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Abstract 

Coarse-grained methods have been widely used in simulations of gas-solid fluidization. 

However, as a key parameter, the coarse-graining ratio, and its relevant scaling law is 

still far from reaching a consensus. In this work, a scaling law is developed based on a 

similarity analysis, and then it is used to scale the multi-phase particle-in-cell (MP-PIC) 

method, and validated in the simulation of two bubbling fluidized beds. The simulation 

result shows this scaled MP-PIC can reduce the errors of solids volume fraction and 

velocity distributions over a wide range of coarse-graining ratios. In future, we expect 

that a scaling law with consideration of the heterogeneity inside a parcel or numerical 

particle will further improve the performance of coarse-grained modeling in simulation 

of fluidized beds. 
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1. Introduction 

 

In recent decades, various numerical methods have been developed for the research of 

fluidization and multiphase flow, in which two approaches can be categorized, i.e., the 

Eulerian-Eulerian method and the Eulerian-Lagrangian method.1-6 

 

The Two-Fluid Model (TFM) is a typical Eulerian-Eulerian method, where the gas and 

particles are viewed as two interpenetrating continua. The conservation equations of the 

mass, momentum and energy are derived through certain averaging process, and the 

constitutive relations for the solid phase stress are usually closed using the kinetic 

theory of granular flow (KTGF).1,7,8 

 

In Eulerian-Lagrangian methods, particles are treated as discrete entities. The motion 

of each particle is tracked with Newton’s second law of motion. The particle contact 

force can be determined through the hard-sphere model9,10 or soft-sphere model.2,11 In 
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the hard-sphere model, collision contact is assumed instantaneous, and only the binary 

collision is considered. In the soft-sphere model, the linear spring-dashpot model12 and 

non-linear Hertz model13,14 are widely adopted to account for the contact force. An 

elastic force term and a damping force term are normally used to segregate contacting 

particles and dissipate energy, respectively. Since less assumptions are introduced, the 

Eulerian-Lagrangian method enables more accurate prediction compared to TFM. The 

soft-sphere model is usually applied in the CFD-DEM (computational fluid dynamics-

discrete element method), as it is readily compatible with CFD solvers to estimate 

particle trajectories. However, the computational cost becomes unaffordable for a 

realistic fluidized bed with huge number of particles to be tracked.  

 

To reduce the number of numerical particles to be tracked, various coarse-grained 

models have been proposed. According to their difference in the concept of numerical 

particles, as shown in Fig. 1, those models can be categorized into two types, namely, 

the coarse-grained-particle (CGP-) based and parcel-based models. In CGP-based 

models,15-19 the numerical particle size is coarse-grained, i.e., larger than the original 

one; the inter-particle force is normally determined with the soft-sphere model and the 

collision related parameters are determined with the properties of the coarse-grained 

particles. In parcel-based models, e.g., multi-phase particle-in-cell method (MP-PIC),20 

the numerical particle is a sample particle in a parcel, where a certain number of 

particles are assumed to behave the same as the sample particle, and the collision related 

parameters are determined with the properties of the sample particle. The collision 

between particles is not tracked directly in MP-PIC, instead it is represented with a solid 

pressure gradient. Compared to CFD-DEM, a bigger time step for updating particles, 

which is normally the same as that of the fluid phase, can be hence adopted. That makes 

MP-PIC more suitable for simulation of large-scale fluidized beds. 

 

Fig.1 Two types of coarse-grained particle in coarse-grained method: CGP-based and parcel-based 

models 

 

2 Scaling laws and coarse-graining ratio 

The coarse-graining ratio is a key parameter in coarse-grained models, because it can 

significantly affect the simulation result.21,22 In a CGP-based model, the coarse-graining 

ratio, namely, k, refers to the diameter ratio of CGP to original particles. In a parcel-

based model, it refers to the number of particles per parcel, which is usually denoted by 

np. It is obvious that np=k3. By scaling the particle size by a factor of k, the number of 

particles is reduced by k3. In coarse-grained models, using of numerical particle implies 

a tradeoff between the efficiency and accuracy in simulation. Smaller coarse-graining 
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ratio, i.e., less original particles represented by a numerical particle/parcel, means a 

better and closer to CFD-DEM prediction, but at a higher computational cost.  

 

The dynamics of the numerical particle is described by using Newton’s law of motion.  

Thus, the key issue of a coarse-grained model is to determine its scaling law, which 

relates the force parameters of the coarse-grained system with those of original particles. 

The most concerned behavior should be kept unchanged during the coarse-graining. To 

reproduce with high fidelity the flow field of a fluidized bed, the most concerned 

behavior here refers to the time-resolved fields of the gas velocity, particle velocity and 

solids volume fraction. Table 1 summarizes the scaling laws in literatures for various 

coarse-grained models. These scaling laws are presented for different force terms in the 

solid momentum equation separately, including the gravity, pressure drop, drag and 

inter-particle forces.  

