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Abstract

As a continuation of Part I, dedicated to the ground state of He-like and Li-like isoelectronic

sequences for nuclear charges Z ≤ 20, and Part II, dedicated to two excited states of He-like

sequence, two ultra-compact wave functions in the form of generalized Guevara-Harris-Turbiner

functions are constructed for Li-like sequence. They describe accurately the domain of applicability

of the Quantum Mechanics of Coulomb Charges (QMCC) for energies (2-3 significant digits (s.d.))

of the spin-quartet state 140+ of Li-like ions (in static approximation with point-like, infinitely

heavy nuclei). Variational parameters are fitted in Z by 2nd degree polynomials. The most

accurate ultra-compact function leads to the absolute accuracy ∼ 10−3 a.u. for energy, and ∼ 10−4

for the normalized electron-nuclear cusp parameter for Z ≤ 20. Critical charge Z = ZB , where

the ultra-compact trial function for the 140+ state looses its square-integrability, is estimated,

ZB(1
4 0+) ∼ 1.26−1.30. As a complement to Part I, square integrability for the compact functions

constructed for the ground, spin-doublet state 12 0+ of the Li-like sequence is discussed. The critical

charge, for which these functions stop to be normalizable, is estimated as ZB(1
2 0+) = 1.62− 1.65.

It implies that at Z = 2 - the negative helium ion He− - both states 12 0+ and 14 0+ exist as states

embedded to continuum.
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INTRODUCTION

Ultra-compact approximate wave functions provide a valuable tool for different studies

in quantum mechanics. In the case of few-body Coulomb systems such compact functions

allow us a simple physical interpretation of interactions (bonding mechanisms, in particular)

between bodies in small atoms and molecules [1–4] and [5, 7]. Of course, this is in a great

contrast with the highly complicated, lengthy variational trial functions composed by thou-

sands terms, which are mainly aimed to get highly accurate (frequently excessively accurate,

which never might be reached experimentally in nearest future) energies. In particular, it is

an important case when the wave function includes non-linear parameters, those allow the

physical meaning of charge screening, while their optimal values provide understanding of

the physics picture of the Coulomb interactions in electronic media. Needless to say that

compact trial functions are specially valuable when they are sufficiently accurate locally in

the coordinate space being able to reproduce the energy as well as expectation values in a

domain which is free of possible corrections of any type: finite mass, relativistic, QED etc.

For the He-like and Li-like isoelectronic sequences the correction-less domain for the ground

state energy was already localized in [9] by two of the present authors. It is of “order” of

3-4 significant digits (s.d.). It is natural to assume this correction-less domain remains the

same for energies of the excited states.

In Part I [5] we introduced successfully the (ultra)-compact wave functions for He-like and

Li-like iso-electronic sequences in their respective ground states with idea to get a description

of the exact wave function inside the above-mentioned correction-less domain. It has been

already demonstrated that these functions can be successfully used for plasma-confined

Helium atom [6]. In Part II [7] similar (ultra)-compact wave functions for two low-lying

21 S states and 13 S of the He-like sequence were also introduced. These ultra-compact

wave functions with a very few linear and non-linear variational parameters led not only to

sufficiently accurate variational energies but also provide highly accurate expectation values

and also the accurate description of cusp conditions. Furthermore, the non-linear parameters

of those wave functions can be systematically described by the second degree polynomial in

Z for Z ≤ 20 by making fit. Square integrability of the ultra-compact functions for the He-

like sequence for different Z for three low-lying states was discussed additionally in Part II.

As a result, critical charges ZB at which the compact wave functions stop to be normalizable
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(square-integrable) were found in each case. It was done for the ground state and two S

excited states for the He-like sequence. It was shown that ZB for the spin-singlet ground

state and the first excited state coincide with high accuracy with each other and also with

ZB for the ground state energy found in analysis of the Puiseux expansion, see e.g. [9]. For

spin-triplet state of the lowest energy ZB was found for the first time.

Needless to say that the low-lying excited states of Li atom and a few members of its

isoelectronic sequence, were studied through the years using different approaches, mostly

variational and Monte-Carlo ones. In particular, the accurate variational calculations of

spin-quartet states of Li-like isoelectronic sequence of the type (1s2sns) n = 3, 4, . . . and

(1s2snp) n = 2, 3, . . . were performed in [11–13]. More recent calculations for the Lithium

states (1s 2s ns) for n = 3−8 and (1s 2s np) for n = 2−7, for the cases of infinite and finite

nuclear mass of 7Li, were done extensively in [18] by using the so-called double-basis set in

Hylleraas coordinates of size ∼ (5000, 5000), where the benchmark energy value for the Li

state (1s2s3s) or 14 S was found to be E∞
14 S = −5.212748247225 a.u. (infinite nuclear mass)

and E14S = −5.212746755787 a.u. (finite nuclear mass). Hence, the mass correction is very

small: it changes the seventh s.d. being of the order of ∼ 10−6 a.u. As for another spin-

quartet state (1s2s2p) or 14 P of the lowest energy the obtained value for the corresponding

energy was E∞
14 P = −5.3680101539 a.u., and E14 P = −5.3680256078 a.u. for infinite and

finite nuclear mass, respectively. Mass correction for this state is ∼ 10−5 a.u. Comparison

with the experimental results Eexp
14 S = −5.2110 a.u. and Eexp

14 P = −5.3660 a.u.[10] indicates

that corrections other than mass corrections are more important, since they can provide

contributions ∼ 103 a.u. changing 3rd decimal digit (d.d.). Present authors are not aware

about reliable systematic studies of relativistic and QED corrections for Z > 3, for discussion

see [9].

