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 ABSTRACT  

This study aimed at investigating the variation of heat transfer and velocity changes of the fluid flow 

along the vertical line on a surface drawn from both sides. In the beginning, the several parameters 

such as Prandtl number and viscoelastic effect evaluated for heat transfer and fluid velocity by 

variation Iteration method. The results were compared with the numerical method. The second part of 

the description relates to the use RSM method in the Design Expert software. In this paper by using 

the RSM method, optimized the fluid velocity and heat transfer passing from the stretching sheet. By 

increasing the Prandtl number, the convection heat transfer 43 % increased ratio the minimum Prandtl 

number.  In accordance with balanced modes for Prandtl number and viscoelastic parameter and wall 

temperature, the best optimization occurred for fluid velocity and fluid temperature with f=0.67 and 

θ=0.606. The results of variation iteration method are accurate for the nonlinear solution. As the value 

of k increases, the value of fluid velocity indicates an increase and by increase Prandtl number, the 

value of Temperature decreases. 

Keywords: fluid flow, Prandtl number, VIM, viscoelastic parameter 

1. Introduction 

The compilation of fluid mechanics science and industrial issues has solved engineering important 

problems. Most linear and nonlinear fluid problems have been solved by the Akbari-Ganji method, 

HPM (homotopy perturbation) method, and ADM (Adomian decomposition method), like in Maple 

software. These answers are of great help in industries. Studying heat transfer and fluid flow on a 

stretching sheet applied to hot rolling, refinery, shaping, and the like has helped global scholars and 

students in using these finding solutions for engineering and industrial problems for the convergence 

of their solution be much better. MHD is one of the contexts that are related to fluid magnetic science. 

It is a new major that is used in the aerospace industry. In addition, MHD is one of the methods that 

can influence heat and flow on a stretching sheet [1] to [5]. Naikoti Kishan et al. [6] investigated MHD 

impact the heat transfer over a stretching sheet rooted in a porous medium with variable viscosity. 

Similarly, Stanford Shateyi et al [7] focused on the numerical analysis of 3D MHD nanofluid flow 

over a stretching sheet with convective boundary circumstances via a porous medium. Moreover, 

Makinde et al [8] evaluated the numerical investigations of unsteady hydro magnetic radiating fluid 

flow passing a slippery stretching sheet rooted in a porous medium. 
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The present work considers the effects of the thermal radiation, velocity slip, buoyancy force, and 

heat source. Jalilpour et al. [9] investigated Heat generation/absorption on MHD stagnation flow of 

nanofluid towards a porous stretching sheet. They researched into MHD stagnation-point flow of a 

nanofluid via a heated porous stretched sheet with suction or blowing circumstances.  Likewise, 

Nadeem et al [10] evaluated the flow of a Williamson fluid over a stretching sheet. Additionally, 

Cortell [11] investigated the heat and flow transfer of a viscoelastic fluid over a stretching sheet and 

indicated the transformation of the governing partial differential equations into ordinary differential 

equations via similarity transformations. Tousiflqra et al [12] also investigated the magnet of the 

hydrodynamic free stream of nanofluid flow over the exponentially radiating stretching sheets with 

variable fluid features. M.Veera Krishna et al. [13] researched Hall and ion slip effects on unsteady 

MHD free convective rotating flow through a saturated porous medium. The present study has an 

immediate application in understanding the drag experienced at the heated and inclined surfaces in a 

seepage flow.  Masood Khan and Azzam Shahzad [14] examined the boundary later flow of a Sisko 

fluid over a stretching sheet. Iqbal et al. [15] evaluated stagnation-point flow through exponentially 

stretching sheets by existing thermal radiation and viscous dissipation. In addition, Fayyadh et al [16] 

studied the performance of the Al2o3 crude oil on the nonlinear stretching sheet. Dutta and Gutta [17] 

also investigated the cooling of a stretching sheet in a viscous flow. After studying the Stagnation 

point flow of a micropolar fluid toward a stretching sheet, Rosalinda et al [18] reported that the 

resulting equations of non-linear ordinary coupled differential equations are numerically solved using 

the Keller-box method. Ganji and Hatami [19] conducted the squeezing Cu-water nanofluid flow 

analysis within parallel plots by the differential transform-technique. Khan and Pop [20] addressed the 

nanofluids boundary-layer flow within a stretching sheet. The model utilized for the nanofluid 

