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Abstract
Objective To investigate the association between the maternal lipid profile in early pregnancy and embryonic growth. 
Design Prospective population-based cohort study.
Setting Rotterdam, the Netherlands.
Population We included 1474 women from the Generation R(otterdam) Study.
Methods The maternal lipid profile was defined as total cholesterol, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), remnant cholesterol, non-high-density (non-HDL-c) lipoprotein cholesterol concentrations and the triglycerides/high-density lipoprotein (TG/HDL-c) ratio. Additionally, maternal glucose concentrations were assessed. Associations were studied with linear regression models, adjusted for confounding factors: maternal age, pre-pregnancy BMI, parity, educational level, ethnicity, smoking and folic acid supplement use
Main Outcome Measures Crown-rump length (CRL).
Results Triglycerides and remnant cholesterol concentrations are positively associated with embryonic growth (fully adjusted models, 0.17 SDS: 95% CI 0.03 ; 0.30, and 0.17 SDS: 95% CI 0.04 ; 0.31, respectively). These associations were not present in women with normal weight (triglycerides and remnant cholesterol: fully adjusted model, 0.44 SDS: 95% CI 0.15 ; 0.72). Associations between maternal lipid concentrations and embryonic growth were not attenuated after adjustment for glucose concentrations. Total cholesterol, HDL-c, LDL-c, non-HDL-c concentrations and the TG/HDL-c ratio were not associated with embryonic growth.
Conclusions Higher triglycerides and remnant cholesterol concentrations in early pregnancy are associated with increased embryonic growth, most notably in overweight women.
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Tweetable abstract The maternal lipid profile in pregnancy is associated with embryonic growth.