This paper is the third part in sequence: we follow the same strategy of building (ultra)-

compact wave functions, as developed in Parts I,II , for zero total angular momentum - S

states - spin-quartet state 14 0+, or, in different nomenclature: (1s 2s 3s) or 14 S , of the

lithium isoelectronic sequence in the domain of nuclear charges Z ≤ 20. Major emphasis in

the construction of a compact wave function for Li-like systems is made to the insertion of

electronic correlations in exponential form ∝ exp{cijrij}, where rij is the relative distance

between electrons i, j(i 6= j) = 1, 2, 3 and cij is the accompanying variational parameter

and also natural modification rij → r̂ij by replacing the distance by a rational function,
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see below. To the best of author’s knowledge this form of correlation has been used in the

past only for wave functions of the ground state of Li-like systems (see for instance [3]).

This inclusion is particularly important in the domain of large distances approaching the

asymptotics rj → ∞, since the exponential factors define the correct dominant behavior

of the wave function at large distances. In particular, the exponential factors define the

normalizability of the trial function. Square integrability of the designed trial functions is

studied as a function of the nuclear charge Z and the critical charge at which these functions

stop to be normalizable is determined. The same analysis of the square integrability and the

determination of the associated critical charge is also carried out for the Li-like spin-doublet

120+ (ground) state ultra-compact functions constructed in Part I [5].

The structure of this paper is the following: in Section I, we briefly review the compact

functions constructed for the spin-doublet (ground) state of the Li-like sequence, study their

square integrability as a function of Z and determine the critical charge ZB. In Section II the

Li-like sequence for the spin-quartet state 140+ is discussed, the exact solution for Z → ∞
is presented and (ultra)-compact functions are introduced which describe accurately the

energy and the cusp conditions. We then analyze the square integrability of state 140+ and

the corresponding critical charge ZB is found. The results are summarized in Conclusions.

Atomic units are used throughout this paper.

I. LI-LIKE SEQUENCE: SPIN-DOUBLET STATE REVISITED.

A. Spin-doublet ground state: Generalities.

Four compact trial functions for the spin 1/2 ground state 120+ of the lithium atom and

its isoelectronic relatives (3e;Z) with infinite nuclear mass were considered and studied in

details in Part I [5]. The most accurate function among these ultra-compact functions taken

as the variational trial function had provided an absolute accuracy for the energy ∼ 10−3 a.u.

and from 2 to 3 s.d. for the electron-nuclear cusp parameter for Z ≤ 20. Below we briefly

review the three trial functions (a),(c),(d) used in Part I for the ground state and perform

a detailed analysis of their normalizability for different Z. This analysis will allow us to

estimate the critical charges ZB which mark the domain in Z in where each of particular

compact wave functions remains normalizable.
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B. Three compact trial functions for ground state.

All compact variational functions which describe the ground state 120+ for Li-like se-

quence proposed in [5] have the general form (see [5] for details),

ψ(~r1, ~r2, ~r3;χ) = A [φ1(~r1, ~r2, ~r3)χ1 + C φ2(~r1, ~r2, ~r3)χ2 ] , (1)

where χ1,2 stand for a 2-dimensional basis of the orthonormal three-electron spin 1/2 eigen-

functions. A is the three-electron antisymmetrizer

A = 1− P12 − P13 − P23 + P231 + P312 , (2)

where Pij represents the permutation (i ↔ j), and Pijk stands for the permutation of

(123) into (ijk) 1. The parameter C measures the relative contribution of each spin 1/2

component in (1). For the orbital part, the general Ansatz was given by the antisymmetrized

three-electron exponentially correlated seed functions φ1, φ2 (that depend only on relative

distances) of the Guevara-Harris-Turbiner form [3],

φ1(~r1, ~r2, ~r3;α
(1)
i , α

(1)
ij ; a3) = (1− a3r3 + b12r12) e

−α
(1)
1 Zr1−α

(1)
2 Zr2−α

(1)
3 Zr3

× eα
(1)
12 r̂12+α

(1)
13 r13+α

(1)
23 r23 , (3)

and

φ2(~r1, ~r2, ~r3;α
(2)
i , α

(2)
ij ; a1) = (1 + a1r1 + b23r23) e

−α
(2)
1 Zr1−α

(2)
2 Zr2−α

(2)
3 Zr3

× eα
(2)
12 r12+α

(2)
13 r13+α

(2)
23 r̂23 , (4)

where α
(p)
i , α

(p)
ij , j > i = 1, 2, 3 , p = 1, 2 , a1, a3, b12, b23, as well as C are considered as

free variational parameters. Non-linear variational parameters α
(p)
i , α

(p)
ij have a meaning of

screening/antiscreening factors of the Coulomb charges in the nucleus-electron and electron-

electron interactions, respectively. Furthermore, the effects of charge screening, which are

assumed to be different at small and large distances, are taken into account by the following

rational expressions inserted into the exponents of the Coulomb orbitals:

αiri → αir̂i ≡ αi ri
1 + ciri
1 + diri

, αjkrjk → αjkr̂jk ≡ αjk rjk
1 + cjk rjk
1 + djk rjk

. (5)

1 Note that the permutations P231 and P312 correspond in standard notations to P123 and P132, respectively.
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Meaning of these expressions is interpolation the effective Coulomb charges between small

and large distances. For electron-nuclear attraction they are equal to αi, when ri is small,

and to αi
ci
di
, when ri is large. For electron-electron repulsion they are equal to αjk, when

rjk is small, and to αjk
cjk
djk

, when rjk is large. In (5) ci, di, cjk and djk are considered as

variational parameters. Following physics arguments, described in Part I, the substitution

(5) was implemented in the terms ∝ exp
(

α
(1)
12 r̂12

)

in φ1 (3), and ∝ exp
(

α
(2)
23 r̂23

)

in φ2 (4)

only. This conclusion was checked in variational calculations, where it was shown that the

(anti)-screening in the form (5) for other interactions does not effect the first 3-4 s.d. in

energy.