 

Table.1 Scaling laws for coarse-grained models in literature 

 

In all these models, the kinetic energy of a coarse-grained particle was assumed to equal 

that of the sum of original particles.15,18-20,23-28 And the physical properties, like the 

viscosity and density, were assumed to be unchanged in the coarse-graining. Under this 

condition, the mass and velocity can be scaled by k3 and 1, respectively. However, the 

invariant of the kinetic energy of particles is not sufficient to determine the entire set of 

force parameters, neither their scaling law. Because it is hard to verify the equivalence 

between the most concerned behavior and the invariant of the kinetic energy of particles. 

In practice, the invariant only of the particle kinetic energy is not sufficient to guarantee 

a determined solution and may lead to multiple solutions of the coarse-grained model. 

On the other hand, due to the coarse-graining, the velocity difference between original 

particles in a parcel may be lost. That may require more efforts in the scaling of the 

particle kinetic energy. 

 

To derive a full scaling law, various assumptions have been further proposed. For 

example, Sakai and Koshizuka15 assumed that each force over a coarse-grained particle 

is equal to the sum of the forces over the original particles. As these original particles 

are not fully resolved, the relevant forces are assumed invariant with respect to each 

original particle. That assumption applies to all the forces in their work, including the 

gravity, pressure drop and drag force, the scaling law are hence k3, with the assumption 
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that the density, viscosity and drag coefficient keep unchanged. In particular, for the 

inter-particle collision force, Sakai and Koshizuka15 assumed that, when a pair of 

coarse-grained particles collide, all the original particles inside the coarse-grained 

particles take binary collision, inferring a scaling of k3 for the collision force. In the 

work of Hilton and Cleary,29 the spring and damping coefficients are assumed to be k3 

times that of original particles, leading to a k3 scaling of collision force. Whereas for 

the drag force, the cross-sectional area of the numerical particle is assumed to be k2 

times that of original particles, hence the scaling of the drag is k2 therein. 

 

Though the k3 scaling have been widely applied for the gravity, pressure drop and drag 

force,17-20 different strategies have been suggested for scaling the collision force in 

literature. Lu et al.18 assumed that the collision dissipation energy should be kept 

unchanged in the coarse-graining, thereby the restitution coefficient and the damping 

coefficient are modified for coarse-grained particles. Their scaling for the collision 

force can be derived thereon but not explicitly presented. According to the momentum 

and impulse connection, Chu et al.19 assumed that the acting time of a collision is 

linearly proportional to the coarse-grained particle diameter, thus following a scaling of 

k2. Washino et al.30 assumed that the momentum flux is unchanged, and the number of 

original particle pairs across the face of a control volume is k2 times larger than that of 

numerical particles, therefore, the scaling of the inter-particle force is also k2. 

 

Similarity analysis is another useful tool in determining the scaling law. In the work of 

Liu et al.17, the Reynolds number, Re, and Archimedes number, Ar, are chosen as the 

key dimensionless numbers. The gas viscosity, gas density and particle diameter are 

scaled such that these two dimensionless numbers are kept unchanged in the coarse-

graining. In the work of Link et al.31 and Sutkar et al.32, Re and Ar are also chosen as 

the key dimensionless numbers, while the particle density is scaled to keep the 

dimensionless numbers unchanged. Focusing on binary collisions, Bierwisch et al.33 

proposed several dimensionless numbers to describe the collision force by assuming 

the energy density is conserved in the coarse-graining. Mu et al.34 adopted the gravity 

as a characteristic quantity to normalize the other forces, and the resultant 

dimensionless forces remain unchanged during the coarse-graining. However, the 

demand of such an unchanged force ratio is not straightforward. In addition, the 
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physical properties of the fluid and gravitational acceleration are also adjusted to keep 

these dimensionless variables unchanged in the work of Mu et al.34. The scaling result 

of Mu et al.34 is similar to that of Feng and Owen.35 where based on three basic 

quantities, i.e., particle density, length and time, and their relevant scale factors, k or 1, 

the dimension of any other quantities are expressed in terms of these three basic 

quantities, and then converted into the scale factors. 

 

Beside these works, there are also scaling law studies based on nonlinear collision force 

models or gas-liquid-particle system.36-40 

 

In sum, different understanding exists on certain issues of the coarse-graining, e.g., how 

the force acting on a coarse-grained particle is determined; whether the physical 

properties such as the fluid density and viscosity change during the coarse-graining; 

whether the gravitational acceleration needs to be adjusted. Various scaling laws have 

been proposed or derived based on different assumptions or dimensionless numbers. 

However, it is uncertain whether these scaling laws enable the most concerned behavior 

unchanged during the coarse-graining. Furthermore, although various scaling laws have 

been extensively discussed for CGP-based coarse-grained models in literature, few such 

efforts were put on the parcel-based MP-PIC method. As summarized in Table 1, the 

current MP-PIC actually follows a scaling of k3. It is not clear whether such a scaling 

is suitable for MP-PIC to capture the most concerned behavior in a bubbling fluidized 

bed. Indeed, different scaling laws might be expected for different granular or 

multiphase flow systems if the most concerned behavior for these systems are not the 

same. 

