References
Abelleyro, M. M., Radic, C. P., Marchione, V. D., Waisman, K., Tetzlaff, T., Neme, D., . . . De Brasi, C. D. (2020). Molecular insights into the mechanism of nonrecurrent F8 structural variants: Full breakpoint characterization and bioinformatics of DNA elements implicated in the upmost severe phenotype in hemophilia A. Hum Mutat, 41 (4), 825-836. doi:10.1002/humu.23977
Abeysinghe, S. S., Chuzhanova, N., Krawczak, M., Ball, E. V., & Cooper, D. N. (2003). Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat, 22 (3), 229-244. doi:10.1002/humu.10254
Abyzov, A., Li, S., Kim, D. R., Mohiyuddin, M., Stütz, A. M., Parrish, N. F., . . . Gerstein, M. B. (2015). Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nat Commun, 6 , 7256. doi:10.1038/ncomms8256
Albano, F., Anelli, L., Zagaria, A., Coccaro, N., Casieri, P., Rossi, A. R., . . . Specchia, G. (2010). Non random distribution of genomic features in breakpoint regions involved in chronic myeloid leukemia cases with variant t(9;22) or additional chromosomal rearrangements.Mol Cancer, 9 , 120. doi:10.1186/1476-4598-9-120
Ankala, A., Kohn, J. N., Hegde, A., Meka, A., Ephrem, C. L., Askree, S. H., . . . Hegde, M. R. (2012). Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene. Genome Res, 22 (1), 25-34. doi:10.1101/gr.123463.111
Arlt, M. F., Mulle, J. G., Schaibley, V. M., Ragland, R. L., Durkin, S. G., Warren, S. T., & Glover, T. W. (2009). Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet, 84 (3), 339-350. doi:10.1016/j.ajhg.2009.01.024
Bacolla, A., Jaworski, A., Larson, J. E., Jakupciak, J. P., Chuzhanova, N., Abeysinghe, S. S., . . . Wells, R. D. (2004). Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci U S A, 101 (39), 14162-14167. doi:10.1073/pnas.0405974101
Bacolla, A., Tainer, J. A., Vasquez, K. M., & Cooper, D. N. (2016). Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res, 44 (12), 5673-5688. doi:10.1093/nar/gkw261
Bacolla, A., Wojciechowska, M., Kosmider, B., Larson, J. E., & Wells, R. D. (2006). The involvement of non-B DNA structures in gross chromosomal rearrangements. DNA Repair (Amst), 5 (9-10), 1161-1170. doi:10.1016/j.dnarep.2006.05.032
Bacolla, A., Ye, Z., Ahmed, Z., & Tainer, J. A. (2019). Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. Prog Biophys Mol Biol, 147 , 47-61. doi:10.1016/j.pbiomolbio.2019.03.004
Ball, E. V., Stenson, P. D., Abeysinghe, S. S., Krawczak, M., Cooper, D. N., & Chuzhanova, N. A. (2005). Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Human mutation, 26 (3), 205-213.
Bauters, M., Van Esch, H., Friez, M. J., Boespflug-Tanguy, O., Zenker, M., Vianna-Morgante, A. M., . . . Froyen, G. (2008). Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res, 18 (6), 847-858. doi:10.1101/gr.075903.107
Béna, F., Gimelli, S., Migliavacca, E., Brun-Druc, N., Buiting, K., Antonarakis, S. E., & Sharp, A. J. (2010). A recurrent 14q32.2 microdeletion mediated by expanded TGG repeats. Hum Mol Genet, 19 (10), 1967-1973. doi:10.1093/hmg/ddq075
Brown, R. E., & Freudenreich, C. H. (2021). Structure-forming repeats and their impact on genome stability. Curr Opin Genet Dev, 67 , 41-51. doi:10.1016/j.gde.2020.10.006
Carlson, J., Locke, A. E., Flickinger, M., Zawistowski, M., Levy, S., Myers, R. M., . . . Consortium, B. (2018). Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans.Nat Commun, 9 (1), 3753. doi:10.1038/s41467-018-05936-5
Carvalho, C. M., & Lupski, J. R. (2016). Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet, 17 (4), 224-238. doi:10.1038/nrg.2015.25
Carvalho, C. M., & Lupski, J. R. (2016). Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews Genetics, 17 (4), 224.