Introduction
In pregnancy, lipids are crucial for the developing fetus and to maintain placental function.(1) Lipids are fatty substances that are either absorbed from food or synthesized by the liver, and comprise of cholesterol, triglycerides and lipoproteins. Cholesterol is crucial to provide structural integrity to the cell membrane.(2, 3)
To facilitate the requirements of the developing fetus, the concentrations of maternal lipids such as triglycerides and total cholesterol rise over the course of pregnancy.(4, 5) Pregnant women with low cholesterol concentrations have a higher risk for fetal growth restriction (FGR), preterm birth, and small-for-gestational age neonates.(6-9) Women affected by the Smith-Lemli-Opitz syndrome, an inherited metabolic disease that results in a decreased cholesterol production, are at a higher risk of giving birth to small-for-gestational age neonates.(2, 7) Low LDL-c has even been proposed as a clinical marker for FGR risk assessment.(10) In contrast, a growing body of evidence from animal and human studies also suggests adverse consequences of increased lipid concentrations in pregnancy. High maternal total cholesterol and triglyceride concentrations are associated with an increased risk of hypertensive disorders of pregnancy, preterm birth and large for gestational age (LGA) neonates.(11-13) Additionally, triglycerides and remnant cholesterol are associated with higher birth weight and infant weight, as well as with the risk of LGA-related complications.(13-15) This is in line with the fetal over-nutrition hypothesis, which suggests that apart from maternal glucose concentrations, other maternal nutrients also contribute to (excess) fetal growth.(16) Additionally, it is proposed that in case of maternal obesity, there is an increased availability of these nutrients and thereby an increased risk for this over-nutrition.(16)
Due to the increase in a sedentary lifestyle and a higher intake of calories, a growing number of women of reproductive age are obese and have abnormally elevated lipid levels.(17, 18) As a consequence of these abnormally elevated lipid levels , more women are at risk for an adverse course and outcome of pregnancy.(11, 12) These adverse outcomes do not only affect health of the offspring in the short term, but also have far reaching effects on the health of the offspring in adulthood.(19-21) Therefore, it is important to identify and mitigate factors that have an adverse effect on embryonic and fetal growth and birth outcomes, both for the long- and short-term health of the offspring.
Until recently, most studies focused on the association between the maternal lipid profile and fetal development in the later phases of pregnancy, and birthweight. However, we hypothesize that an effect of maternal lipids on embryonic growth in early pregnancy may already be present. This is substantiated by the fact that embryonic growth early in pregnancy is strongly associated with fetal growth throughout pregnancy, and birth outcomes.(22, 23) Our aim was therefore to investigate the association between the maternal lipid profile in early pregnancy and embryonic growth. 
Methods
Design and study population 
This study was embedded in the Generation R Study, a large multi-ethnic population-based prospective cohort study in the city of Rotterdam, the Netherlands.(24, 25) The study protocol has been approved by the Medical Ethics Committee of the Erasmus University Medical Centre (Erasmus MC), Rotterdam (MEC-2007-413). Written informed consent was obtained from all participants. We excluded women with a twin pregnancy, gestational diabetes, diabetes mellitus and women using medication for the regulation of glucose or cholesterol at the moment of study enrolment. The study population comprised 1474 women with a known last menstrual period (LMP), a regular menstrual cycle (28 days, range 24 – 32 days), a live born singleton and of whom information was available on lipid measurements in early pregnancy and ultrasonic assessment of embryonic growth (Figure 1). 
Maternal lipid and glucose concentrations in early pregnancy
Non-fasting blood was sampled early in pregnancy (median 12.4 weeks of gestation, 90% range [11.0 - 13.7]) by trained research nurses. Details of the processing procedures have been described earlier.(25) After thawing, the total cholesterol (mmol/L) and HDL-c (mmol/L) concentrations were determined using standard laboratory methods. Concentrations of LDL-c were calculated using the Friedewald equation.(26) This calculation is not valid when the triglyceride level is ≥400 mg/dL. In this study population, there are no women with triglycerides above 400 mg/dL. Remnant cholesterol was calculated as the total cholesterol minus LDL-c and minus HDL-c ([total cholesterol – LDL-c] – HDL-c). Non-HDL-c was calculated by subtracting HDL-c from total cholesterol (total-cholesterol – HDL-c). The TG/HDL-ratio was calculated by TG divided by the HDL-c concentration (TG/ HDL-c) (Table S1). Both cholesterol, TG and glucose (mmol/l) were measured with the c702 module on a Cobas 8000 analyzer (Roche, Almere, The Netherlands). Results on maternal lipid levels in this cohort have previously been published.(13) 
Maternal anthropometrics