 

Bearing in mind the disputes in the coarse-graining and its relation with the most 

concerned behavior, we aim to revisit the scaling relations in MP-PIC in this article, 

and propose a scaled MP-PIC method to reproduce the flow field with high fidelity 

during the coarse-graining. This article is organized as follows: first, based on the force 

balance equations, we develop a scaling law for the gravity, gas pressure gradient, drag 

and inter-particle force, respectively; then, this scaling law is extended to MP-PIC 

method, followed by validation with numerical simulations of a bubbling fluidized bed. 
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Comparison to classic MP-PIC is also presented. The conclusion is presented finally 

with prospects. 

 

3. A scaling law of coarse-grained method 

As discussed in section 2, for a coarse-grained method to reproduce the flow field of a 

gas-fluidized bed, the coarse-grained particle and original particles are expected to have 

the same gas velocity, particle velocity and solids volume fraction, i.e., 

𝒖g,CG = 𝒖g,O,   𝒖p,CG = 𝒖p,O,   𝜀s,CG = 𝜀s,O (1) 

The Lagrangian method is used to track the motion of numerical particles. As there is 

no basic difference between the momentum equations of the CGP- and parcel-based 

methods, in what follows we present the coarse-graining procedure with Newton’s 

equation of motion normally applied in the CGP method, as follows: 

𝑚CG

𝑑𝒖p,CG

𝑑𝑡
= 𝑚CG𝒈+ 𝑭gp,CG + 𝑭c,CG + 𝑭d,CG (2) 

The right-hand side terms represent the gravity, gas pressure gradient, inter-particle 

contact force and inter-phase drag force, respectively. As practiced in most of coarse-

grained methods, we keep the physical properties (say, viscosity , density  and 

Young’s modulus Y) and gravitational acceleration unchanged for both the gas and solid 

phases during the coarse-graining. 

 

To achieve similitude between the original and coarse-grained systems, we try to first 

normalize Eq. (2) by identifying the characteristic length and velocity. And these 

characteristic quantities should be connected with the most concerned behavior in the 

system. For the collision related force, the characteristic length should be connected 

with the relative motion between particles, therefore the numerical particle diameter 

dCG is usually chosen as the characteristic length.33,41,42 And the characteristic velocity 

is defined as 𝑢p0, which represents the sonic speed in a fluid and is unchanged with the 

numerical particle dimeter. Whereas for the drag force, several characteristic lengths 

have been proposed in literature. For example, Glicksman43 adopted the particle 

diameter as the characteristic length to scale the drag, and the bed size later on.44,45 As 

the drag force reflects the inter-phase interaction, its characteristic length is expected to 

relate with the spatial distribution of the gas-particle flow fields. Therefore, the bed size 

L is chosen as the characteristic length for the drag in the following derivation. And it 

also applies to the gravity and pressure drop. The characteristic velocity for the drag is 

defined as the superficial gas velocity 𝑢g0. And the characteristic time and acceleration 
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can be derived from the characteristic length and velocity accordingly. In what follows 

we derive the scaling laws for the gravity, gas pressure gradient, inter-particle contact 

force and drag force, respectively.  

 

Table. 2 The characteristic quantities adopted in dimensionless equations 

 

3.1 Scaling of gravity and gas pressure gradient 

The mass of the numerical particle is assumed to be the sum of that of the original 

particles. The gravitational acceleration is kept unchanged, so the gravity is dependent 

on the volume of the numerical particle. Thus, the scaling of the gravity reads 

𝑚CG𝒈 = 𝑘3𝑚p𝒈 (3) 

The gas pressure gradient is also volumetric, thus the coarse-grained pressure gradient 

should be equal to the sum of that of the original particles, as follows: 

𝑭gp,CG = 𝑘3𝑭gp,O (4) 

   

3.2 Scaling of inter-particle force 

To simplify the discussion, this work focuses on a monodisperse system. However, the 

scaling law of a polydisperse system can be derived likewise as proposed in this article. 

As an indicative extension, the scaling law for the binary particle collision with different 

particle diameters is shown in Appendix A. Both the tangential and normal collisions 

are assumed to follow the same scaling law. For a normal collision between a pair of 

particles, the motion equation of a particle is given by the spring-dashpot model,33,46 as 

follows: 

𝑚eff�̈�n = 𝑘𝑛𝜹n + 𝜂𝑛�̇�n (5) 

where 𝜹n  denotes the overlap of a pair of colliding particles, over dot the time 

derivative and meff the effective mass determined by 

𝑚eff =
𝑚𝑖𝑚𝑗

𝑚𝑖 +𝑚𝑗
=
1

2
𝑚𝑖 =

1

12
𝜋𝑑p

3𝜌p (6) 

𝑘𝑛 and 𝜂𝑛 denote the spring coefficient and damping coefficient, respectively. Eq. (5) 

can be normalized by introducing the following dimensionless variables as summarized 

in Table 2, 

𝜹n
∗ =

𝜹n
𝑑p
,    �̇�n

∗ =
𝜹ṅ
𝑢p0

,    �̈�n
∗ = �̈�n

𝑑p

𝑢p0
2

(7) 

Here, the dimensionless overlap 𝜹n
∗  reflects the strain of particle in elastic collision. 