incorporates the impacts of thermophoresis and Brownian motion. Tanzila et al [21] also confirmed 

the inducted magnetic field stagnation point flow of nanofluid passing. a convectively heated 

stretching sheet with boundary impacts. Bujurke and Biradar [22] investigated second-order fluid flow 

passing a stretching sheet with heat transfer. The heat transfer within a second-order fluid flow based 

on Noll’s and Coleman constitutive equation was investigated in terms of the postulate of 

progressively fading memory over a stretching sheet. Moreover, Manzoor Ahmed et al [23] performed 

steady heat and flow transfer owing to a bidirectional stretching sheet. This project describes the flow 

of fluid passing through a solid surface. At the solid surface, as the value of y increases, the 

temperature and velocity also change, which is solved by VIM method. Pooya Pasha et al. [24] 

investigated the analytical solution of non -Newtonian second –grade fluid flow by VIM and ADM 

methods on a stretching sheet. This study aimed at investigating the variation of heat transfer and 

velocity changes of the fluid flow velocity along the vertical line on a plane drawn from both sides. 

Seyyed Habibollah Hashemi kachapi and Davood Domairry Ganji [25] analyzed the nonlinear 

equations in fluids, progress in nonlinear science. In this book, they investigated a lot of nonlinear 

equations by maple software.  Ghadikolaei et al [26] evaluated the non-Newtonian second-grade fluid 

flow’s numerical and analytical solution over a stretching sheet. They compared the results of solving 

the velocity and temperature equations in the presence of k changes through HPM and NUM. This 

study aimed at investigating the variation of heat transfer and velocity changes of the fluid flow along 

the vertical line on a surface drawn from both sides. 

2. Mathematical formulation 
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2.1. Fluid flow analysis 

Using the following two equations including fluid and thermal terms, the fluid passing through the 

surface and the heat from y=0 to y>0 is examined in this example:  

  
𝜕𝑢∗

𝜕𝑥
+

𝜕𝑣∗

𝜕𝑦
= 0                                                                                                              (1) 

𝑢∗ 𝜕𝑢∗

𝜕𝑥
+ 𝑣∗ 𝜕𝑣∗

𝜕𝑦
= 𝜗

𝜕2𝑢∗

𝜕𝑦2 +
𝛼1

𝜌
[

𝜕

𝜕𝑥
(𝑢∗ 𝜕2𝑢∗

𝜕𝑦2 ) +
𝜕𝑢∗

𝜕𝑦

𝜕2𝑣∗

𝜕𝑦2 + 𝜗
𝜕3𝑢∗

𝜕𝑦3 ]                       (2)  

Where u
*
, v

*
,𝜗, and 𝜌 represent the velocity factor in the x direction, the velocity factor in the y 

direction, kinematic viscosity, and density, respectively : 

U
*
=CX, v

*
=0,          at          y=0, C>0                                                                        (3)   

U
*
→0,   

𝜕𝑢∗

𝜕𝑦
→ 0      𝑎𝑡        𝑦 → ∞                                                                            (4)   

Condition (4) increases when the amplitude of the fluid flow is infinite: 

U
*
=𝑐𝑥𝑓′(ƞ), 𝑣∗  = −(𝑐𝜗)

1

2𝑓(ƞ)                                                                                 (5) 

Where: 

ƞ = (
c

ϑ
)

1

2y                                                                                                                        (6)  

And replacing in Eq (2) [26]: 

(𝑓′)2 − 𝑓𝑓′′ = 𝑓′′′ + 𝑘[2𝑓′𝑓′′ − (𝑓′′)2 − 𝑓𝑓′′′′]                                                (7)  

   f=0     ,   f
'
=1                      at        ƞ =0                                                        (8) 

𝑓′ → 0       ,     𝑓′′ → 0            𝑎𝑡        ƞ → ∞                                                              (9)  

2.2. Heat transfer flow Analysis 

Energy equation with temperature changes with viscous Dissipation: 

U
*𝜕𝑇∗

𝜕𝑥
+ 𝑣∗ 𝜕𝑇∗

𝜕𝑦
= 𝛼

𝜕2𝑇∗

𝜕𝑦2 +
𝜗

𝑐𝑝
(

𝜕𝑢∗

𝜕𝑦
)2                                                                         (10) 

Where 𝛼 and cp are the thermal diffusively and the special heat of fluid, respectively. The boundary 

conditions are: 

𝑇∗ = 𝑇𝑤
∗ (𝑇∞

∗ + 𝐴𝑥𝑠)            𝑎𝑡       𝑦 = 0,    𝑇∗ → 𝑇∞
∗       𝑎𝑠     𝑦 → ∞                (11)  

The parameter s denotes the wall temperature. 