Carvalho, C. M., Zhang, F., Liu, P., Patel, A., Sahoo, T., Bacino, C. A., . . . Tavyev, Y. J. (2009). Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching.Human molecular genetics, 18 (12), 2188-2203.
Cer, R. Z., Bruce, K. H., Mudunuri, U. S., Yi, M., Volfovsky, N., Luke, B. T., . . . Stephens, R. M. (2011). Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res, 39 (Database issue), D383-391. doi:10.1093/nar/gkq1170
Cer, R. Z., Donohue, D. E., Mudunuri, U. S., Temiz, N. A., Loss, M. A., Starner, N. J., . . . Stephens, R. M. (2013). Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.Nucleic Acids Res, 41 (Database issue), D94-D100. doi:10.1093/nar/gks955
Chuzhanova, N., Chen, J. M., Bacolla, A., Patrinos, G. P., Ferec, C., Wells, R. D., & Cooper, D. N. (2009). Gene conversion causing human inherited disease: evidence for involvement of non-B-DNA-forming sequences and recombination-promoting motifs in DNA breakage and repair.Hum Mutat, 30 (8), 1189-1198. doi:10.1002/humu.21020
Cooper, D. N., Bacolla, A., Ferec, C., Vasquez, K. M., Kehrer-Sawatzki, H., & Chen, J. M. (2011). On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat, 32 (10), 1075-1099. doi:10.1002/humu.21557
Cooper, D. N., Ball, E. V., & Mort, M. (2010). Chromosomal distribution of disease genes in the human genome. Genet Test Mol Biomarkers, 14 (4), 441-446. doi:10.1089/gtmb.2010.0081
Cukier, H. N., Kunkle, B. W., Vardarajan, B. N., Rolati, S., Hamilton-Nelson, K. L., Kohli, M. A., . . . Alzheimer’s Disease Genetics, C. (2016). ABCA7 frameshift deletion associated with Alzheimer disease in African Americans. Neurol Genet, 2 (3), e79. doi:10.1212/NXG.0000000000000079
Damas, J., Carneiro, J., Amorim, A., & Pereira, F. (2014). MitoBreak: the mitochondrial DNA breakpoints database. Nucleic Acids Res, 42 (Database issue), D1261-1268. doi:10.1093/nar/gkt982
Del Mundo, I. M. A., Zewail-Foote, M., Kerwin, S. M., & Vasquez, K. M. (2017). Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic acids research, 45 (8), 4929-4943.