As the Young’s modulus is assumed to be a constant, the unchanged 𝜹n
∗   implies 



 

8 

 

unchanged solid stress in the coarse-graining. By substituting Eq. (7) into Eq. (5), the 

dimensionless motion equation reads 

 
1

12
𝜋�̈�n

∗ =
𝑘n

𝑑p𝜌p𝑢p0
2 𝜹n

∗ +
𝜂n

𝑑p2𝜌p𝑢p0
�̇�n
∗ (8) 

where the dimensionless spring and damping coefficients can be defined by 

𝛱1 =
𝑘n

𝑑p𝜌p𝑢p0
2  ,        𝛱2 =

𝜂n
𝑑p2𝜌p𝑢p0

(9) 

In the coarse-graining, 𝛱1  and 𝛱2  are kept unchanged to ensure that the coarse-

grained system behaves similarly to the original system, i.e., 

𝛱1 =
𝑘n,O

𝑑p𝜌p,O𝑢p0,O
2 =

𝑘n,CG

𝑑CG𝜌p,CG𝑢p0,CG
2

(10a) 

𝛱2 =
𝜂n,O

𝑑p2𝜌p,O𝑢p0,O
=

𝜂n,CG

𝑑CG
2 𝜌p,CG𝑢p0,CG

(10𝑏) 

Since 𝜌s  and 𝑢p0  are unchanged during the coarse-graining, 𝑘n  and 𝜂n  of the 

numerical particle can be determined by 

𝑘n,CG
𝑘n,O

=
𝑑CG
𝑑p

=𝑘,          
𝜂n,CG
𝜂n,O

=
𝑑CG
2

𝑑p2
= 𝑘2 (11) 

The overlap of the coarse-grained particle can be determined as 𝜹n,CG = 𝑘𝜹n,O as the 

dimensionless overlap also remain unchanged. Thus, the normal collision force Fc of 

CGP can be determined by 

𝑭c,CG = 𝑘n,CG ⋅ 𝜹n,CG + 𝜂n,CG ⋅ �̇�n,CG = 𝑘2𝑭c,O (12) 

For further information, the other parameters or flow field information are derived and 

discussed in Appendix B. 

 

3.3 Scaling of drag force 

The scaling of drag force can be derived likewise based on the equation of motion due 

to the drag, as follows: 

1

6
𝜋𝑑p

3𝜌p𝒂d =
1

8
𝜋𝐶𝑑𝑑p

2𝜌g|𝒖slip| · 𝒖slip (13) 

where 𝒂d  is the acceleration induced by the drag and 𝒖slip  is the relative velocity 

between the gas and solid phases, which can be described as (𝒖g(𝒙p) − 𝒖p).  

 

The following dimensionless variables are then defined by 

𝒖slip
∗ =

𝒖slip

𝑢g0
,       𝒂d

∗ = 𝒂d
𝐿

𝑢g0
2

(14) 

Substituting the dimensionless variables of Eq. 14 into Eq. 13, we have  
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𝒂d
∗ =

3

4
𝐶𝑑

𝐿

𝑑p

𝜌g

𝜌p
(𝒖slip

∗ )
2

(15) 

where the only dimensionless parameter for the scaling of the drag coefficient is given 

by 

𝛱3 =
3

4
𝐶𝑑

𝐿

𝑑p

𝜌g

𝜌p
(16) 

During the coarse-graining, Π3 must be kept constant to make sure that the coarse-

grained system is analogous to the original particle system, thus giving 

𝐶𝑑,CG = 𝑘𝐶𝑑,O (17) 

Then the relationship between the drag force of CGP and that of original particle reads 

 𝑭d,CG =
1

8
𝐶𝑑,CG𝜋𝑑CG

2 𝜌g𝒖slip,CG
2 =

1

8
𝑘𝐶𝑑,O𝜋𝑘

2𝑑p
2𝜌g𝒖slip,O

2 = 𝑘3𝑭d,O (18) 

By substituting Eq. 3,4,12,18 into Eq. 2, the scaled motion equation for coarse-grained 

particles is written by 

𝑚CG

𝑑𝒖p,CG

𝑑𝑡
= 𝑘3𝑚p𝒈 + 𝑘

3𝑭gp,O + 𝑘
3𝑭d,O + 𝑘

2𝑭c,O (19) 

 

4. Application of the scaling law to MP-PIC 

4.1 MP-PIC method 

 

MP-PIC is a parcel-based coarse-grained method developed to simulate dense 

particulate flows or gas-particle flows.20,47-52 The gas-phase continuity and momentum 

equations in MP-PIC is analogous to Navier-Stokes equations, as follows: 