We collected information about pre-pregnancy weight by questionnaire, and measured height and weight at enrollment. Questionnaire based weight and measured height were then used to calculate BMI (kg/m2). The correlation of pre-pregnancy weight obtained by questionnaire and weight measured at enrollment was high (ρ = 0.97, P < 0.01).(27) Normal weight was defined as a BMI <25.0 kg/m2 and overweight was defined as a BMI ≥ 25.00 kg/m2.
Embryonic growth and birth weight
Embryonic growth was assessed by ultrasound examinations using an Aloka model SSD-1700 (Tokyo, Japan) or the ATL-Philips Model HDI 5000 (Seattle, WA, USA). Ultrasound examinations for this study were performed by dedicated ultrasonographers at each prenatal visit to the designated research centers.(24) The crown-rump length (CRL) was measured in a true mid-sagittal plane with the genital tubercle and the spine longitudinally in view, according to standard procedures.(22, 28, 29) Intra-class correlation coefficients for intra-observer and inter-observer reproducibility of crown to rump length measurements were 0.998 and 0.995.(28) Gestational age (GA) adjusted standard deviation scores (SDS) were constructed for the CRL measurements. These scores were based on reference growth curves from the whole study population and represent the equivalent of Z-scores.(30) We obtained information on birth weight from midwifery and obstetric medical records. Gestational-age-adjusted SDS for birth weight were constructed using North European growth standards as the reference growth curve and represent the equivalent of z-scores.(30, 31) 
Pregnancy dating
The gestational age is the most important determinant of fetal growth. In clinical practice, pregnancy dating is based on the CRL. However, for the purpose of analyses with CRL as the outcome, gestational age should be based on the LMP.(32) In this study, pregnancy dating was thus based on the last known menstrual period in women with a regular menstrual cycle.(22) The first day of the last menstrual period was derived from the referral letter of the community midwife or hospital.(22) At the ultrasound visit, we checked this date with the mother and obtained additional information on the regularity and duration of the menstrual cycle.
Covariates
In a consensus meeting (DG, AP, ES, JRvL), we identified confounders for the association between maternal lipid concentrations and embryonic growth. This resulted in a Directed Acyclic Graph (DAG) (Supplementary Figure 1).(33) The identified confounders were: maternal age (continuous), pre-pregnancy BMI (continuous), parity (nulliparous, multiparous), educational level (no education finished, lower education, middle education, higher education), ethnicity (Dutch and Western, Turkish and Moroccan, African, Asian), smoking (never smoked during pregnancy, smoked until pregnancy was known, continued smoking in pregnancy), folic acid supplement use (started preconceptionally, started in first 10 weeks of pregnancy, no folic acid supplement intake) and glucose concentrations (continuous). Information on maternal characteristics during pregnancy including maternal age, self-reported pre-pregnancy weight, number of previous pregnancies, ethnicity, educational level and smoking were available from four questionnaires, applied during pregnancy. 
Statistical analysis
 First, baseline characteristics and the distribution of the covariates were determined. We examined potential differences in baseline characteristics between women included and excluded from the analysis. Differences in continuous variables with a normal distribution (mean, SD) were analyzed with Students t-test, and variables with a skewed distribution (median, 90% range) with the Mann-Whitney U test. Categorical variables were analyzed with chi-square tests (Table S2). 
Second, multivariate linear regression analyses were performed to study the association between differences in embryonic growth for the lower and upper tertiles of the maternal lipid concentrations, compared to the middle tertile. We carried out tests for trends based on multiple linear regression models with the maternal lipid concentrations as a continuous variable. To allow mutual comparison of the lipid measures, we constructed Multiple of the Median (MoM) scores of all lipid measures. The crude model was the univariate analysis of maternal lipid concentrations and embryonic growth. In the adjusted model, we additionally corrected for the previously determined confounding factors. We examined whether maternal glucose concentrations mediated the association of maternal lipid concentrations with embryonic growth by adding it to our models (fully adjusted model). 
We aimed to investigate the effect of the switch in nutritional source of the embryo, from uterine glands and yolk sac to the placenta, which occurs at around week 12 of gestation. Therefore, sensitivity analyses were performed. Associations between the maternal lipid status and embryonic growth were separately investigated in the period of 10 to 12 weeks GA versus 12 to 14 weeks GA, with gestational-age adjusted MoM’s (Table S3). With other sensitivity analyses, we tested the effect of the lowest lipid concentrations by assessing the cases with the lowest 5% of the lipid concentrations (Table S4). Results of all linear regression analyses are presented as regression coefficients (β) with a 95% confidence interval (CI). 