Prandtl number and𝜃,: 

𝜃(ƞ) =
𝑇∗−𝑇∞

∗

𝑇𝑤
∗ −𝑇∞

∗ ,   𝜎 =
𝜗

𝛼
                                                                                                (12)  

Equations (5), (6), (12) and (11) can be written[26]: 

 𝜃′′ + 𝜎𝑓𝜃′ − 𝑠𝜎𝑓′𝜃 = −𝜎𝐸𝑐(𝑓′′)2𝑥2−𝑠                                                                (13) 

 𝜃(0) = 1,          𝜃(∞) → 0                                                                                          (14) 
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With Ec=c
2
/Acp: 

If s=2, we have:[14] 

 𝜃′′ + 𝜎f𝜃′ − 2σf ′𝜃 = −𝜎E𝑐(f ′′)2                                                                            (15) 

According to the above formulas, the right-hand part of equation 1 equals zero, thus the equation is 

rewritten as follows: 

𝜃′′ + 𝜎f𝜃′ − 2σf ′𝜃 = 0                                                                                                 (16)  

For negligible dissipation, we have since (13) :[14] 

𝜃′′ + 𝜎f𝜃′ − 𝑠𝜎f ′𝜃 = 0                                                                                                 (17)  

 

 

FIGURE 1   Geometry of the problem 

 

3. Mathematical Procedure 

3.1. Runge-Kutta method 

Runge-Kutta methods are a family of iterative methods used to match solutions to ordinary 

differential equations (OED). These methods use discretization in computing solutions in small steps. 

The next step Approximation is derived from the previous step by adding s terms. A problem of initial 

value should be specified as follows: 

𝑘1 = ℎ 𝑓(𝑥𝑛 , 𝑦𝑛)                                                                                                (18) 

 

𝑘2 = ℎ 𝑓(𝑥𝑛 +
1

2
ℎ , 𝑦𝑛 +

1

2
𝑘1)                                                                           (19) 

 

𝑘3 = ℎ 𝑓(𝑥𝑛 +
1

2
ℎ , 𝑦𝑛 +

1

2
𝑘2)                                                                           (20) 

 

𝑘4 = ℎ 𝑓(𝑥𝑛 + ℎ , 𝑦𝑛 + 𝑘3)                                                                                (21) 
 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
𝑘1 +

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4 + 𝑂(ℎ5)                                                 (22) 

 

K1 is the slope at the start of the space using y. K2 is the gradient in the middle of the range using y 

and k1. K3 is again the mid-course gradient but using y and k2. K4 is the slope at the end of the range 

utilizing y and k3. 

3.2. Variation Iteration Method 
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Where Ω is the frequency angle oscillator. The general formula for obtaining other sentences 

of u is defined by a coefficient λ as follows [25]: 

𝑢′ + 𝛺2 = 𝐹(𝑢)              𝐹(𝑢) = 𝛺2𝑢 − f(𝑢)                                                            (23)  

Given the boundary equations [25]:  

𝑢′ = 0,       𝑢(0) = A                                                                                                       (24)  

And the first functions [25]:  

 𝑢0(t) = AcosΩ                                                                                                                (25) 

 ∫ cosΩt[𝛺2u0 − f(u0)]dt = 0                                                                                    (26)
T

0
 

 The λ coefficient is obtained by dividing the Laplace from the linear part of the equation. By different 

n definitions, the number of sentences is considered to obtain a better answer: 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆 {
d2u𝑛

dƞ2 + 𝛺2un(ƞ) − F𝑛} dƞ                                                 (27)
t

0
  

 

FIGURE 2   The comparison of answers by VIM and Numeric for  f(ƞ) , 𝜎 = 1, 𝑠 = 2, 𝑘 = 0.01. 



6 
 

 

FIGURE 3   The comparison of answers  by VIM and Numeric for ɵ(ƞ) , 𝜎 = 1, 𝑠 = 2, 𝑘 = 0.01. 

