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[bookmark: abstract-and-keywords]Abstract and Keywords
Many genomic variants are currently classified, but many more are extremely rare, have minimal associated patient data, and are classified as variants uncertain significance (VUS). Accumulating patient data such as family history and de novo status can help classify variants. Understanding potential timelines for data accumulation and variant classification can inform reporting, diagnosis, and treatment decisions.
We modeled future clinical data observations with different strategies for sharing and aggregating clinical evidence for variants across multiple sequencing centers over time. Models illustrate how long it takes for variants to be classified when evidence is or is not shared between clinical laboratories and compared to when only variant interpretations are shared. When sequencing centers share evidence the probability of classifying a one in 100,000 pathogenic variant increases from less than 25% to nearly 80% after one year and to nearly 100% with 5 years of observations. Extremely rare variants have a low likelihood of classification using clinical data even with optimal data sharing.
Sharing clinical evidence between laboratories will lead to faster and more certain classifications. Modeling can effectively illustrate the likelihood of variant classification under current classification frameworks and might help define realistic provider and patient expectations.
Keywords: variant, benign, pathogenic, classification, uncertain significance
[bookmark: introduction]Introduction
Targeted gene sequencing is becoming more common for patients to determine if they have known pathogenic variants for symptoms they present or diseases to which they are susceptible. These pathogenic variants may inform doctors and clinical geneticists how to manage their patients’ health. For example, a patient with a known pathogenic variant in BRCA1 or BRCA2 should, at the very least, be screened more often for breast, ovarian, and pancreatic cancer. Similarly, asymptomatic patients with familial cardiomyopathy might consider certain lifestyle choices such as losing weight, reducing stress, quitting smoking, sleeping well, and perhaps taking ACE inhibitors and/or beta blockers. [2]
The American College of Medical Genetics (ACMG) and the Association for Molecular Pathology (AMP) define evidence-based guidelines for classifying genomic variants. Evidence for variant classification can come from many sources including family history, clinical data, functional assays, and in silico predictors. When sufficient evidence is present, a variant curation expert panel (VCEP) may classify the variant as likely benign (LB), benign (B), likely pathogenic (LP), or pathogenic (P). Variants with little or no evidence to support classification are called variants of uncertain significance (VUS). The classification of VUS is the objective of this research. [1]
Variants of uncertain significance pose problems in healthcare. One problem is the preponderance of VUS among genes implicated in disease, as VUS by definition don’t provide any medically actionable information. Ultimately, every variant is either physiologically benign or pathogenic, so the significance of a VUS is only uncertain until there is sufficient evidence to classify it. Furthermore, clinical data is usually needed to classify VUS [1]. A second problem is the lack of centrally available clinical data sufficient to classify a variant. Molecular testing laboratories and sequencing centers are the largest source of variant data, but they hold their data privately. Yet a third problem is that the classifications of some genetic variants may vary or even conflict between laboratories, depending on the amount and nature of the evidence provided. [3]
One solution to all these problems is for clinical laboratories to share their data. The more that laboratories pool their variant data, the more likely and more quickly a VUS may be classified. [17-19] Such pooling of data leads to more expedient VUS classification which is of utmost importance to the patients with these VUS. Factors such as maintaining market advantage and preserving privacy reasonably preclude data sharing, but those obstacles may be overcome by, for example, leveraging federated computing.  Most laboratories already share many variant interpretations, but sometimes these variant interpretations conflict between laboratories, leaving healthcare providers without actionable information.
The purpose of this research is to model how long it is expected to take and simultaneously how likely it is for a VUS to get classified when sequencing centers pool their clinical data with other sequencing centers. This model predicts the probability of variant classification over time given the clinical data currently available in laboratory databases and estimates of future variant-specific data accumulation rates. Underlying the model are factors such as prior probability of pathogenicity and allele frequency specific to the genes of interest. Our modeling approach may be applied to any gene implicated in a monogenic disease. The output of this model can guide VCEPs in prioritizing their efforts, inform functional assay developers on high-impact variants which cannot be classified through patient-derived data alone, and enable healthcare providers to develop better strategies for managing patients with VUS.
[bookmark: materials-and-methods]Materials and Methods
In this section, we define a statistical model that combines clinical information from multiple sequencing centers to create an aggregate, pooled center so that VUS may be classified faster.