 The following confounders had missing values: pre-pregnancy BMI (14.3%), parity (0.4%), educational level (4.3%), ethnicity (2.1%), smoking (8.8%), folic acid supplement use (19.3%) and glucose (2.7%). To prevent bias associated with missing data, we used multiple imputations for covariates with missing values. We imputed missing data on the basis of the correlation of missing variables with other participant characteristics, according to the Markov Chain Monte Carlo method.(34) Ten datasets were created and analyzed together. A sensitivity analysis was performed to observe differences in observed and expected values of confounders before and after imputation (Table S5). 
We used IBM Statistical Package of Social Sciences version 25.0 for Windows (SPSS Incl., Chicago, IL, USA) for all statistical analyses. A p-value <0.05 was considered statistically significant. 
Results
Maternal baseline characteristics and first trimester reference ranges(35) for lipid concentrations are presented in Table 1. In the study we included 1474 women. Women were on average 30.8 (±4.6) years of age, 1060 (71.9%) women had a Dutch and Western ethnicity and the median pre-pregnancy BMI was 22.6 kg/m2 (90% range 18.9 ; 29.6). Table S2 shows baseline characteristics of women included and excluded from the analyses. Excluded women were on average younger, less often of Dutch and Western ethnicity, more often lower educated and they more often consumed alcohol in pregnancy. 
The associations between maternal lipid concentrations and CRL are shown in Table 2. In the crude analyses, a larger CRL was observed in women with higher triglyceride concentrations; a significant linear trend was observed (crude model, 0.16 SDS; 95% CI, 0.05 ; 0.38). In the multivariable analyses, the association remained significant (adjusted model, 0.15 SDS; 95% CI, 0.01 ; 0.28), also after additionally adjusting for glucose concentrations (fully adjusted model, 0.17 SDS; 95% CI, 0.03 ; 0.30). When analyses were performed according to BMI (i.e. normal weight or overweight), the associations only remained in the overweight group (crude model, 0.29 SDS; 95% CI, 0.04 ; 0.53, adjusted model, 0.35 SDS; 95% CI, 0.10 ; 0.61 and fully adjusted model, 0.44 SDS; 95% CI, 0.15 ; 0.72). 
The crude analyses between remnant cholesterol and CRL showed significant positive associations (basic model, 0.17 SDS; 95% CI, 0.05 ; 0.29). After adjustment for confounders in the multivariable analysis, and the fully adjusted analysis, the significant associations remained (adjusted model, 0.15 SDS; 95% CI, 0.02 – 0.29 and fully adjusted model, 0.17 SDS; 95% CI, 0.04 – 0.31, respectively). Again, the associations only remained in the overweight group (crude model, 0.29 SDS; 95% CI, 0.05 ; 0.53, adjusted model, 0.35 SDS; 95% CI, 0.09 ; 0.61 and fully adjusted model, 0.44 SDS; 95% CI, 0.15 ; 0.72) (Table 2). Total-cholesterol, HDL-c, LDL-c, non-HDL-c concentrations and the TG/HDL-c ratio in early pregnancy were not associated with CRL. We tested for multicollinearity using the tolerance statistic. As tolerance was >0.20 for all variables in our models, multicollinearity was unlikely.
Sensitivity analysis demonstrated that the associations between triglycerides and remnant cholesterol and embryonic growth attenuated and were no longer significant when the analyses were split for gestational age 10-12 weeks and 12-14 weeks (Table S3). Complete case analysis showed similar results to those presented in Table 2 (data not shown). Also, sensitivity analyses were performed in which we examined the effect of the lowest lipid concentrations within the study population. When investigating the association between the lowest 5% lipid concentrations and embryonic growth, no significant associations were observed (fully adjusted model triglycerides, -0.16 SDS; 95% CI, -0.38 ; 0.13, and fully adjusted model remnant cholesterol, -0.13 SDS; 95% CI, -0.29 ; 0.20, respectively) (Table S4).
Discussion
Main findings
We showed that both maternal triglycerides and remnant cholesterol in early pregnancy are positively associated with embryonic growth, especially in overweight women and even after adjustment for glucose concentrations.(36) 
Lipids such as triglycerides and cholesterol reach the developing embryo or fetus through different mechanisms, which change over the course of pregnancy. In the first 12 weeks of pregnancy, the placenta is developing and not fully functional.(37) In this period, the developing embryo is dependent on the yolk sac and uterine glands for the storage and transport of nutrition.(38, 39) The yolk sac transports maternal lipids into the vitelline vessels that are connected with the circulation of the embryo.(40) Animal studies showed that as the maternal serum lipid concentrations increased, so did the concentrations in the yolk sac, and consequently the secretion by the yolk sac into the embryo.(41) This indicates that the lipid transport to the embryo is dependent on maternal serum lipid concentrations. For triglycerides to pass the yolk sac membrane, they have to be hydrolyzed into free fatty acids by placental lipases.(42) From animal studies it is known that during embryonic growth, approximately 90% of the total energy requirement is derived from yolk lipid fatty acid oxidation.(43) This indicates triglycerides have an important role as energy source in the development of an embryo, supporting our positive association between triglycerides and embryonic growth. Our findings are also in line with the outcomes of a study that demonstrates triglycerides are an important predictor of newborn body fat, even exceeding maternal glucose concentrations.(15) Additionally, since triglycerides and remnant cholesterol only make up a small part of the total cholesterol content, it could explain why we did not find a positive association between the lipid concentrations of LDL-c and HDL-c and total cholesterol concentrations with embryonic growth.