Where λ is the Lagrange coefficient and 𝐹𝑛 is considered various restricted: 

𝑑2𝜆

𝑑ƞ2 + 𝛺2𝜆(ƞ) = 0                                                                                                                               

λ(t)=0  ,  1−
𝑑𝜆

𝑑𝑡
= 0                                                                                                       (28)  

 

 

 

FIGURE 4   Velocity profile for several values of k with 𝜎 = 1. 
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FIGURE 5    Temperature profile for several values of S with 𝜎 = 1. 

 

 

 

 

FIGURE 6   Temperature profile for several values of 𝜎 for K=0.01. 
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FIGURE 7   Temperature profile for several values of 𝜎 for K=0.05. 

 

 

FIGURE 8   Temperature profile for several values of 𝜎 for K=0.09. 

The coefficient λ is calculated from the following formula: 

𝜆 =
1

𝛺
𝑠𝑖𝑛𝛺(𝜏 − 𝑡)                                                                                                                     (29)  

Now we are rewriting the formula:  

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫
1

𝛺
sinΩ(τ − t) {

d2un

dƞ2 + Fn} dτ                                                          (30)
t

0
   

3.3. Application of VIM in the problem 

First, we set linear part of the equation to zero: 

𝑑3

𝑑ƞ3 𝑓0(ƞ) − (
𝑑

𝑑ƞ
𝑓0(ƞ)) = 0                                                                                                      (31)  
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 𝑑2

𝑑ƞ2 𝜃0(ƞ) − 𝜃0(ƞ) = 0                                                                                                             (32) 

And the equations are solved by writing boundary conditions for them: 

𝜃0(0) = 1, 𝜃0(∞) = 0                                                                                                              (33)  

   𝑓0(0) = 0, 𝐷(𝑓0)(0) = 1, 𝐷(𝑓0)(∞) = 0                                                                           (34) 

The solution is as follows: 

𝑓0(ƞ) =
−1+𝑒ƞ

𝑒ƞ , 𝜃0(ƞ) = 𝑒−ƞ                                                                                                    (35)  

By calculating coefficient λ and pasting into the formula, we have: 

𝜆1 = 𝜏 − ƞ + 1                                                                                                                             (36)  

   𝜆2 = 𝜏 − ƞ                                                                                                                                  (37) 

For k=0.01,𝜎 = 1, 𝑠 = 2: 

 𝑓1(ƞ) =
−1+𝑒ƞ

𝑒ƞ −
1

2
(((1 −

−1+𝑒ƞ

𝑒ƞ ))2 −
(−1+𝑒ƞ)(−1+

−1+𝑒ƞ

𝑒ƞ )

𝑒ƞ − 1 +
−1+𝑒ƞ

𝑒ƞ − 2𝑘 (1 −
−1+𝑒ƞ

𝑒ƞ ) (−1 +
−1+𝑒ƞ

𝑒ƞ ) +

𝑘(−1 +
−1+𝑒ƞ

𝑒ƞ )2 +
𝑘(−1+𝑒ƞ)(−1+

−1+𝑒ƞ

𝑒ƞ

𝑒ƞ )ƞ2                                                                                 (38)   

   

𝜃1(ƞ) = 𝑒−ƞ +
1

2
(𝑒−ƞ −

𝜎(−1 + 𝑒ƞ)𝑒−ƞ

𝑒ƞ
− 𝑠𝜎 (1 −

−1 + 𝑒ƞ

𝑒ƞ
) 𝑒−ƞ) ƞ2 + (−ƞ + 1))(𝑒−ƞ −

𝜎(−1 + 𝑒ƞ)𝑒−ƞ

𝑒ƞ

− 𝑠𝜎(1 −
−1 + 𝑒ƞ

𝑒ƞ
)𝑒−ƞ)ƞ                                                                      (39) 

𝑓(ƞ) = −5. 10−7(ƞ + 287.5548)ƞ2(ƞ − 0.40107)(ƞ − 3.598882)(ƞ − 290.554848)𝑒−4ƞ𝑒2ƞ  −

(0.25𝑒 − 4(ƞ − 5.84705499443762))(ƞ − 207.937841477261)(ƞ2 + 5.78489647169834ƞ +

32.8994987593262)𝑒−4ƞ𝑒3ƞ + 1𝑒4ƞ − 0.00003ƞ6 − 0.00008ƞ5 + 0.0066ƞ4 − 0.0300ƞ3 +0.0144ƞ2𝑒ƞ +