Demaerel, W., Mostovoy, Y., Yilmaz, F., Vervoort, L., Pastor, S., Hestand, M. S., . . . Vermeesch, J. R. (2019). The 22q11 low copy repeats are characterized by unprecedented size and structural variability. Genome Res, 29 (9), 1389-1401. doi:10.1101/gr.248682.119
Dittwald, P., Gambin, T., Szafranski, P., Li, J., Amato, S., Divon, M. Y., . . . Stankiewicz, P. (2013). NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res, 23 (9), 1395-1409. doi:10.1101/gr.152454.112
Dong, D. W., Pereira, F., Barrett, S. P., Kolesar, J. E., Cao, K., Damas, J., . . . Kaufman, B. A. (2014). Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics, 15 , 677. doi:10.1186/1471-2164-15-677
Férec, C., Casals, T., Chuzhanova, N., Macek, M., Jr., Bienvenu, T., Holubova, A., . . . Chen, J. M. (2006). Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. Eur J Hum Genet, 14 (5), 567-576. doi:10.1038/sj.ejhg.5201590
Fontana, G. A., & Gahlon, H. L. (2020). Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res, 48 (20), 11244-11258. doi:10.1093/nar/gkaa804
Fujimoto, A., Wong, J. H., Yoshii, Y., Akiyama, S., Tanaka, A., Yagi, H., . . . Shimada, M. (2021). Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med, 13 (1), 65. doi:10.1186/s13073-021-00883-1
Gadgil, R. Y., Romer, E. J., Goodman, C. C., Rider, S. D., Jr., Damewood, F. J., Barthelemy, J. R., . . . Leffak, M. (2020). Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J Biol Chem, 295 (45), 15378-15397. doi:10.1074/jbc.RA120.013495
Geng, C., Tong, Y., Zhang, S., Ling, C., Wu, X., Wang, D., & Dai, Y. (2021). Sequence and Structure Characteristics of 22 Deletion Breakpoints in Intron 44 of the DMD Gene Based on Long-Read Sequencing.Front Genet, 12 , 638220. doi:10.3389/fgene.2021.638220
Gentleman, R., & DebRoy, S. (2019). Biostrings: Efficient manipulation of biological strings. R package version 2.54. 0 .
Georgakopoulos-Soares, I., Morganella, S., Jain, N., Hemberg, M., & Nik-Zainal, S. (2018). Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res, 28 (9), 1264-1271. doi:10.1101/gr.231688.117
Ghosh, A., & Bansal, M. (2003). A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr, 59 (Pt 4), 620-626. doi:10.1107/s0907444903003251
Grajcarek, J., Monlong, J., Nishinaka-Arai, Y., Nakamura, M., Nagai, M., Matsuo, S., . . . Woltjen, K. (2019). Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. Nat Commun, 10 (1), 4856. doi:10.1038/s41467-019-12829-8
Guiblet, W. M., Cremona, M. A., Harris, R. S., Chen, D., Eckert, K. A., Chiaromonte, F., . . . Makova, K. D. (2021). Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res, 49 (3), 1497-1516. doi:10.1093/nar/gkaa1269
Guo, X., Shi, J., Cai, Q., Shu, X. O., He, J., Wen, W., . . . Long, J. (2018). Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes. Hum Mol Genet, 27 (5), 853-859. doi:10.1093/hmg/ddy005
Hardison, R. C., Roskin, K. M., Yang, S., Diekhans, M., Kent, W. J., Weber, R., . . . Haussler, D. (2003). Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res, 13 (1), 13-26. doi:10.1101/gr.844103
Harel, T., & Lupski, J. R. (2018). Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet, 93 (3), 439-449. doi:10.1111/cge.13146
Hastings, P., Ira, G., & Lupski, J. R. (2009). A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS genetics, 5 (1), e1000327.
Hastings, P. J., Lupski, J. R., Rosenberg, S. M., & Ira, G. (2009). Mechanisms of change in gene copy number. Nature Reviews Genetics, 10 (8), 551-564.