[bookmark: combining-multiple-pieces-of-evidence-to]Combining multiple pieces of evidence to classify variants
The evidence that the ACMG/AMP uses to classify variants encompasses several sources of data, including the type of variant (e.g. nonsense or frameshift), in vitro functional studies, in trans co-occurrence with a pathogenic variant, co-segregation in family members, allele frequency, and in silico predictions. Tavtigian et al [4] showed that the ACMG/AMP variant classification guidelines could be modeled as a Bayesian classification framework. Specifically, the ACMG/AMP classification criteria were translated into a Bayesian classifier, assuming four levels of evidence and exponentially scaled odds of pathogenicity. These four levels include "supporting", "moderate", "strong", and "very strong". For example, one category of evidence is called PP1 which represents co-segregation of the disease with multiple family members. The PP1 evidence is considered "supporting" evidence for pathogenicity. Another example evidence category is BS4 which represents the lack of segregation in affected family members. The BS4 evidence is considered "strong" evidence against pathogenicity. These odds are combined and compared to thresholds to determine the variant’s pathogenicity.
We leverage this Bayesian framework to model calculating odds of pathogenicity conditioned on the presence of one or more pieces of evidence for a given variant. A single piece of evidence is represented as an odds of pathogenicity. Clinical evidence that is observed for the same variant from unrelated patients is independent, so odds from multiple observations may be combined multiplicatively. The odds of a variant Vi being pathogenic (belonging to the class P) given all the evidence Xj is the product of all the evidence, expressed as odds, as shown in Equation 1.

The product of all the evidence may yield a very large number, causing numerical overflow on a 64-bit machine. We convert the odds of pathogenicity to a log scale by taking the log of both sides of Equation 1, as shown in Equation 2.

For a single variant, we simply compare this sum to the thresholds for benign, likely benign, likely pathogenic, and pathogenic in log scale. The same logic may be applied to calculate the overall odds that the variant is benign, as shown in Equation 3.

Our model calculates two odds of pathogenicity: the odds of a VUS being benign and the odds of a VUS being pathogenic, both of which are conditioned on statistically sampled evidence.
[bookmark: selecting-categories-of-benign-and-patho]Selecting categories of benign and pathogenic variant evidence for our model
Some sources of evidence are always available and relatively stable over time, including information about the nature of the variant in its protein and information from in silico predictions. Increased functional information will contribute to variant reclassification, but there are risks to using such data without any clinical data to classify variants. We will not use those categories of evidence in our model, but rather we will focus on the clinical data that is available in sequencing facilities. Several sources of case and family information will contribute to variant classification over time. As clinical databases grow and data is shared more effectively across institutions, more variants will be classified. Increased clinical information is the major source for variant reclassification as well. [7] We selected only those categories of pathogenic evidence observations that relate to clinical information in the development of our model. [1] Specifically, we chose the PM6, PP1, and PS2 ACMP/AMP evidence criteria which are de novo variants without paternity and maternity confirmation, co-segregation in family members affected with the disease, and de novo variants with both paternity and maternity confirmed, respectively. Similarly, we selected only those categories of benign evidence criteria that relate to clinical information. Those criteria include BP2, BP5, and BS4, which are in trans co-occurrence with a known pathogenic variant, disease with an alternate molecular basis, and lack of segregation in affected family members, respectively.
Over time, the more evidence that is gathered, the sooner and more likely a VUS will be classified as either benign or pathogenic. [8] However, not all the evidence that is gathered over this time will be concordant. For example, some patients who have a VUS which is actually pathogenic may occasionally present evidence from one or more benign categories. This presentation of conflicting evidence for a given variant occurs at a low, non-zero frequency. Therefore, we use a combination of pathogenic and benign evidence in the classification of every VUS.
[bookmark: making-assumptions-for-the-model]Making assumptions for the model
Here we discuss the various assumptions we made about the data in order to build our simulation.
[bookmark: assumption-1-frequency-distribution-for-]Assumption 1: Frequency distribution for evidence
We made assumptions about the frequencies at which each of the ACMG/AMP categories described in Table 1 are observed. We derived these assumptions from the scientific literature. [9-15] These assumptions allowed us to simulate the gathering of evidence over time at different distributions of participating sequencing centers in the effort of classifying VUS as either benign or pathogenic. If sequencing centers were to participate and share data and we suggest here, these frequencies would be replaced with the data provided by each of the participating centers to build a more accurate model. This is the data that we suggest to share across participating institutions for more accurately building these classification timeline models.
Tavtigian et al calculated the odds of pathogenicity for each category of ACMG/AMP evidence. Specifically, they determined that, for pathogenic evidence, the odds for "strong" is 18.7, for "moderate" it’s 4.3, and for "supporting" it’s 2.08. For benign evidence, the odds for "strong" is 1/18.7, for "moderate" it’s 1/4.3, and for "supporting" it’s 1/18.7. Table 1 depicts these odds and their associated assumed frequencies for each ACMG/AMP evidence category.
_Table_1_
_Table_2_
There may be pathogenic categories of evidence observed for benign variants and benign categories of evidence observed for pathogenic variants, though these evidence categories which conflict with the variant pathogenicity generally occur at a low rate. We are assuming that the frequency of BP2 evidence (in trans co-occurrence with a known pathogenic variant) for pathogenic variants is very rare, except in tumors or in the case of rare diseases such as Fanconi anemia. Conversely, we assume that the frequency of BP2 evidence for benign variants is quite common and so occurs at the same rate as the variant itself.