C. Square integrability of trial functions for the ground state 12 0+

It is evident that the normalizability of the entire wave function (1) is guaranteed if seed

functions are normalizable. For the seed wave functions φ1 (3), φ2 (4) to be normalizable,

they should decay exponentially at large distances. In particular, this condition has to be

valid whenever the position of two electrons is kept fixed while the position of the third

electron tends to infinity. It can be explicitly seen in analysis of the exponential factors in

(3), (4) that

φ1,2

∣

∣

ri,rj fixed
→ exp{−A(1,2)

k rk} at rk → ∞, i, j, k = 1, 2, 3 (i 6= j 6= k) , (6)

where the factors Ak depend on Z, they are positive, A
(1,2)
k > 0, for large Z > ZB. Also

these factors can be ordered (see below)

A
(1,2)
1 > A

(1,2)
2 > A

(1,2)
3 .

These factors serve as a measure of the square integrability of φ1,2. Their inverses have a

meaning of the average distance of the k-th electron to the nucleus, ∝ 1/A
(1,2)
k . Our goal is

to find the critical charge ZB when the smallest (A3) vanishes.

In the limit Z → ∞, where the electron-electron interactions can be neglected, the exact

ground state seed wave function is the product of three anti-symmetrized Coulomb orbitals,

and Ak(Z) for kth electron grows linearly in Z:

Ak(Z) =
Z→∞

1

n
Z , (7)
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where n takes values n = 1, 2, 3 if the kth electron is in the (1s), (2s) or (3s) state, re-

spectively. In particular, if the 1st, 2nd and 3rd electrons are at the (1s), (2s), (3s) states,

respectively, then A1 > A2 > A3. The quantities A
(1,2)
k (Z) (k = 1, 2, 3) can be used to

determine the value of the critical charge Z = ZB at which the trial function (φ1 and/or φ2)

stops to be normalizable, A(ZB) = 0. This happens whenever one of the factor A
(1,2)
1 , A

(1,2)
2

or A
(1,2)
3 vanishes first with Z decreasing. Concrete variational calculations show that the

behavior of the quantities A
(1,2)
1,2,3 as functions of the nuclear charge Z exhibit essentially the

linear behavior in domain where they are positive. In fact, any A can be fitted with high

accuracy by function of the form

A(Z) = b1/2(Z − Zb)
1/2 + b1(Z − Zb) , (8)

where b1/2, b1 (the linear slope, c.f. (7)), Zb > 0 (a critical charge for given A, for smallest A,

Zb = ZB) are parameters. The square root term in (8) is proposed by following the physics

“naturality”: a singularity at the critical charge of A(Z) is likely to be a square root branch

point in Z-plane as it is in the ground state energy, see [8] and references therein. This

form is motivated by the energy behavior observed in He-like system (as well as many other

systems of Coulomb charges) at the critical charge leading to appearance of the Puiseux

expansion of the energy at Z = ZB (see [8] and references therein). Furthermore, we found

the hierarchy A1(Z) > A2(Z) > A3(Z), which is certainly valid for Z > ZB. It indicates the

presence of a clusterization phenomenon which keeps electrons spatially separated, similar

to what happens in He-like systems (see for discussion Part I).

D. Normalizability of the ground state functions. Results.

Among the trial functions considered in the study of the ground state 12 0+ in Part I [5]

we choose the particular cases (a),(c),(d) of the general Ansatz (1) for exploration in order

to make analysis of their square integrability:

(a) In the Ansatz (a) the orbital parts in (1) are assumed equal, φ1 = φ2 ≡ ϕ, they are

the product of three correlated Hylleraas (1s) type orbitals i.e. α
(1)
i = α

(2)
i ≡ αi,

α
(1)
ij = α

(2)
ij ≡ αij , i = 1, 2, 3, j < i and a1 = a3 = b12 = b23 = 0 . Substitution (5) is

not implemented in the exponential correlation factors. The spin part of the function
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is separated out. In total, there are 7 variational parameters. It can be immediately

seen that this wave function is normalizable, if all three expressions

A
(a)
1 = α1Z − α12 − α13 ,

A
(a)
2 = α2Z − α12 − α23 , (9)

A
(a)
3 = α3Z − α13 − α23 ,

are positive. Here superindex (a) stands for the seed function φ1 = φ2 = ϕ of Ansatz

(a). Since the variational parameters αi, αij have a smooth behavior as a function of

the charge Z, the A1,2,3 also have a smooth behavior vs Z. The value of the critical

charge is Z = Z
(a)
B = 1.62 at which the trial function (a) stops to be normalizable.

This is determined by the value at which A
(a)
3 (Z) = 0, which is the smallest among

A
(a)
1,2,3 for all Z in the physical domain (see Fig. 1 below). In fact, A

(a)
3 (Z) is fitted like

A
(a)
3 (Z) = 0.0009 (Z − Z

(a)
B )1/2 +

1

2
(Z − Z

(a)
B ) , (10)

with linear slope b1 = 1/2 is fixed by the requirement that in the asymptotic limit

Z → ∞ the third electron occupies the (2s) orbital. Likewise, A
(a)
1 (Z), A

(a)
2 (Z) are

fitted by expressions of the type (10) but with unit slope b1 = 1. They play a secondary

role since the normalizability is determined by A
(a)
3 (Z), see Fig.1 below.