0.0035ƞ5 + 0.00008ƞ3 − 0.0007ƞ4 − 0.000008ƞ2 − 0.000096ƞ6 𝑒−4ƞ 

𝜃(ƞ) = 0.5000000000(ƞ
2
+2𝑒ƞ − 2ƞ)𝑒−2ƞ 

                                                                                                   (40) 

4. Response Surface methodology (RSM) 

Response Surface Methodology (RSM) is a bunch of numerical and statistical strategies to adapt 

experimental data to polynomial models. RSM is considered one of the experimental modeling 

methods. RSM is one of the study approaches in the design of experiments and related science.in 

RSM is a proper experimental design is used to find a way to estimate the interaction and second-

degree effects and even the local shape of the studied response surface. In the meantime, specific 

goals are seriously pursued, the most important of which is to improve the process by finding optimal 

inputs, solving problems and weaknesses of the process, and stabilizing it. Here, stabilization is an 

important concept in quality statistics that implies minimizing the effects of secondary or 

uncontrollable variables. 

5. Validation for Methods 
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TABLE 1  The computational error rate of two VIM and (HPM [26]) methods for f (ƞ) in k=0.01,𝜎 = 1 .     

               Error  f HPM 𝑓𝑉𝐼𝑀 ƞ 

0 0 0 0 
0.00041 0.095199 0.095609 0.1 

0.000084 0.0181400 0.018224 0.2 
0.001358 0.394050 0.392692 0.5 
0.008813 0.633463 0.624650 1 
0.004631 0.866679 0.862048 2 
0.003265 0.952228 0.955493 3 
0.004331 0.983566 0.987897 4 

 

TABLE 2                   

The computational error rate of two VIM and (HPM [26]) methods for f (ƞ) in k=0.05,𝜎 = 1. 

Error fHPM fvim ƞ 

0 0 0 0 
0.002066 0.095347 0.0974139 0.1 
0.004537 0.181926 0.186463 0.2 
0.005129 0.396374 0.391245 0.5 
0.044343 0.638833 0.5944900 1 
0.025953 0.874736 0.8487834   2 
0.016741 0.960288 0.9770290     3 
0.022747 0.991097 1.013844058 4 

 

 

 

 

TABLE 3 

 The computational error rate of two VIM and (HPM [26]) methods for  f(ƞ) in k=0.09,𝜎 = 1. 

Error fHPM fVIM ƞ 

0 0 0 0 

0.001918 0.095495 0.097413 0.1 
0.004011 0.182452 0.186463 0.2 
0.007454 0.398699 0.391245 0.5 

0.049714 0.644204 0.594490 1 
0.034013 0.882793 0.848783 2 
0.008681 0.968348 0.977029 3 
0.015213 0.998627 1.013849 4 

    

According to the above tables, our work compare with Ghadikolaei et al. work. The amount of 

computational error in our work is very low compared to Ghadikolaei et al. (2019).  
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6. Results and Discussion  

This study sought to evaluate the amount of heat transfer and fluid flow velocity through a flat plate 

with analytical method and then compare the results of this method with NUM. Tables 1-3 present the 

error rates for the velocity fluid values of the fluid flow in k=0.01, k=0.05, k=0.09 by comparing 

variation iteration method and Project. Figure 1 showed the geometry of the problem. 

      

FIGURE  9   Comparison between predicated results and actual results for velocity. 

 

FIGURE  10   Comparison between predicated results and actual results for temperature. 

First, Figures. 2 and 3 compare the results of VIM and NUM, and the process of the convergence of 

pilgrims is plotted. As the value of ƞ increases, the lines of these methods approach convergence and 

are 𝜃 (ƞ ) inversely.  For example, the comparison between different values of k in the interval 

(Figure. 4) shows that the rate of velocity increases to one as values tend to zero. Figure 5 shows the 

effects of changes in the wall temperature parameter with respect to temperature. In this graph, the 
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temperature increases given the decrease in s(wall temperature). Figure 6 displays the effects of 

changes in the Prandtl number with respect to Temperature for k=0.01 With an increase in Prandtl in 

the stretching sheet, the Temperature of the liquid decreases. Figures 7 and 8 displays the effects of 

changes in the Prandtl number with respect to Temperature for k=0.05 and k=0.09. With an increase 

in Prandtl in the stretching sheet, the Temperature of the liquid decreases. The second part of the 

description relates to the use RSM method in the Design Expert software. In this paper by using the 