𝜕

𝜕𝑡
(𝜀g𝜌g) + 𝛁 ⋅ (𝜀g𝜌g𝒖g) = 0 (20) 

𝜕

𝜕𝑡
(𝜀g𝜌g𝒖g) + 𝛁 ⋅ (𝜀g𝜌g𝒖g𝒖g) =

−𝜀g𝛁𝑝 + 𝛁 ⋅ 𝜏g̿ + 𝜀g𝜌g𝒈 −
1

𝑉cell
∑𝑛p𝑭d,𝑖

1

6
𝜋𝑑p

3

𝑛𝑇

𝑖=1

𝜌p (21)

 

where 𝜀g  denotes the void fraction, 𝑉cell  the volume of cell, 𝑛𝑇   the total parcel 

number in a fluid cell, i the ith parcel/sample particle in the cell, 𝑛p the number of 

particles per parcel, or, the coarse-graining ratio. �̿�g is the gas-phase stress tensor, 

�̿�g = 2𝜇g𝑆g̿ (22) 

�̿�g =
1

2
[𝛁𝒖g + (𝛁𝒖g)

T
] −

1

3
𝛁 ⋅ 𝒖g𝑰 (23) 

For the solid phase, a number of particles are lumped into one parcel, and the motion 

of this parcel could be represented by one sample particle, which is tracked with 
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Newton’s law of motion. The contact force in MP-PIC takes effect through a solid 

pressure.16,47,53 The particle motion equations read 

𝑑𝒙p

𝑑𝑡
= 𝒖p (24) 

𝑑𝒖p

𝑑𝑡
= −

𝛁𝑝

𝜌p
−
𝛁𝑝s
𝜀s𝜌p

+
𝛽

𝜀s𝜌p
(𝒖g(𝒙p) − 𝒖p) + 𝒈 (25) 

where the third term in the right side is the 𝑭d,𝑖  in Eq. (21). 𝑝s  is the solid 

pressure,47,54 

𝑝s = 𝑝s
∗

𝜀s
𝛼

𝜀s,𝑚𝑎𝑥 − 𝜀s
(26) 

here, 𝜀s,𝑚𝑎𝑥  is the solid volume fraction at close packing; 𝑝s
∗  and α are empirical 

constants. The current scaling relation is realized through modifying the classic 

formulation of the interparticle stress.20,55 Its applicability with respect to the 

interparticle friction, however, needs more efforts in future. The drag model is of great 

importance to fluidization simulation.56-62 In this work, the EMMS-bubbling drag22,63 

is adopted, as follows: 

 𝛽G =

{
 
 

 
 150

𝜀s𝜇g

𝜀g𝑑p2
+ 1.75

𝜌g|(𝒖g(𝒙p) − 𝒖p)|

𝑑p
,   𝜀g < 0.8

3

4

𝜌g𝜀s𝜀g|(𝒖g(𝒙p) − 𝒖p)|

𝑑p
𝐶𝑑0𝜀g

−2.7,     𝜀g ≥ 0.8

(27) 

𝐶𝑑0 = {

0.44,                                   Re ≥ 1000

24(1 + 0.15Re0.687)

Re
,  Re < 1000

(28) 

Re =
𝜀s𝜌g|(𝒖g(𝒙p) − 𝒖p)|𝑑p

𝜇g
(29) 

𝛽 = 𝛽G ∙ 𝐻𝑑 (30) 

where 𝛽G  is the drag coefficient adopted in Ding and Gidaspow64, and Hd is the 

heterogeneity index. 

 

4.2 Scaling laws for MP-PIC 

 

MP-PIC is a parcel-based coarse-graining method, in which only the sample particle is 

tracked, and the motion of the other particles is assumed the same as the sample particle. 

As summarized in Table 1, its scaling is actually k3 for all the terms. By applying the 

scaling laws derived in section 2 to the motion equation of MP-PIC, we can get the new 

scaled equations, which is referred to as the scaled MP-PIC hereinafter.  
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The volume of a parcel equals the sum of the volume of the original particles 

represented by the parcel, thus the equivalent diameter of the parcel is given by 

𝑑CG = √𝑛p
3 𝑑p = 𝑘𝑑p (31) 

The CGP-based numerical particle is used during the derivation of scaling law for 

particle collision force. While in MP-PIC, collision induced forces are described by the 

interparticle stress, where the parcel-based numerical particle is used. Unlike the CGP-

based model, the collision process is not tracked in the parcel-based MP-PIC model, so 

are the duration of collision and collision frequency. It should be noted that the 

interparticle stress in MP-PIC is not equivalent to the solid stress in KTGF. In the 

scenario of KTGF, particles experience frequent collisions with each other, thus there 

exists a velocity distribution for a group of particles (say, nearly the Maxwellian 

distribution). As a result, the solid stress in KTGF includes two parts, one is kinetic due 

to velocity fluctuation, and the other is collisional due to particle collisions. In MP-PIC, 

the particles inside a parcel or numerical particle have exactly the same velocity, and 

hence there is no particle collision between them. So, it is not suitable to incorporate 

the solid stress of KTGF into the MP-PIC method directly. Instead, for MP-PIC, the 

interparticle stress only accounts for the interaction between numerical particles. Thus, 

in a given space, the collision-induced forces described by the interparticle stress can 

be correlated by the particle collision force at any instant, as follows: 

 𝛁𝑝s ∙ 𝑉 ∝ 𝑭c ∙ 𝑁c (32) 

where 𝑉 is the volume of the space; 𝑁c is the number of collisions in the volume, Fc 

the mean collision force. 