(c) In this Ansatz the orbital parts φ1 and φ2 in (1) are different but they continue

to be the product of two (modified) correlated Hylleraas (1s) type orbitals and one

correlated (2s) orbital, thus, implying b12 = b23 = 0. Note that substitution (5) is

not implemented in the exponential correlation factors. In total, the Anzatz (c) is

characterized by 15 variational parameters including the parameter C.

The wave function for this case is normalizable while all the following six expressions

A
(c,i)
1 = α

(i)
1 Z − α

(i)
12 − α

(i)
13 ,

A
(c,i)
2 = α

(i)
2 Z − α

(i)
12 − α

(i)
23 , (11)

A
(c,i)
3 = α

(i)
3 Z − α

(i)
13 − α

(i)
23 ,

where i = 1, 2, remain positive. Here superindices (c, 1), (c, 2) stand for the seed

function φ1, φ2 of Ansatz (c), respectively. Screening parameters α
(1,2)
i , α

(1,2)
ij behave
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smoothly vs Z and so do the quantities A
(c1,c2)
1,2,3 . Expressions (11) are used to determine

the value of the critical charge Z = Z
(c)
B = 1.63 at which the trial function (c) stops to

be normalizable. It turns out that the overall normalizability is defined by A
(c,1)
3 (Z) =

0 and A
(c,2)
3 (Z) = 0, which surprisingly(!) vanish almost simultaneously, for almost

the same value of Z, corresponding to the loss of normalizability of φ1 (3) and φ2 (4),

respectively. These expressions for A’s demonstrate a remarkable linear behavior with

Z almost everywhere with slope equals to 1/2. In fact, they are accurately fitted by

A
(c,1)
3 = 0.0161 (Z − Z

(c)
B )1/2 +

1

2
(Z − Z

(c)
B ) , (12)

A
(c,2)
3 = 0.41 (Z − Z

(c)
B )1/2 +

1

2
(Z − Z

(c)
B ) . (13)

The expressions A
(c,1)
1 (Z) and A

(c,1)
2 (Z) are also approximately linear in Z with slopes

equal to 1 in agreement with shell-model prediction: in φ1 electrons 1 and 2 are in (1s)

type orbitals (and thus A(c,1;c,2) is almost linear function with slope 1) while the third

electron is in the (2s) orbital state demonstrating the linear behavior with slope 1/2.

On the other side, A
(c,2)
1 (Z) and A

(c,2)
2 (Z) are also approximately linear with the slopes

equal to ∼ 1 and ∼ 3/4, respectively, which indicates that in φ2 there is no definite

arrangement of electrons distributed into the (1s) and (2s) orbitals (see Fig.2).

The value of the critical charge for this function Z
(c)
B = 1.63 is slightly larger than

one found in the case (a). This is expected since the wave function (c) contains more

parameters and, following our philosophy, represents more accurate approximation to

the exact wave function.

(d) In this Ansatz, the orbital parts in (1) are assumed to be different, both φ1 and φ2 are

made as the product of (modified) Guevara-Harris-Turbiner functions, i.e. all varia-

tional parameters in (1) are free, and additionally the interpolation (5) is inserted into

the Coulomb exponential correlation terms, ∼ exp
(

α
(1)
12 r̂12

)

and ∼ exp
(

α
(2)
23 r̂23

)

, to

assure more accurate screening. In total, we have 21 variational parameters including

the parameter C, see Eq.(1).

Expressions (6) for the exponential factors indicate that the wave function for this
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case is normalizable when all

A
(d1)
1 = α

(1)
1 Z − α

(1)
12

c
(1)
12

d
(1)
12

− α
(1)
13 ,

A
(d1)
2 = α

(1)
2 Z − α

(1)
12

c
(1)
12

d
(1)
12

− α
(1)
23 ,

A
(d1)
3 = α

(1)
3 Z − α

(1)
13 − α

(1)
23 , (14)

A
(d2)
1 = α

(2)
1 Z − α

(2)
12 − α

(2)
13 ,

A
(d2)
2 = α

(2)
2 Z − α

(2)
12 − α

(2)
23

c
(2)
23

d
(2)
23

,

A
(d2)
3 = α

(2)
3 Z − α

(2)
13 − α

(2)
23

c
(2)
23

d
(2)
23

,

cf.(9), (11), are positive. Here, the superindices (d1), (d2) stand for the exponential

factors orbitals of seed function φ1, φ2 of Ansatz (d) respectively. Quantities (14)

are used to determine the value of the critical charge Z = Z
(d)
B = 1.65 at which the

corresponding trial function stops to be normalizable. This value represents a better

approximation to the exact critical value. It turns out that the overall normalizability

is defined by A
(d1)
3 (Z) = 0 or A

(d2)
3 (Z) = 0 since they vanish simultaneously, and are

fitted by

A
(d1)
3 = 0.012 (Z − Z

(d)
B )1/2 +

1

2
(Z − Z

(d)
B ) , (15)

A
(d2)
3 = 0.53 (Z − Z

(d)
B )1/2 +

1

2
(Z − Z

(d)
B ) . (16)

The relations A
(d1)
1 (Z) and A

(d1)
2 (Z) are also approximately linear with slope equal to

1 in agreement with the shell model picture. On the other side, A
(d2)
1 (Z) and A

(d2)
2 (Z)

are also approximately linear but the slopes 1 and 3/4, respectively, see Fig. 3.