Strikingly, our demonstrated associations between maternal serum lipid concentrations and embryonic growth were most prominent in overweight women. This could be explained by the strong association between both obesity and insulin resistance, and insulin resistance and remnant cholesterol.(44-46) However, we were not able to verify this because in this study, the gold standard for the assessment of insulin resistance, the hyperinsulinemic-euglycemic clamp, was not utilized.(47) 
In the performed sensitivity analyses, we did not find associations between the very high versus low lipid concentrations (lowest 5%) and embryonic growth. This could be explained by the fact that there are few cases with lipid concentrations below the 5th percentile (number of participants per type of lipid: range 67 – 73), lowering the statistical power to detect statistically significant differences. 
Strengths & limitations
To our knowledge, this study is the first to assess a broad spectrum of the maternal lipid profile in association with growth in early pregnancy. A limitation is that blood samples were obtained in a non-fasting state, which may have led to an underestimation of the observed associations. However, several large-scale, population-based studies have established that plasma lipids change only modestly in response to normal food intake.(48-55) It is therefore stated that only if nonfasting plasma triglycerides are > 5 mmol/L, a fasting blood sample could be considered.(53) In our study, no women had triglycerides that exceeded 5 mmol/L. Moreover, the use of non-fasting samples better reflects the normal physiological state in pregnant women. 
A second limitation, is that embryonic growth was measured only once. Therefore, no patterns of embryonic growth could be assessed. Also no information on (changes in) pre-pregnancy lipid concentrations was available. We therefore cannot investigate the effect of preconceptional lipid concentrations on embryonic growth. Next, the use of MoM’s in the analyses makes it harder to clinically interpret the associations. However, these MoM’s enable to compare the different lipid concentrations to each other. The effect sizes for the association between triglycerides and remnant cholesterol and embryonic growth are comparable. 
[bookmark: _GoBack]Moreover, there might be the issue of response bias or self-selection, which is known to happen in cohort studies. Indeed, the median BMI of 22.6 within our study population is within the healthy range and the majority of women did not smoke during pregnancy (73.9%) (Table S1). Indeed, most of the measured maternal lipid concentrations are within the recommended ranges for the first trimester of pregnancy.(35) The selection of a relatively healthy study population did thus not allow to investigate the associations of extreme dyslipidemia. This might imply that effects in the general population with more and severe dyslipidemia may be even larger, and thus has affected the generalizability of our results. Finally, the observational nature of this study does not allow for inference of causality.
Interpretation
Our findings demonstrate that the previously established associations between higher maternal lipid concentrations and adverse birth outcomes may already be present during the first trimester of pregnancy.(12, 13, 23, 56) It is also in line with the Developmental Origins of Health and Disease (DOHaD) theory, which states that adverse influences in early pregnancy have the potential to affect the change of adverse birth outcomes.(19) The finding that specifically both triglycerides and remnant cholesterol are associated with embryonic growth are not surprising, as plasma triglycerides and remnant cholesterol are highly correlated.(57) Remnant cholesterol is the cholesterol content of triglyceride-rich lipoproteins. In a clinical setting, triglycerides are even proposed as a surrogate marker of remnant cholesterol.(58, 59) Additionally, our results emphasize the potential of triglycerides and remnant cholesterol as markers for first trimester growth.
To unravel the mechanisms of nutrient transport from mother to embryo, and especially lipid transport, more fundamental research is needed. Also changes in nutrient transport due to the switch from yolk sac and uterine glands to the placenta as main nutrient transporter is interesting. Second, due to the small measures of the CRL, the measurement ranges are also small. However, research with repeated CRL measurements would make it possible to investigate embryonic growth patterns.