Hillmer, M., Summerer, A., Mautner, V. F., Hogel, J., Cooper, D. N., & Kehrer-Sawatzki, H. (2017). Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat, 38 (12), 1711-1722. doi:10.1002/humu.23319
Hillmer, M., Wagner, D., Summerer, A., Daiber, M., Mautner, V. F., Messiaen, L., . . . Kehrer-Sawatzki, H. (2016). Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet, 25 (3), 484-496. doi:10.1093/hmg/ddv487
Hu, Q., Lu, H., Wang, H., Li, S., Truong, L., Li, J., . . . Wu, X. (2019). Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J, 38 (24), e101751. doi:10.15252/embj.2019101751
Inoue, K., & Lupski, J. R. (2002). Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet, 3 , 199-242. doi:10.1146/annurev.genom.3.032802.120023
Jahic, A., Hinreiner, S., Emberger, W., Hehr, U., Zuchner, S., & Beetz, C. (2017). Doublet-Mediated DNA Rearrangement-A Novel and Potentially Underestimated Mechanism for the Formation of Recurrent Pathogenic Deletions. Hum Mutat, 38 (3), 275-278. doi:10.1002/humu.23162
Kamat, M. A., Bacolla, A., Cooper, D. N., & Chuzhanova, N. (2016). A Role for Non-B DNA Forming Sequences in Mediating Microlesions Causing Human Inherited Disease. Hum Mutat, 37 (1), 65-73. doi:10.1002/humu.22917
Kato, T., Inagaki, H., Kogo, H., Ohye, T., Yamada, K., Emanuel, B. S., & Kurahashi, H. (2008). Two different forms of palindrome resolution in the human genome: deletion or translocation. Hum Mol Genet, 17 (8), 1184-1191. doi:10.1093/hmg/ddn008
Keegan, N. P., Wilton, S. D., & Fletcher, S. (2019). Breakpoint junction features of seven DMD deletion mutations. Hum Genome Var, 6 , 39. doi:10.1038/s41439-019-0070-x
Keute, M., Miller, M. T., Krishnan, M. L., Sadhwani, A., Chamberlain, S., Thibert, R. L., . . . Hipp, J. F. (2020). Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment. Mol Psychiatry . doi:10.1038/s41380-020-0858-6
Kidd, J. M., Graves, T., Newman, T. L., Fulton, R., Hayden, H. S., Malig, M., . . . Eichler, E. E. (2010). A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell, 143 (5), 837-847.
Kiktev, D. A., Sheng, Z., Lobachev, K. S., & Petes, T. D. (2018). GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 115 (30), E7109-e7118. doi:10.1073/pnas.1807334115
Kondrashov, A. S., & Rogozin, I. B. (2004). Context of deletions and insertions in human coding sequences. Hum Mutat, 23 (2), 177-185. doi:10.1002/humu.10312
Kouzine, F., Wojtowicz, D., Baranello, L., Yamane, A., Nelson, S., Resch, W., . . . Levens, D. (2017). Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst, 4 (3), 344-356 e347. doi:10.1016/j.cels.2017.01.013
Krawczak, M., & Cooper, D. N. (1991). Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet, 86 (5), 425-441. doi:10.1007/bf00194629
Lee, J. A., Carvalho, C. M., & Lupski, J. R. (2007). A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell, 131 (7), 1235-1247. doi:10.1016/j.cell.2007.11.037
Lemmens, B., van Schendel, R., & Tijsterman, M. (2015). Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat Commun, 6 , 8909. doi:10.1038/ncomms9909
Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T., & Hurles, M. E. (2019). Similarities and differences in patterns of germline mutation between mice and humans. Nat Commun, 10 (1), 4053. doi:10.1038/s41467-019-12023-w
Liu, P., Carvalho, C. M., Hastings, P. J., & Lupski, J. R. (2012). Mechanisms for recurrent and complex human genomic rearrangements.Curr Opin Genet Dev, 22 (3), 211-220. doi:10.1016/j.gde.2012.02.012