In general, the optimal variational parameters can be fitted by simple quadratic func-

tions of the nuclear charge Z, with the only exception of parameter C which is fitted by a

quadratic function on Z−2, see Part I for comparison. In particular, the quadratic in Z fits

corresponding to the parameters of Anzatz (d) are

C = 0.0206− 0.7041Z−2 + 35.4617Z−4 ,

a3 = 0.3749 + 0.5262Z − 0.0014Z2 ,
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b12 = 0.1275− 0.0338Z + 0.0007Z2 ,

α
(1)
1 Z = 0.0953 + 1.0775Z − 0.0013Z2 ,

α
(1)
2 Z = −0.4456 + 0.9293Z + 0.0012Z2 ,

α
(1)
3 Z = −0.8266 + 0.5193Z − 0.0004Z2 ,

α
(1)
12 = 0.3340 + 0.0005Z − 0.000006Z2 , (17)

c
(1)
12 = 0.0659− 0.0720Z + 0.0009Z2 ,

d
(1)
12 = 0.0005 + 0.0032Z + 0.0053Z2 ,

α
(1)
13 = 0.0098− 0.0017Z + 0.000006Z2 ,

α
(1)
23 = −0.0105 + 0.0152Z − 0.0002Z2 ,

a1 = 0.5358− 0.2054Z + 0.0025Z2 ,

b23 = 0.1062− 0.0293Z − 0.00001Z2 ,

α
(2)
1 Z = −0.3014 + 1.0156Z − 0.0028Z2 ,

α
(2)
2 Z = −0.2095 + 0.8899Z − 0.0005Z2 ,

α
(2)
3 Z = 1.1304 + 0.2485Z + 0.0049Z2 ,

α
(2)
12 = −0.0300 + 0.2100Z − 0.0036Z2 ,

α
(2)
13 = 1.2212− 0.3388Z + 0.0053Z2 ,

α
(2)
23 = 0.1754 + 0.0461Z − 0.0004Z2 ,

c
(2)
23 = 0.0560− 0.0018Z + 0.00006Z2 ,

d
(2)
23 = −0.0010− 0.0108Z + 0.0087Z2 ,

cf. Table 6 in Part I [5]. By taking the concrete values of the fitted parameters one can

get, in general, the energies with accuracy ∼ 3 s.d. 2

It is worth noting that stemming from the analysis of the normalizability of the wave

functions (a), (c) and (d) vs Z the ground state for negative helium ion He− (Z = 2)

remains still normalizable since A3(Z = 2) > 0 even though the energy (EHe− = −2.8992

Hartrees) is larger than that one corresponding to system He + e. Thus, all wave functions

considered in Part I for the Li-like systems describe He− as a bound state embedded in the

continuum. The interesting question what would happen if more accurate function is taken

2 Note that the quadratic fits presented in (17) are slightly different (in some cases) then those presented in

the Part I, but the variational energy remains unchanged up to 4 s.d. It allows to have (slightly) smoother

behavior of the functions Ak, k = 1, 2, 3.
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as the trial function, will this level become the bound state with energy below threshold -

it is not clear to the present authors, it might be a subject of separate study.
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Figure 1: Ground state normalizability: A
(a)
1,2,3 for Li-like atoms as function of the nuclear

charge Z for the trial wave function (a) (see eq. (9)). All A
(a)
1,2,3 fitted by functions of the

form (8). The overall normalizability of (a) defined by the (smallest) A
(a)
3 leading to the

critical charge Z
(a)
B = 1.62. As for Anzatzen (c) and (d) it leads to critical charges

Z
(c)
B = 1.63 and Z

(d)
B = 1.65, see below Figs. 2 and 3, respectively.

II. LI-LIKE SEQUENCE: SPIN-QUARTET STATE

A. Generalities. Exact solution for the spin-quartet state.

For the Lithium-like system (3e;Z) with infinite nuclear mass, we look for a compact

function which would describe the lowest energy S state 140+ (14S) of total spin 3/2 in the

form

ψ(~r1, ~r2, ~r3;χ) = A [ϕ(~r1, ~r2, ~r3)χ ] , (18)

cf.(1), where χ represents a spin 3/2 eigenfunction made from three spin-1/2 electronic states

with zero total angular momentum. It implies that all electrons are in the same spin state.

The operator A is the three-electron antisymmetrizer (2). In a similar way as for the ground

12
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Figure 2: Ground state normalizability: A1,2,3 for Li-like atoms vs Z for φ1 (top), and φ2

(bottom) of the Anzatz (c) (see Eq.(11)). Normalizability is defined by the (smallest) A3

leading to the critical charge ZB = 1.63. All A1,2,3 can be fitted by a function of the form
A(Z) = a(Z − ZB)

1/2 + b(Z − ZB)

state (1), the function ϕ in (18) is called the seed function. As a result of antisymmetrization

the function ψ contains six terms.