Conclusion
The positive association between maternal lipids and early growth in pregnancy, especially in overweight women, emphasizes the importance of healthy maternal nutrition and a healthy weight. We propose maternal serum lipids concentrations, especially triglycerides and remnant cholesterol, may be a marker for early fetal growth. Additionally, they are potentially new targets for an early intervention in overweight pregnant women to prevent excess fetal growth.
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Table 1. Baseline characteristics of the study population.
	Maternal characteristics
N=1474
	
	Reference ranges 
lipid concentrations(35) 

	Age at intake, years
	30.8 (4.6)
	

	Pre-pregnancy BMI, kg/m2
	22.6 (18.9 ; 29.9)
	

	Overweight women, n (%)
	347 (25.4)
	

	Parity (nulliparous)
	877 (59.5)
	

	Educational level (high)
	785 (53.3)
	

	Ethnicity (Dutch and Western)
	1060 (71.9)
	

	Smoking (continued smoking in pregnancy)
	232 (15.7)
	

	Alcohol (continued alcohol consumption in pregnancy)
	650 (44.1)
	

	Folic acid supplement use (start preconceptional)
	756 (51.3)
	

	Embryonic sex (male)
	723 (49.1)
	

	Glucose, mmol/L
	4.41 (0.83)
	

	Total cholesterol, mmol/L
	4.69 (0.81)
	3.65 – 5.44

	Triglycerides, mmol/L
	1.19 (0.70 ; 2.24)
	0.50 – 1.80

	HDL-c, mmol/L
	1.77 (0.34)
	1.04 – 2.02

	LDL-c, mmol/L
	2.34 (0.67)
	1.55 – 3.96

	Remnant cholesterol, mmol/L
	0.54 (0.32 ; 1.01)
	-

	Non-HDL-c, mmol/L
	2.93 (0.77)
	-

	TG/HDL-c ratio
	0.67 (0.34 ; 1.63)
	-
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Abbreviations: HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; TG, triglycerides; BMI, body mass index. Values are means (SD) for continuous variables with a normal distribution, or medians (90% range) for continuous variables with a skewed distribution. Confounders were imputed. Non-imputed values represent valid percentages.
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Table 2. Associations of maternal lipid profile in early pregnancy with embryonic growth, by normal weight versus overweight.
	Study population (n=1474)
	Crude model
	Adjusted model
	Fully adjusted model

	
	Whole group
	Normal weight
	Overweight
	Whole group
	Normal weight
	Overweight
	Whole group
	Normal weight
	Overweight

	
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)
	β (95% CI)

	Total cholesterol, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.94)
	-0.03 (-0.15 ; 0.09)
	-0.08 (-0.23 ; 0.07)
	0.01 (-0.26 ; 0.28)
	-0.07 (-0.20 ; 0.07)
	-0.08 (-0.24 ; 0.09)
	-0.13 (-0.44 ; 0.17)
	-0.06 (-0.20 ; 0.07)
	-0.07 (-0.24 ; 0.10)
	-0.14 (-0.46 ; 0.17)

	Second tertile MoM (0.94 – 1.08)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.08)
	0.02 (-0.10 ; 0.14)
	-0.001 (-0.15 ; 0.15)
	0.12 (-0.13 ; 0.37)
	-0.02 (-0.15 ; 0.11)
	-0.03 (-0.20 ; 0.13)
	-0.02 (-0.30 ; 0.26)
	-0.02 (-0.15 ; 0.11)
	-0.05 (-0.22 ; 0.12)
	-0.04 (-0.32 ; 0.25)

	Trend analyses MoM
	0.09 (-0.19 ; 0.37)
	0.21 (-0.15 ; 0.56)
	0.15 (-0.47 ; 0.77)
	0.13 (-0.19 ; 0.44)
	0.13 (-0.26 ; 0.51)
	0.13 (-0.56 ; 0.82)
	0.11 (-0.21 ; 0.43)
	-0.40 (-1.38 ; 0.57)
	0.07 (-0.32 ; 0.47)

	Triglycerides, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.87)
	-0.08 (-0.20 ; 0.04)
	-0.12 (-0.26 ; 0.03)
	0.06 (-0.24 ; 0.36)
	-0.08 (-0.21 ; 0.06)
	-0.09 (-0.25 ; 0.07)
	0.03 (-0.30 ; 0.36)
	-0.08 (-0.21 ; 0.06)
	-0.09 (-0.25 ; 0.07)
	0.05 (-0.28 ; 0.39)

	Second tertile MoM (0.87 – 1.18)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.18)
	0.04 (-0.08 ; 0.16)
	-0.01 (-0.16 ; 0.15)
	0.18 (-0.07 ; 0.43)
	0.04 (-0.10 ; 0.18)
	-0.06 (-0.23 ; 0.11)
	0.23 (-0.05 ; 0.50)
	0.06 (-0.07 ; 0.20)
	-0.06 (-0.23 ; 0.12)
	0.28 (-0.01 ; 0.56)