RSM method, optimized the fluid velocity and heat transfer passing from the stretching sheet. To 

achieve the optimal results of the algorithm, ten experiments were done in the Design Expert software 

by RSM method. With the help of two-dimensional diagrams obtained from fluid parameters like 

Prandtl number and viscoelastic and wall temperature, the optimal points of velocity and equivalent 

fluid temperature can be obtained. Figures 9 and 10 show comparisons between actual and 

experimented results for parameters such as fluid velocity and fluid temperature. Due to the linearity 

of the curve and the close distances of the data to each other, this experiment is valid and a very low 

error is observed between the numbers of actual and experimented results. The purpose of 

optimization research in this paper is to increase heat transfer and reduce fluid flow velocity in 

specific numbers. In this paper, the response surface method determines the heat transfer and velocity 

of the passing fluid by generating the input data trend of Prandtl number 0.7 to 0.9 and viscoelastic 

parameter 1.25 to 1.85, and wall temperature of 0.01 to 0.09. 

 

FIGURE 11   2D graph RSM method in the velocity parameter for range of maximum wall temperature. 
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FIGURE  12   2D graph RSM method in the temperature parameter for range of maximum wall temperature. 

According to figures 11, 12, and 15 and in the state of the maximum velocity value, the modes of 

optimization evaluated between 10 experimental data as follows: 

K=0.070, s=1.750, σ=0.850, f=0.726, θ=0.696. 

By increasing the amount of K, the fluid velocity and fluid temperature 12% increased ratio the 

minimum viscoelastic parameter and reached the best optimizations value in the f=0.7 and θ=0.6. 

According to figure 13, in the modes of maximum Prandtl number (σ=0.850) the best optimal mode 

occurred as follows: 

K=0.070, s=1.250, σ=0.850, f=0.736, θ=0.70. 

In this graph, the best optimization mode occurred in the K=0.070, σ=0.850 with θ=0.70. By 

increasing the Prandtl number, the convection heat transfer 43 %increased ratios the minimum Prandtl 

number. According to the figure 14, in the modes of maximum wall temperature (s=1.750) the best 

optimal mode for fluid temperature and velocity occurred at the f=0.33 and θ=0.23.In general and in 

accordance with balanced modes for Prandtl number and viscoelastic parameter and wall temperature, 

the best optimization occurred for fluid velocity and fluid temperature with f=0.67 and θ=0.606. 
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FIGURE  13   2D graph RSM method in the temperature parameter for range of maximum prandtl number. 

 

FIGURE  14   2D graph RSM method in the temperature parameter for range of viscoelastic parameter. 
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FIGURE  15  3D graph RSM method in the velocity parameter for range of maximum wall temperature. 

7. Conclusion  

This study aimed at investigating the variation of heat transfer and velocity changes of the fluid flow 

along the vertical line on a surface drawn from both sides. In the beginning, the several parameters 

such as Prandtl number and viscoelastic evaluated for heat transfer and fluid velocity by variation 

Iteration method. The results were compared with the numerical method. The second part of the 

description relates to the use RSM method in the Design Expert software. In this paper by using the 

RSM method, optimized the fluid velocity and heat transfer passing from the stretching sheet. The 

results of variation iteration method are accurate for the nonlinear solution. As the value of k 

increases, the value of fluid velocity indicates an increase and by increase Prandtl number, the value 

of Temperature decreases. 

 By increasing the amount of K, the fluid velocity and fluid temperature 12% increased ratio 

the minimum viscoelastic parameter and reached the best optimizations value in the f=0.7 

and θ=0.6. 

 By increasing the Prandtl number, the convection heat transfer 43 % increased ratio the 

minimum Prandtl number. 

 The purpose of optimization research in this paper is to increase heat transfer and reduce 

fluid flow velocity in specific numbers 

 As the value of k increases, the value of fluid velocity indicates an increase and by increase 

Prandtl number, the value of Temperature decreases. 

Nomenclature 

P                             embedding parameter 

Cp                            specific Pressure heat 

NUM                       Numeric method 

VIM                        Variation Iteration Method 
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K                             viscoelastic parameter 

T                              Temperature fluid 

Ec                             Eckert number 

S                               wall temperature 

𝜃     Dimensionless temperature 

𝜎                                       Prandtl number        

𝜌                                  Density parameter 

𝜇                                       Dynamic viscosity 

𝛼                                       thermal diffusivity 

Ƞ                               Dimensionless variable 

𝜗                                       kinematic viscosity 
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