In the current work, the scaling law of the imaginary number of collisions, 𝑁c, in MP-

PIC framework is assumed as follows: 

𝑁c,CG =
1

𝑘3
𝑁c,O (33) 

This assumption is actually the same as what has been widely used in CGP-based 

models, i.e., when a pair of coarse-grained particles collide, all the original particles 

inside the coarse-grained particles take binary collision.15 An additional discussion 

about 𝑁c is shown in Appendix C. 

In original MP-PIC, the scaling law of collision force is 𝑘3, and it can be derived that 

(𝛁𝑝s)CG = (𝛁𝑝s)O.  While when applying Eqs. 32, 33 and the novel scaling of Eq.12, 

we have 

(𝛁𝑝s)𝐂𝐆 ∙ 𝑉

(𝛁𝑝s)𝐎 ∙ 𝑉
=
𝑭c,CG ∙ 𝑁c,CG
𝑭c,O ∙ 𝑁c,O

=
𝑘2𝑭c,O ∙

1
𝑘3
𝑁c,O

𝑭c,O ∙ 𝑁c,O
=
1

𝑘
(34) 

Thus, the solid pressure of a parcel reads 

 (𝛁𝑝s)CG =
(𝛁𝑝s)O
𝑘

(35) 
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The drag force of a particle is 

𝑭d,O = 𝛽O(𝒖g,O(𝒙p,O) − 𝒖p,O)
1

6
𝜋𝑑p

3
1

𝜀s,O
(36) 

and the drag force of a parcel is 

𝑭d,CG = 𝛽CG(𝒖g,CG(𝒙p,CG) − 𝒖p,CG)
1

6
𝜋𝑑CG

3
1

𝜀s,CG
(37)  

According to the basic requirement of a coarse-grained model as shown in Eq. 1, 

𝒖g,CG − 𝒖p,CG = 𝒖g,O − 𝒖p,O (38) 

and the scaling law of Eq. 18, 

𝑭d,CG
𝑭d,O

=
𝛽CG(𝒖g,CG(𝒙p,CG) − 𝒖p,CG)

1
6𝜋𝑑CG

2 1
𝜀s,CG

𝛽O(𝒖g,O(𝒙p,O) − 𝒖p,O)
1
6𝜋𝑑p

3 1
𝜀s,O

= 𝑘3 (49) 

the drag coefficient is kept the same during the coarse-graining, 

𝛽CG = 𝛽O (40) 

Likewise, we can derive the gravity and gas pressure gradient for a parcel as follows: 

𝒈CG = 𝒈O (41) 

𝛁𝑝CG = 𝛁𝑝O (42) 

 

4.3 Scaled MP-PIC equation 

 

By substituting Eqs. 35, 40, 41 and 42 into Eq. 25, we have the parcel motion equation 

as follows: 

𝑑𝒖p

𝑑𝑡
= −

𝛁𝑝

𝜌p
−
1

𝑘

𝛁𝑝s
𝜀s𝜌p

+
𝛽

𝜀𝑠𝜌p
(𝒖g(𝒙p) − 𝒖p) + 𝒈 (43) 

In principle, the drag force represents the inter-phase interaction and hence its scaling 

law should also apply to the gas-phase motion equation. As the drag coefficient does 

not change during coarse-graining, the gas-phase equation remains unchanged. Table 3 

summarizes the difference between the original and scaled MP-PIC methods. 

 

Table. 3 Sample particle parameters in original and scaled MP-PIC 

 

5. Validation and analysis 

5.1 Simulation settings 

 

We performed simulation of two bubbling fluidized beds to validate the scaled MP-PIC. 

The open source CFD software OpenFOAM was used. As the simulation accuracy is 

highly dependent on the closure relations such as the inter-phase and inter-particle 
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forces model, the validation mainly relates with the reproducibility of simulation when 

using different coarse-graining ratios. 

 

Fig. 2 shows the schematic diagram of 2D domain of bubbling bed 165 with a height of 

1.0 m and inner width of 0.14 m, and bubbling bed 266 with a height of 2.464 m and 

inner width of 0.267 m. Spherical particles are initially packed with a height of 0.5 m 

and void fraction of 0.45 (𝜀s = 0.55) for bubbling bed 1, and a height of 1.2 m and void 

fraction of 0.44 (𝜀s = 0.56) for bubbling bed 2. The gas flows into the bed from the 

bottom inlet with a speed of 0.1 m/s and 0.06 m/s, respectively, and out of the pressure 

outlet at the top. The non-slip boundary conditions is applied for gas phase at the walls. 