	Trend analyses MoM
	0.16 (0.05 ; 0.38)
	0.12 (-0.03 ; 0.28)
	0.29 (0.04 ; 0.53)
	0.15 (0.01 ; 0.28)
	0.02 (-0.15 ; 0.18)
	0.35 (0.10 ; 0.61)
	0.17 (0.03 ; 0.30)
	0.03 (-0.15 ; 0.20)
	0.44 (0.15 ; 0.72)

	HDL-c, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.92)
	0.04 (-0.08 ; 0.16)
	0.01 (-0.14 ; 0.17)
	0.18 (-0.08 ; 0.43)
	0.08 (-0.06 ; 0.22)
	0.06 (-0.11 ; 0.24)
	0.13 (-0.16 ; 0.43)
	0.10 (-0.04 ; 0.23)
	0.09 (-0.09 ; 0.26)
	0.15 (-0.15 ; 0.45)

	Second tertile MoM (0.92 – 1.08)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.08)
	0.04 (-0.08 ; 0.16)
	0.07 (-0.08 ; 0.22)
	-0.03 (-0.31 ; 0.25)
	0.05 (-0.08 ; 0.19)
	0.06 (-0.10 ; 0.22)
	-0.03 (-0.34 ; 0.28)
	0.05 (-0.08 ; 0.18)
	0.07 (-0.09 ; 0.23)
	-0.05 (-0.37 ; 0.27)

	Trend analyses MoM
	-0.01 (-0.26 ; 0.25)
	0.17 (-0.16 ; 0.50)
	-0.51 (-1.07 ; 0.06)
	0.03 (-0.28 ; 0.32)
	0.18 (-0.20 ; 0.55)
	-0.39 (-1.03 ; 0.25)
	-0.01 (-0.32 ; 0.29)
	0.15 (-0.23 ; 0.54)
	-0.48 (-1.16 ; 0.20)

	LDL-c, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.88)
	0.04 (-0.08 ; 0.17)
	0.01 (-0.14 ; 0.16)
	-0.09 (-0.37 ; 0.19)
	-0.01 (-0.15 ; 0.13)
	-0.06 (-0.22 ; 0.11)
	-0.05 (-0.37 ; 0.27)
	-0.01 (-0.15 ; 0.13)
	-0.04 (-0.21 ; 0.13)
	-0.05 (-0.38 ; 0.28)

	Second tertile MoM (0.88 – 1.13)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.13)
	0.03 (-0.09 ; 0.15)
	0.03 (-0.12 ; 0.19)
	0.03 (-0.22 ; 0.27)
	-0.01 (-0.14 ; 0.12)
	-0.04 (-0.21 ; 0.13)
	0.02 (-0.25 ; 0.30)
	-0.01 (-0.15 ; 0.12)
	-0.05 (-0.22 ; 0.12)
	0.01 (-0.27 ; 0.29)

	Trend analyses MoM
	-0.02 (-0.18 ; 0.15)
	0.03 (-0.18; 0.25)
	0.10 (-0.26 ; 0.47)
	0.01 (-0.18 ; 0.20)
	0.03 (-0.20 ; 0.26)
	0.02 (-0.39 ; 0.43)
	0.004 (-0.19 ; 0.19)
	-0.01 (-0.24 ; 0.23)
	0.001 (-0.42 ; 0.42)

	Remnant cholesterol, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.87)
	-0.08 (-0.20 ; 0.04)
	-0.13 (-0.28 ; 0.02)
	0.09 (-0.21 ; 0.38)
	-0.08 (-0.21 ; 0.06)
	-0.10 (-0.25 ; 0.06)
	0.06 (-0.27 ; 0.39)
	-0.08 (-0.21 ; 0.06)
	-0.10 (-0.26 ; 0.06)
	0.09 (-0.25 ; 0.42)

	Second tertile MoM (0.87 – 1.17)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.17)
	0.05 (-0.08 ; 0.17)
	-0.04 (-0.20 ; 0.12)
	0.24 (-0.01 ; 0.49)
	0.04 (-0.10 ; 0.18)
	-0.08 (-0.25 ; 0.09)
	0.27 (-0.003 ; 0.55)
	0.06 (-0.08 ; 0.20)
	-0.08 (-0.25 ; 0.10)
	0.32 (0.04 ; 0.61)