MacLean, H. E., Favaloro, J. M., Warne, G. L., & Zajac, J. D. (2006). Double-strand DNA break repair with replication slippage on two strands: a novel mechanism of deletion formation. Hum Mutat, 27 (5), 483-489. doi:10.1002/humu.20327
Maranchie, J. K., Afonso, A., Albert, P. S., Kalyandrug, S., Phillips, J. L., Zhou, S., . . . Linehan, W. M. (2004). Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location. Hum Mutat, 23 (1), 40-46. doi:10.1002/humu.10302
Marey, I., Ben Yaou, R., Deburgrave, N., Vasson, A., Nectoux, J., Leturcq, F., . . . Cossee, M. (2016). Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis, 3 (2), 227-245. doi:10.3233/JND-150134
McVey, M., & Lee, S. E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings.Trends Genet, 24 (11), 529-538. doi:10.1016/j.tig.2008.08.007
Mendez-Dorantes, C., Tsai, L. J., Jahanshir, E., Lopezcolorado, F. W., & Stark, J. M. (2020). BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep, 30 (5), 1342-1357 e1344. doi:10.1016/j.celrep.2020.01.001
Morales, M. E., Kaul, T., Walker, J., Everett, C., White, T., & Deininger, P. (2021). Altered DNA repair creates novel Alu/Alu repeat-mediated deletions. Hum Mutat, 42 (5), 600-613. doi:10.1002/humu.24193
Nambot, S., Thevenon, J., Kuentz, P., Duffourd, Y., Tisserant, E., Bruel, A. L., . . . Orphanomix Physicians, G. (2018). Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis. Genet Med, 20 (6), 645-654. doi:10.1038/gim.2017.162
Pabis, K. (2021). Triplex and other DNA motifs show motif-specific associations with mitochondrial DNA deletions and species lifespan.Mech Ageing Dev, 194 , 111429. doi:10.1016/j.mad.2021.111429
Prihar, G., Verkkoniem, A., Perez-Tur, J., Crook, R., Lincoln, S., Houlden, H., . . . Haltia, M. (1999). Alzheimer disease PS-1 exon 9 deletion defined. Nat Med, 5 (10), 1090. doi:10.1038/13383
Romiguier, J., Ranwez, V., Douzery, E. J., & Galtier, N. (2010). Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res, 20 (8), 1001-1009. doi:10.1101/gr.104372.109
Sahoo, T., Peters, S. U., Madduri, N. S., Glaze, D. G., German, J. R., Bird, L. M., . . . Bacino, C. A. (2006). Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype-phenotype correlations. J Med Genet, 43 (6), 512-516. doi:10.1136/jmg.2005.036913
Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., . . . Scherer, S. W. (2012). SHANK1 Deletions in Males with Autism Spectrum Disorder. Am J Hum Genet, 90 (5), 879-887. doi:10.1016/j.ajhg.2012.03.017
Seo, S. H., Bacolla, A., Yoo, D., Koo, Y. J., Cho, S. I., Kim, M. J., . . . Jeon, B. (2020). Replication-Based Rearrangements Are a Common Mechanism for SNCA Duplication in Parkinson’s Disease. Mov Disord, 35 (5), 868-876. doi:10.1002/mds.27998
Sharp, A. J., Hansen, S., Selzer, R. R., Cheng, Z., Regan, R., Hurst, J. A., . . . Eichler, E. E. (2006). Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome.Nat Genet, 38 (9), 1038-1042. doi:10.1038/ng1862
Stenson, P. D., Mort, M., Ball, E. V., Chapman, M., Evans, K., Azevedo, L., . . . Cooper, D. N. (2020). The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet, 139 (10), 1197-1207. doi:10.1007/s00439-020-02199-3
Stenson, P. D., Mort, M., Ball, E. V., Shaw, K., Phillips, A., & Cooper, D. N. (2014). The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet, 133 (1), 1-9. doi:10.1007/s00439-013-1358-4
Summerer, A., Mautner, V. F., Upadhyaya, M., Claes, K. B. M., Hogel, J., Cooper, D. N., . . . Kehrer-Sawatzki, H. (2018). Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. Hum Genet, 137 (6-7), 511-520. doi:10.1007/s00439-018-1904-1