At Z → ∞, where the electron-electron interaction disappears, the problem is reduced

to that of three Hydrogen atoms in (different) s-orbitals. In this limit, there exists the

exact solution of the Schrödinger equation in the form of anti-symmetrized product of three
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Figure 3: Ground state normalizability: A1,2,3 for Li-like atoms vs Z for the orbital
functions φ1 (top), and φ2 (bottom) of the Anzatz (d) (see Eq.(14)). Normalizability
defined by the (smallest) A3 leading to the critical charge ZB = 1.65. All A1,2,3 can be

fitted by a function of the form A(Z) = a(Z − ZB)
1/2 + b(Z − ZB).
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Coulomb orbitals (1s 2s 3s) with the seed function

ϕ0 = (1− aZr2)(1 + bZr3 + cZ2r23) e
−α1Zr1−α2Zr2−α3Zr3 ∼ (1s1 2s2 3s3) , (19)

with α1 = 1, a = α2 = 1/2, b = −2/3, c = 2/27, α3 = 1/3. It corresponds to the energy

E0 = −49

72
Z2 .

The function (19) can be used as the trial function with α1,2,3, a, b, c taken as variational

parameters. This function represents the starting point to construct the compact trial

functions, it will be presented below.

B. Compact Trial Functions

Let us present three (ultra)-compact trial functions for the spin-quartet state 1 40+ (14S)

in addition to (19).

(i) The first (ultra)-compact variational function is constructed by making a generaliza-

tion of the function (19) by adding the electronic correlations in the form of exponen-

tially correlated Hylleraas-type functions

ϕ1 = (1−a(1)Zr2)(1+b(1)Zr3+c(1)Z2r23) e
−α

(1)
1 Zr1−α

(1)
2 Zr2−α

(1)
3 Zr3+α

(1)
12 r12+α

(1)
13 r13+α

(1)
23 r23 ,

(20)

where α
(1)
1,2,3 and α

(1)
12 , α

(1)
13 , α

(1)
23 are variational parameters having the meaning of screen-

ing factors of the charges in the electron-nucleus interactions and electron-electron

interactions, respectively. Note that the prefactor in (20) is chosen in the same func-

tional form as in the exact solution (19). The parameters a(1), b(1), c(1) which appear

in the exact (2s), (3s) prefactors in (19) are also treated as variational parameters.

In total, this function is characterized by 9 free parameters; it will be denoted as the

Anzatz (a). The results of the variational energy using this function for charges in

the range 2 < Z ≤ 20 are shown in Table I (marked with a label (a)), together with

the value of the normalized nucleus-electron cusp parameter. Compared to various

accurate results found in the literature (see for instance [14], [17], [10]), this trial func-

tion reproduces 2-3 s.d. in the energy for all studied values of Z ≤ 20. Note that

the presented variational energies are systematically lower than those obtained in the
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Hartree-Fock formalism. It is remarkable that the variational trial function (20) leads

to normalized nucleus-electron cusp values which are close to the exact value equal to

1. For details on the numerical procedure the reader is referred to Section 3.1 of Part

I [5].

(ii) As for the second function the variational function (20) can be further generalized to

the form

ϕ2 = (1− a
(2)
1 Zr2 + b

(2)
13 r13)(1− a

(2)
2 Zr3 + a

(2)
3 Zr23 + b

(2)
12 r12)

× e−α
(2)
1 Zr̂1−α

(2)
2 Zr̂2−α

(2)
3 Zr̂3+α

(2)
12 r̂12+α

(2)
13 r̂13+α

(2)
23 r̂23 , (21)

where into prefactors for the second electron in (2s) state (linear in r2) and the third

electron in (3s) state (quadratic in r3) are introduced terms ∼ b
(2)
13 r13 and ∼ b

(2)
12 r12,

respectively, where b
(2)
13 , b

(2)
12 are variational parameters. Additionally, in order to have a

more adequate description of the Coulomb interactions between each pair of electrons

at small and large distances, an interpolation of the effective Coulomb interactions

(5) was introduced into the correlation factors, exp
(

α
(2)
jk r̂jk

)

, jk = 12, 13, 23. The

same substitution into the Coulomb s-orbitals exp
(

−α(2)
i Zr̂i

)

, i = 1, 2, 3 was done to

interpolate the Coulomb interaction of the nucleus with electrons at small and large

distances. Concrete calculations indicate that a similar substitution into the modified

(1s) Coulomb orbital for the first electron is, in fact, unnecessary for all Z ≤ 20: it

leads to a change in variational energy beyond of the fourth s.d. Similar situation

occurs for (3s) Coulomb orbital for the third electron, see below. Details on the

numerical calculations with this trial wave function, are similar ones of the ground

state described in Section 3.1 in Part I [5].

(iii) Concrete variational calculations using (21) show that for all studied Z the values of

parameters b
(2)
13 , b

(2)
12 , c

(2)
3 , d

(2)
3 , c

(2)
13 and d

(2)
13 are small in comparison with other param-

eters: without loosing the accuracy in the first 4 s.d. in energy they can be placed

equal to zero. Therefore, one can reduce effectively the number of parameters in (21)

without an essential deterioration in the energy inside the correction-less domain. The

correlation terms ∝ rij in the prefactors do not play an important role similar as it

was for He-like systems. Eventually, this consideration leads to the final, third Ansatz
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for seed function in the form

ϕ3 = (1− a(3)Zr2)(1 + b(3)Zr3 + c(3)Z2r23) (22)

× e−α
(3)
1 Zr1−α

(3)
2 Zr̂2−α

(3)
3 Zr3+α

(3)
12 r̂12+α

(3)
13 r13+α

(3)
23 r̂23 .

It will be used throughout and denoted as the Anzatz (b). This function contains

15 variational parameters: linear parameters a(3), b(3), c(3) in the prefactor, non-linear

parameters α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
12 , α

(3)
13 , α

(3)
23 in the exponential terms, plus the non-linear

parameters for the interpolations (5): c
(3)
2 , d

(3)
2 , c

(3)
12 , d

(3)
12 , c

(3)
23 , d

(3)
23 . This trial function is

the most accurate among the trial functions of the type (21), it hints that the structure

of the prefactors is the same as that occurring in the exact wave function (1s 2s 3s)

in the limit Z → ∞. In particular, this means that the addition of correlation terms

∝ rjk in prefactor does not play a significant role in the design of trial functions for

the state 14 0+ (14S) unlike the spin-doublet ground state, see Part I [5] and also [3].