	Trend analyses MoM
	0.17 (0.05 ; 0.29)
	0.13 (-0.02 ; 0.29)
	0.29 (0.05 ; 0.53)
	0.15 (0.02 ; 0.29)
	0.02 (-0.15 ; 0.19)
	0.35 (0.09 ; 0.61)
	0.17 (0.04 ; 0.31)
	0.03 (-0.15 ; 0.20)
	0.44 (0.15 ; 0.72)

	Non-HDL-c, mmol/L
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.89)
	0.03 (-0.09 ; 0.15)
	0.02 (-0.13 ; 0.17)
	-0.13 (-0.41 ; 0.15)
	-0.01 (-0.14 ; 0.13)
	-0.003 (-0.17 ; 0.16)
	-0.22 (-0.54 ; 0.09)
	-0.01 (-0.15 ; 0.13)
	0.01 (-0.16 ; 0.18)
	-0.23 (-0.55 ; 0.10)

	Second tertile MoM (0.89 – 1.11)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.11)
	0.07 (-0.05 ; 0.19)
	0.09 (-0.06 ; 0.25)
	0.03 (-0.22 ; 0.27)
	0.05 (-0.09 ; 0.18)
	0.03 (-0.14 ; 0.20)
	-0.03 (-0.30 ; 0.24)
	0.05 (-0.09 ; 0.18)
	0.02 (-0.16 ; 0.19)
	-0.04 (-0.32 ; 0.24)

	Trend analyses MoM
	0.06 (-0.12 ; 0.24)
	0.09 (-0.14 ; 0.32)
	0.25 (-0.15 ; 0.66)
	0.08 (-0.13 ; 0.28)
	0.03 (-0.21 ; 0.28)
	0.21 (-0.24 ; 0.67)
	0.08 (-0.13 ; 0.28)
	0.01 (-0.25 ; 0.26)
	0.21 (-0.26 ; 0.68)

	TG/HDL-c ratio
	
	
	
	
	
	
	
	
	

	Lowest tertile MoM (<0.83)
	-0.07 (-0.19 ; 0.05)
	-0.01 (-0.16 ; 0.13)
	-0.15 (-0.45 ; 0.15)
	-0.04 (-0.17 ; 0.09)
	0.003 (-0.15 ; 0.16)
	-0.11 (-0.44 ; 0.22)
	-0.04 (-0.17 ; 0.09)
	0.01 (-0.15 ; 0.17)
	-0.15 (-0.49 ; 0.18)

	Second tertile MoM (0.83 – 1.23)
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference
	Reference

	Highest tertile MoM (>1.23)
	0.01 (-0.11 ; 0.13)
	0.02 (-0.14 ; 0.18)
	0.10 (-0.16 ; 0.35)
	0.05 (-0.09 ; 0.19)
	-0.01 (-0.19 ; 0.16)
	0.26 (-0.03 ; 0.54)
	0.07 (-0.07 ; 0.21)
	0.002 (-0.18 ; 0.18)
	0.28 (-0.01 ; 0.57)

	Trend analyses MoM
	0.06 (-0.01 ; 0.13)
	0.03 (-0.06 ; 0.12)
	0.15 (0.01 ; 0.29)
	0.04 (-0.03 ; 0.12)
	-0.02 (-0.12 ; 0.07)
	0.16 (0.01 ; 0.31)
	0.06 (-0.02 ; 0.13)
	-0.01 (-0.11 ; 0.09)
	0.26 (0.06 ; 0.45)


Abbreviations: CI: confidence interval, HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, MoM: Multiple of the median, n.a.: not applicable. Values are regression coefficients with the 95% CI and are based on linear regression models. Crude model: univariate regression analysis. Adjusted model: basic model additionally adjusted for maternal age, parity, educational level, ethnicity, smoking and folic acid supplement use. Fully adjusted model: adjusted model additionally adjusted for maternal glucose concentrations. Estimates of MoM trend analyses represent the unit increase in the outcome per 1 multiple of the median increase in lipid, compared to the reference category. 

 
26

