin(τp(|ξ|))− sin(tp(|ξ|)) cos(τp(|ξ|))) |ξ|2
p(|ξ|)(1 + |ξ|2) f̂dτ

= cos(tp(|ξ|))û0 +
sin(tp(|ξ|))

p(|ξ|) û1 +
∫ ±∞

0

sin((t− τ)p(|ξ|)) −|ξ|2
p(|ξ|)(1 + |ξ|2) f̂dτ,

which implies that

u± = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ ±∞

0

∆
1−∆

G(t− τ) ∗ f(u)(τ)dτ. (4.1)

By Lemma 3.3, we have

‖f(u)‖Hs . ‖u‖p−1
L∞ ‖u‖Hs .

By (1.7) and (4.1), one has

‖u(t)− u±(t)‖Hs .
∣∣∣∣
∫ ±∞

t

‖f(u)‖Hsdτ

∣∣∣∣

. ρp

∣∣∣∣
∫ ±∞

t

(1 + |τ |)−(p−1)γdτ

∣∣∣∣
. ρp|t|−(p−1)γ+1.

which implies the result of Theorem 1.3.
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