[bookmark: assumption-2-thresholds-for-odds-of-path]Assumption 2: Thresholds for odds of pathogenicity
Tavtigian et al, in interpreting the ACMG/AMP variant classification guidelines as a naive Bayesian classifier, defined four threshold ranges for the odds of pathogenicity for each of the four variant classifications (benign, likely benign, likely pathogenic, pathogenic).
_Table_3_
These odds threshold ranges are based on the guidelines set forth by the ACMG/AMP. For example, the ACMG/AMP defined the term "likely pathogenic" to mean > 0.90 certainty of a variant being disease-causing but below the higher pathogenic threshold of 0.99. Translating the ACMG/AMP certainty cutoff into Bayesian terms, 0.90 is a posterior probability which corresponds to a pathogenicity odds of 100. Similarly, the likely pathogenic odds are between 0.90 and 0.99, the likely benign threshold is between 0.001 and 0.10, and benign threshold is less than 0.001.
[bookmark: assumption-3-data-from-participating-seq]Assumption 3: Data from participating sequencing centers
In advance of getting real data from any sequencing centers, we made certain assumptions about how much data each general size of sequencing center has as well as how many new observations are added per year.
_Table_4_
These sizes and test rates were inferred from experience and online public business reports from genetic testing companies. Should a group of sequencing centers decide to pool their data, they will be able to replace these values with better estimates.
[bookmark: assumption-4-ascertainment-bias]Assumption 4: Ascertainment bias
Another assumption we make relates to ascertainment bias at testing centers. Ascertainment bias, the medical term for statistical sampling bias, describes systematic deviations from an expected result due to the sampling processes used to find genomic variants and estimate their population-specific allele frequencies. People who go to testing centers are often referred there because their medical care providers suspect they may have a genetic disease. How much more likely is a person to present pathogenic evidence than benign evidence is captured in our model as a real-valued variable called pathogenic selection factor (PSF). We conservatively estimated this term to be 2 based on experience at the University of Washington Department of Laboratory Medicine.
[bookmark: assumption-5-prior-odds-of-pathogenicity]Assumption 5: Prior odds of pathogenicity
Yet another assumption we made was regarding the prior odds of a variant’s pathogenicity. This metric comprehends all other criteria that are not clinical and doesn’t change much, if at all, over time. For the sake of this implementation, we sampled a random odds from a uniform distribution between 0.11 and 9 (which are the odds associated with probabilities between 0.1 and 0.9, respectively).
[bookmark: implementing-the-simulation]Implementing the simulation
The implementation is very straightforward since the model has only one random variable: the allele frequency of the VUS of interest. The other parameters of the simulation include the number and sizes of each of the participating sequencing centers, along with the number of years for which to run the simulation. Because the variant is of uncertain significance (i.e. we don’t know if it’s benign or pathogenic), we gather evidence for both classifications simultaneously. So, for example, if we simulate gathering evidence for 1,000 VUS, we would have 2,000 sets of observations - 1,000 given the variant is benign and 1,000 given the variant is pathogenic.
For the first year of our simulation, all the evidence that is initialized at each of the individual testing centers is aggregated. To simulate people getting tested at a center over time, we use a Poisson distribution sampling method when determining how many times the variant is observed, given the VUS frequency. Each year, and for each center, we aggregate the odds of the pathogenic and benign observations to a single collection to simulate the sharing of data across all the sequencing centers.
We ran this simulation 1,000 times to generate data points for multiple VUS of the same given frequency, combining data from 10 small centers, 7 medium centers, and 3 large centers. These results are discussed in the next section.
[bookmark: results]Results
For each sequencing center, we simulated the gathering of evidence for 1,000 different variants with allele frequency 1e-05 over the course of 5 years. We generated data each year and took snapshots to create histograms and scatter plots that show the distribution and progression of the evidence over time. We plot the probability of classifying the variant as benign (B), likely benign (LB), likely pathogenic (LP), or pathogenic (P). Additionally, we calculated the probability of a variant being classified at any sequencing center, assuming that all these centers would share their variant interpretation even if they don’t share their clinical data. Finally, we performed a sensitivity analysis to show the impact each of the model parameters has on the probability of being either benign or pathogenic. We randomly selected one small, one medium, and one large sequencing center to show in the plots.
[bookmark: histogram-plots-show-that-the-distributi]Histogram plots show that the distributions of evidence when sharing clinical data are sufficiently wide to cross classification thresholds
Figure 1 shows the distribution of evidence gathered at a small, medium, and large sequencing center individually as compared to the combined data across all sequencing centers.