For particles, the particle-wall interaction is determined based on the restitution 

coefficient as listed in Table 4. The Cartesian grid with a resolution of 70×500 is 

adopted for bed 1, and a resolution of 100×1000 for bed 2. Both have been tested to 

allow a mesh-independent prediction. 

 

For both two bubbling beds, the simulations last for 25 s, and the durations of the last 

15 s are used for statistical analysis. The EMMS/bubbling drag models are employed 

for both cases. The heterogeneity index, Hd, which characterizes the drag difference 

between a realistic system and a homogeneous one, are summarized in Appendix D. 

The numerical settings are summarized in Table 4. 

 

 

Fig.2 Schematic diagram of two bubbling beds 

 

Table.4 Numerical settings for bubbling bed 165 and bed 266 

 

5.2 Bubbling fluidized bed 1 

 

Fig.3 shows instantaneous snapshots of the void fraction distribution in the bubbling 

bed 1. Generally, the original MP-PIC and the scaled MP-PIC give similar flow fields, 

both with dynamic bubbles and almost the same bed expansion. Small bubbles form 

near the bottom of the bed and gradually merge into larger ones. These bubbles are 

irregular in shape, and rise mainly in the middle of the bed. Both approaches predict a 

breakup of large bubble at the surface of the bed at about t=1.5 s. The snapshots are 

found to be insensitive to the value of np, thus only those with np=10 are shown here. 

 

  

Fig. 3 Void fraction distribution in bubbling bed 1 at different instants (np=10) 
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Figs. 4 and 5 show the time-average axial profile of solid volume fraction, and the 

lateral profiles of solid volume fraction and axial velocity. For both the original and 

scaled MP-PIC, the simulated expansion height increases with the coarse-graining ratio. 

While the increase is more significant in the original MP-PIC. It should be noted that, 

when np>400, the parcel size is as large as the grid size, leading to a divergence of 

simulation. Thus, no bigger np is considered for the original MP-PIC.  

 

The lateral profiles at h=0.5 m are also shown in Figs.4 and 5. With the original MP-

PIC, the lateral profiles of the solids volume fraction distribution are similar to each 

other when np≤200, whereas for the case of np=400, the solids volume fraction is 

obviously higher. By comparison, the lateral profiles of the solids volume fraction 

predicted by using the scaled MP-PIC show similar trend with all values of np.  

 

Both the original and scaled MP-PIC predict the so-called core-annular distribution of 

the axial particle velocity, with particles flowing upward in the center, and downward 

near the wall. By comparison, with the original MP-PIC, the axial velocity shows 

greater discrepancy with different np. With the increase of the coarse-graining ratio, the 

axial velocity is higher in the middle of the bubbling bed. For the results of the scaled 

MP-PIC, the axial velocity changes slightly. 

 

 

Fig. 4 Axial profiles of the time–average solids volume fraction and lateral profiles of the time-

average solids volume fraction and axial velocity at h=0.5 m in bubbling bed 1 with various np 

(original MP-PIC) 

 

  

Fig. 5 Axial profiles of the time–average solids volume fraction and lateral profile of the time-

average solids volume fraction and axial velocity at h=0.5 m in bubbling bed 1 with various np 

(scaled MP-PIC) 

 

To quantitatively analyze the effect of the scaled MP-PIC, we calculate the deviations 

of the simulation results with different np. Here, we take the simulation result with the 

smallest np as the reference case to determine the deviation as follows: 

σ = √
∑(𝑥 − 𝑥1)

𝑛 − 1
(44) 

Where x is the simulation result with different np, x1 denotes the simulation result with 

the smallest np, i.e., 10, and n is the sample size of different np. 

  

Fig. 6 Axial deviation profile of solid volume fraction and lateral deviation profile of solid volume 

fraction and axial velocity in bubbling bed 2 
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The axial and lateral profiles of deviation are calculated and shown in Fig. 6. For axial 

deviation profile, the deviation of the scaled MP-PIC is smaller than that of the original 

MP-PIC. Probably due to the strong oscillation near the bed surface, the deviations of 

both methods are much higher at h≈0.75 m than at the other elevations. For the lateral 

deviation profiles of the solid volume fraction and axial velocity, the scaled MP-PIC 

also outperforms the original one by showing much lower deviations at most of 

positions. However, the discrepancy near the wall is still obvious. That may be 

explained by that the scaling law in this study is proposed to scale the inter-particle 

forces, therefore, for the interaction between particles and the wall, the scaling law may 

deserve more efforts. 

 

5.3 Bubbling fluidized bed 2 

 

Fig. 7 shows instantaneous snapshots of void fraction distribution of bubbling bed 2 

with np=10. Again, we found that the snapshots are insensitive to the value of np. 