It seems that this systematics can hold for other excited states when building compact

trial functions.

The variational energies obtained the Anzatz (b) (22) for 2 ≤ Z ≤ 20 are shown in

Table I (marked with the label (b)), together with the value of the normalized nucleus-

electron cusp parameter. Compared to more accurate variational results by King [14]

and those based on Monte-Carlo calculations [17], as well as experimental ones [10],

the trial function (b) reproduces 2-3 s.d. correctly in energies. It is remarkable that

the variational results yield normalized nucleus-electron cusp parameters close to the

exact value 1. Note that the improvement in the energy coming from the trial function

(b) with respect to the values obtained with the trial function (a) occurs in the 4-5

s.d.

C. Square Integrability of compact wave functions for the spin-quartet state 1 4 0+

The analysis of the square integrability of the trial functions, constructed in previous

Section for the Li-like 1 4 0+ spin-quartet state, follows the same lines as the study of the

square integrability of the 12 0+ (ground) state trial functions discussed in Section I.C, see

above. In particular, the relations (6) for the exponential factors indicate that the square

17



integrability of the trial wave function (a) with seed function ϕ1 (20) is guaranteed as long

as the following quantities

A
(ϕ1)
1 = α

(1)
1 Z − α

(1)
12 − α

(1)
13 ,

A
(ϕ1)
2 = α

(1)
2 Z − α

(1)
12 − α

(1)
23 , (23)

A
(ϕ1)
3 = α

(1)
3 Z − α

(1)
13 − α

(1)
23 ,

remain positive. Likewise, the square integrability of the trial wave function (b) with seed

function ϕ3 (22) included is guaranteed as long as the following quantities

A
(ϕ3)
1 = α

(3)
1 Z − α

(3)
12

c
(3)
12

d
(3)
12

− α
(3)
13 ,

A
(ϕ3)
2 = α

(3)
2 Z

c
(3)
2

d
(3)
2

− α
(3)
12

c
(3)
12

d
(3)
12

− α
(3)
23

c
(3)
23

d
(3)
23

, (24)

A
(ϕ3)
3 = α

(3)
3 Z − α

(3)
13 − α

(3)
23

c
(3)
23

d
(3)
23

,

remain positive.

In Fig. 4 we present the behavior of the quantities A
(ϕ1)
i and A

(ϕ3)
i , i = 1, 2, 3 as a

function of Z, corresponding to the optimal parameters of the trial functions generated

from the seed functions ϕ1 and ϕ3 respectively. All of these quantities present a linear

behavior as functions of Z and permit to get an estimate for the critical charges Z = ZB at

which the trial functions stop to be normalizable (see below).

The optimal variational parameters in (21) and (22), which lead to the minimal variational

energy, have a smooth behavior as functions of the nuclear charge Z. They can be fitted

easily by second degree polynomials in Z. The fits corresponding to the most accurate

Ansatz (b) with seed function ϕ3 are the following

a = 0.2354 + 0.5693Z − 0.0023Z2 ,

b = 2.1011− 0.1118Z + 0.0117Z2 ,

c = 1.9858 + 0.2292Z + 0.0030Z2 ,

α1Z = 0.0076 + 0.9994Z − 0.000001Z2 ,

α2Z = −0.2591 + 0.4839Z + 0.0004Z2 ,

c2 = −0.0370 + 0.0146Z − 0.0003Z2 ,
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d2 = −0.0337 + 0.0133Z − 0.0003Z2 ,

α3Z = −0.4416 + 0.3334Z − 0.0003Z2, (25)

α12 = 0.0369 + 0.0225Z − 0.0005Z2 ,

c12 = 0.0962− 0.0466Z − 0.0002Z2 ,

d12 = −0.1642 + 0.0776Z + 0.0004Z2 ,

α13 = 0.0130− 0.0001Z − 0.00008Z2 ,

α23 = 0.2196− 0.0054Z + 0.0007Z2 ,

c23 = 0.0072− 0.0020Z + 0.00005Z2 ,

d23 = 0.1002− 0.0130Z + 0.0034Z2 .

Optimal variational parameters, in general, lead to energies having an accuracy of 3 s.d.

compared with most accurate results known in literature. The use of the fitted parameters

does not deteriorate the variational energy: the difference occurs beyond the 4th decimal

digit.

D. Results

The results of our variational calculations for energies and normalized nucleus-electron

cusp parameters for Li-like ions in the spin-quartet state 140+ (14S) are presented in Table

I. Presented numbers are obtained by using the following wavefunctions: for 2 < Z ≤ 20

a 9-parametric Ansatz (a) with seed function ϕ1 given by (20) and for 2 ≤ Z ≤ 20 a 15-

parametric Ansatz (b) with seed function ϕ3 given by (22). Both trial functions describe 2-3

s.d. correctly in the domain of applicability of the Quantum Mechanics of Coulomb Charges

(QMCC). The improvement in the energy obtained with the 15-parameter trial function (b)

with respect to the values obtained with the 9-parameter trial function (a) occurs in the 4-5

s.d. A comparison of the present results with those obtained by other methods in [14], [12],