_Figure_1_
[bookmark: scatter-plots-shows-that-evidence-for-a-]Scatter plots shows that evidence for a given variant may contradict over time
Figure 2 shows the trajectory of evidence gathered at a small, medium, and large sequencing center as compared to the combined data across all sequencing centers. Where the thresholds were demarcated as vertical hash lines in the histogram plots, they are demarcated as horizontal hash lines in the scatter plots.
_Figure_2_
[bookmark: probability-plots-show-that-variants-are]Probability plots show that variants are classified sooner and with higher probability when data is shared
Figure 3 shows the probability of classifying a variant as either benign, likely benign, likely pathogenic, or pathogenic over time. Here we consider a small, medium, and large sequencing center which are not sharing anything as compared to two forms of sharing: centers sharing their all of their variant interpretations but none of their clinical data (labeled "sharing interpretations"); and centers sharing all their clinical data (labeled "sharing evidence").
_Figure_3_
[bookmark: sensitivity-analysis-shows-that-bs4-bp5-]Sensitivity analysis shows that BS4, BP5, and PP1 have the highest impact on classification
We used confidence intervals (low, expected, and high values) around the frequencies defined our model in order to determine how sensitive the probabilities of classification were to each of the ACMG/AMP evidence values. We held all other parameters constant (equal to their expected values) while changing one frequency at a time to a low and high value in the confidence interval. After running through each of the possible values, we arrived at the tornado plots in Figures 4 and 5 for benign classifications and pathogenic classifications, respectively.
_Figure_4_
_Figure_5_
Summary of supplementary information
Figures S1, S2, and S3 of the supplement show the results of running the same experiments (using 10 small-sized, 7 medium-sized, and 3 large-sized sequencing centers) over the course of 20 years rather than 5 years.
Figures S4, S5, and S6 of the supplement show the results of running the experiments using 5 small-sized, 3 medium-sized, and 1 large-sized sequencing center over the course of 5 years.
Figures S7, S8, and S9 of the supplement show the results of running the same experiments (using 10 small-sized, 7 medium-sized, and 3 large-sized sequencing centers) over the course of 5 years for a variant which occurs with a frequency of one person per million.
[bookmark: discussion]Discussion
These simulations illustrate that data sharing reduces the time and increases the certainty in classifying VUS. Sharing only variant interpretations, however, results in longer timelines and lower certainty than sharing clinical data because this sharing model includes discordant interpretations between different laboratories. That is, the same variant could be interpreted as pathogenic (or likely pathogenic) at one laboratory and benign (or likely benign) at a different one. Similarly, the simulations show that evidence for a given variant can be contradictory. As defined in the ACMG/AMP classification standards, evidence of pathogenicity may be presented for benign variants (and vice versa), though less frequently than for pathogenic variants. This is because there are other factors besides genetic variation involved in human health, and disease is not deterministic. Importantly, our simulations demonstrate that discordant evidence resolves more quickly and with higher certainty when centers share their clinical data rather than only sharing their variant interpretations.  Mis-classified variants mis-inform healthcare providers and therefore may lead to disastrous patient outcomes.
The simulations also show that classifying pathogenic variants has a higher probability and quicker timeline than for classifying benign variants. The ACMG/AMP evidence criteria and classification guidelines require more evidence for benign classification which results in longer timelines. Having a higher evidence threshold for benign variant classification is justified since there is a higher potential cost associated with mis-classifying a variant as benign than as mis-classifying a variant as pathogenic.
Knowing how long and how likely classification is for a VUS with a particular frequency can guide functional assay developers as to which variants they should include in their panels. Functional assays are expensive and require expert interpretation, and this information can maximize the impact of those efforts. 
Most importantly, variant classification timelines will guide prevention, diagnosis, and treatment decisions for patients and their healthcare teams. For example, a patient with a known pathogenic variant on BRCA1 or BRCA2 may elect to have a prophylactic mastectomy which, according to the National Cancer Institute, reduces the risk of breast cancer in women who carry a pathogenic BRCA variant by 95% [16]. A patient with a BRCA VUS, on the other hand, may choose to wait if their variant is likely to be classified in the near-term (e.g. within 2 years) but may not choose to wait if that variant will not likely get classified for another 5 years or more. The majority of variants in the BRCA1 and BRCA2 genes are of uncertain significance, yet these are two of the most widely studied and documented genes in the human genome. Other Mendelian diseases with highly penetrant alleles have a significantly larger proportion of VUS, so understanding classification timelines will have an even higher impact for those variants.
[bookmark: web-resources]Web Resources
The Python software we wrote to run these simulations is available on GitHub at https://github.com/jcasalet/data-sharing.
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Data Availability Statement
There are no data to share from this research as the data were synthetically generated.  Readers who wish to recapitulate the results of our simulation experiments are encouraged to download the Python software from GitHub at https://github.com/jcasalet/data-sharing.