Compared to the bubbling bed 1, the bubbles in bubbling bed 2 is smaller and more 

dispersive. Both approaches predict a breakup of large bubble at the surface of the bed 

at about t=3.0 s.  

 

 

Fig. 7 Void fraction distribution in bubbling bed 2 at different instants (np=10) 

 

Figs. 8 and 9 show the time-average axial profile of solid volume fraction, and the 

lateral profiles of solid volume fraction and axial velocity. The expansion increases with 

coarse-graining ratio for both the original and scaled MP-PIC, whereas the discrepancy 

of the scaled MP-PIC is smaller. The maximal np reaches 1200 in bubbling bed 2, as 

smaller original particles and larger cells are applied. The lateral profiles at h=0.75 m 

are also shown in Figs. 8 and 9. Both the original and scaled MP-PIC predict similar 

trend of solids volume fraction with lateral position at various np. For the axial velocity, 

the core-annular distribution is predicted in both approaches. Whereas with the increase 

of the coarse-graining ratio, the predicted axial velocity is higher in the middle range 

of lateral position. 

 

  

Fig. 8 Axial profiles of time–average solid volume fraction and lateral profile of time-average 

solid volume fraction and axial velocity at h=0.75m in bubbling bed 2 with various np (original 

MP-PIC) 
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Fig. 9 Axial profiles of time–average solid volume fraction and lateral profile of time-average 

solid volume fraction and axial velocity at h=0.75 m in bubbling bed 2 with various np (scaled 

MP-PIC) 

 

The axial and lateral profiles of deviation are shown in Fig. 10. For the axial profile of 

the deviation of solid volume fraction, the scaled MP-PIC outperforms again the 

original MP-PIC by showing smaller deviation over most range of elevation. For the 

lateral deviation profile of solid volume fraction, the scaled MP-PIC shows obvious 

improvement, while the deviation near the wall is still higher than at the other positions. 

For axial velocity, the generally both methods show comparable deviation. 

 

  

Fig. 10 Axial deviation profile of solid volume fraction and lateral deviation profile of solid 

volume fraction and axial velocity in bubbling bed 2 

 

It is worth noting that, in a bubbling fluidized bed, the gas and particles are 

heterogeneously distributed over a wide range of scales. The existence of meso-scale 

bubble structure is the critical characteristics of such a fluidized bed, and can 

significantly affect the drag force and inter-particle forces.67,68 In this preliminary work, 

although the EMMS drag model is applied, the effect of meso-structure is not 

considered during the derivation of the scaling law for the coarse-graining. We expect 

that a scaling law based on the heterogeneity inside a parcel or numerical particle will 

help improve the performance of coarse-grained modeling. It should be noted that, the 

effect of the coarse-graining ratio and grid size on the drag as well as the simulation 

result, as investigated in the literature,61,69 may deserve more efforts in future study 

 

6. Conclusion 

 

The coarse-graining ratio is a key parameter in coarse-grained methods. To consider its 

effect, the relationship between the forces of a numerical particle and those of a real 

particle is established based on a similarity analysis of the coarse-graining, and then 

applied in MP-PIC. Two bubbling beds are simulated with this scaled MP-PIC at 

different coarse-graining ratios. The following conclusions can be drawn: 

 

(1) The inter-particle contact force of a numerical particle follows a scaling of k2. 

(2) The drag force of a numerical particle follows a scaling of k3. 

(3) The scaled MP-PIC method reduces the errors of solids volume fraction and particle 

velocity distribution in simulation of bubbling fluidized beds. 

(4) We expect that a scaling law with consideration of the heterogeneity inside a parcel 

or numerical particle will help improve the performance of coarse-grained modeling 

in simulation of fluidized beds.  
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Notation 

𝑎d  acceleration induced by drag force (m/s2) 

𝐶𝑑  drag coefficient 

d  particle diameter (m) 

e  restitution coefficient 

g  gravitational acceleration (m/s2) 

Hd  heterogeneity index 

k  coarse-graining ratio 

L  bed size (m) 

m  mass (kg) 

𝑛  sample size 

𝑛p  coarse-graining ratio 

𝑛T  parcel number in one cell 

N  particle number density 

𝑁C  number of collisions 

p  pressure (Pa) 

𝑝s
∗  solid pressure parameter (Pa) 

𝒖  velocity (m/s) 

x  location (m) 

Y  Young’s module (Pa) 

𝛼  solid pressure parameter 

𝛽  drag coefficient (kg/m3 s) 

𝜀  volume fraction 

𝜹n  particle overlap (m) 

σ  deviation 

𝑘n  spring coefficient (N/m) 

𝜂n  damping coefficient (kg/s) 

�̿�  stress tensor (Pa) 

𝜌  density (kg/m3) 

𝜇  viscosity (Pa s) 

 

Subscript 

0  characteristic 
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eff  effective  

g  gas phase 

p  particle  

s  solid phase 

O  original particle system 

CG  numerical particle/numerical particle system 
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