Svetec Miklenic, M., & Svetec, I. K. (2021). Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer. Int J Mol Sci, 22 (6). doi:10.3390/ijms22062840
Tan, E. K. (2016). Chromosomal deletion at 22q11.2 and Parkinson’s disease. Lancet Neurol, 15 (6), 538-540. doi:10.1016/s1474-4422(16)00115-0
Tanay, A., & Siggia, E. D. (2008). Sequence context affects the rate of short insertions and deletions in flies and primates. Genome Biol, 9 (2), R37. doi:10.1186/gb-2008-9-2-r37
Vaags, A. K., Lionel, A. C., Sato, D., Goodenberger, M., Stein, Q. P., Curran, S., . . . Scherer, S. W. (2012). Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet, 90 (1), 133-141. doi:10.1016/j.ajhg.2011.11.025
Verdin, H., D’Haene, B., Beysen, D., Novikova, Y., Menten, B., Sante, T., . . . De Baere, E. (2013). Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet, 9 (3), e1003358. doi:10.1371/journal.pgen.1003358
Visser, R., Shimokawa, O., Harada, N., Kinoshita, A., Ohta, T., Niikawa, N., & Matsumoto, N. (2005). Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet, 76 (1), 52-67. doi:10.1086/426950
Visser, R., Shimokawa, O., Harada, N., Niikawa, N., & Matsumoto, N. (2005). Non-hotspot-related breakpoints of common deletions in Sotos syndrome are located within destabilised DNA regions. J Med Genet, 42 (11), e66. doi:10.1136/jmg.2005.034355
Vissers, L. E., Bhatt, S. S., Janssen, I. M., Xia, Z., Lalani, S. R., Pfundt, R., . . . Stankiewicz, P. (2009). Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum Mol Genet, 18 (19), 3579-3593. doi:10.1093/hmg/ddp306
Vocke, C. D., Ricketts, C. J., Schmidt, L. S., Ball, M. W., Middelton, L. A., Zbar, B., & Linehan, W. M. (2021). Comprehensive characterization of Alu-mediated breakpoints in germline VHL gene deletions and rearrangements in patients from 71 VHL families. Hum Mutat, 42 (5), 520-529. doi:10.1002/humu.24194
Vogt, J., Bengesser, K., Claes, K. B., Wimmer, K., Mautner, V. F., van Minkelen, R., . . . Kehrer-Sawatzki, H. (2014). SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol, 15 (6), R80. doi:10.1186/gb-2014-15-6-r80
Vogt, P. H., Bender, U., Deibel, B., Kiesewetter, F., Zimmer, J., & Strowitzki, T. (2021). Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: new cases and review of literature. Cell Biosci, 11 (1), 60. doi:10.1186/s13578-021-00551-2
Wells, R. D. (2007). Non-B DNA conformations, mutagenesis and disease.Trends Biochem Sci, 32 (6), 271-278. doi:10.1016/j.tibs.2007.04.003
Wu, X., Lu, Y., Ding, Q., You, G., Dai, J., Xi, X., . . . Wang, X. (2014). Characterisation of large F9 deletions in seven unrelated patients with severe haemophilia B. Thromb Haemost, 112 (3), 459-465. doi:10.1160/TH13-12-1060
Xu, J., Mo, Z., Ye, D., Wang, M., Liu, F., Jin, G., . . . Sun, Y. (2012). Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet, 44 (11), 1231-1235. doi:10.1038/ng.2424
Zhang, F., Khajavi, M., Connolly, A. M., Towne, C. F., Batish, S. D., & Lupski, J. R. (2009). The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans.Nature genetics, 41 (7), 849-853.
Zhang, F., Seeman, P., Liu, P., Weterman, M. A., Gonzaga-Jauregui, C., Towne, C. F., . . . Rautenstrauss, B. (2010). Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. The American Journal of Human Genetics, 86 (6), 892-903.
Zhao, J., Bacolla, A., Wang, G., & Vasquez, K. M. (2010). Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci, 67 (1), 43-62. doi:10.1007/s00018-009-0131-2
Zheng, S., Fu, J., Vegesna, R., Mao, Y., Heathcock, L. E., Torres-Garcia, W., . . . Chin, L. (2013). A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes & development, 27 (13), 1462-1472.