[17], [10], shows that the compact trial function (22) yields energies that are systematically

below the energies obtained by the Hartree-Fock method and reproduce 2-3 s.d. of the most

accurate energies. Among other calculations, Table I shows the results of the Hylleraas CI

calculations in [12] obtained with a basis of dimension(length) 956, the extrapolated Full CI

energies calculated in [17], which include double and triple excitations with the basis sets cc-
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Table I: Energy (in Hartrees) of Li-like ions for the state 1 40+ for nuclear charges
3 ≤ Z ≤ 20 obtained with (18): (a) with seed function ϕ1 (20), (b) with seed function ϕ3

(22). The column marked as EM stands for energies from Majorana formula (26). The
most accurate result for Li-atom [14] marked by †, HCI (Hylleraas CI) from [12], HF
(Hartree-Fock), FCI (Full CI) and DMC (Diffusion Monte Carlo) taken from [17] and
Eexp experimental energies from [10]. Normalized cusp parameters CNe are included.

Z E(a)(a.u.) C(a)
Ne E(b)(a.u.) C(b)

Ne Eref(a.u.) EM(a.u.)

2 -2.1656 1.005 -2.1641

3 -5.2088 1.005 -5.2095 1.003 -5.212748† -5.2080

-5.2036HF

-5.21098DMC

-5.21275HCI

-5.2113FCI

-5.2110exp

4 -9.6121 1.004 -9.6129 1.003 -9.6198HCI -9.6131

-9.6207exp

5 -15.3777 1.003 -15.3786 1.002 -15.3710HF -15.3792

-15.38898DMC

-15.3895HCI

-15.3895FCI

-15.3934exp

9 -52.0534 1.002 -52.0549 1.001 -52.0459HF -52.0549

-52.08257DMC

-52.0827HCI

-52.0832FCI

10 -64.6254 1.001 -64.6267 1.001 -64.6591HCI -64.6266

15 -147.9002 1.001 -147.9028 1.001 - -147.9018

18 -214.1983 1.001 -214.2005 1.001 -214.1946HF -214.2003

-214.27009 DMC

20 -265.1994 1.000 -265.2047 1.001 - -265.2048
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Table II: Spin-quartet state 140+ (14S) of the Li-like sequence, expectation values of:
(i) the potential 〈V 〉 in a.u., (ii) 〈r2eN〉 in (a.u.)2, and (iii) 〈r12〉 in a.u. vs Z obtained with

the trial function (18): (a) with seed function ϕ1 (20), (b) with seed function ϕ3 (22)
compared with 〈V 〉 from [12]. Columns 7,8 (??): the expectation value 〈r2eN〉 for the

ground state 120+ from Ansatz (d) of (1) – see the text, compared with [15] † and [16] ‡.

〈V 〉 〈r2eN 〉 〈r12〉

Z (a) (b) [12] (a) (b) (g.s.) (g.s.)†,‡ (a) (b)

3 -10.4225 -10.4108 -10.4255 25.591 25.729 6.1561 †6.1182 6.3396 6.3464

4 -19.2312 -19.2139 -19.2397 10.317 10.291 2.1877 ‡2.1693 4.0501 4.0483

5 -30.7637 -30.7765 -30.7790 5.5628 5.5626 1.1635 ‡1.1327 2.9815 2.9826

10 -129.2273 -129.2768 -129.3181 1.0630 1.0568 0.6207 1.3053 1.3020

15 -296.1198 -295.8014 0.4287 0.4320 0.2506 0.8294 0.8325

20 -530.8696 -530.733 0.2316 0.2319 0.1352 0.6095 0.6099

pCVxZ, and (non-variational) fixed-node Diffusion Monte Carlo calculations performed in

[17] with a two-configuration Slater-Jastrow form wave function. Full CI results are known

to be accurate to about 1 × 10−3 a.u. and sometimes they are referred as exact (see [17]).

For the special case of the Lithium atom, Z = 3, Table II in [14] presents an extended list

of non-relativistic energies for various low-lying spin quartet states. In particular, for the

14 0+ state, the most accurate result at present is marked by † in Table I.

We also calculated the expectation values of the potential 〈V 〉 and 〈r2eN〉 = 1
3
〈
∑3

i=1 r
2
i 〉,

i.e. the average electron-nucleus distance squared vs Z for the spin-quartet state 140+ (14S).

In Table II we show these expectation values obtained with the trial function (18) with seed

function ϕ1 (20) (a) and with seed function ϕ3 (22)
(b). Results for 〈V 〉 indicate a very good

agreement in 3-4 s.d. between values obtained with the trial function (18) and the values

obtained with the large expansions in Ref.[12]. It is also an indication that our trial functions

are uniformly accurate and describe expectation values, other than the energy, with similarly

high accuracy. For 〈r2eN〉 it was also calculated for the spin-quartet state 14 0+ for different

values of the nuclear charge Z with the trial function (18) with seed function ϕ1 (20) (a),

and with seed function ϕ3 (22)
(b). There are no results known for this expectation value for

the 14 0+ to make a comparison with. Nonetheless, we can get an idea of the accuracy of the

expectation value by computing the expectation value 〈r2eN〉 for the ground state 120+, in

particular using the Ansatz (d) of the trial function (1) and comparing it with the existing

results using large multiple basis set in Hylleraas coordinates [15], and using exponentially
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gaussian correlated factors [16]. These results indicate that our expectation values coincide

in 2-3 s.d. with those obtained using large expansion sets.

For this lowest spin quartet state 14 0+ of the Li-like sequence, the energy is well fitted

by the Majorana formula

EM(14 0+) = − 49Z2

72
+ 0.358849Z − 0.159566 . (26)

It provides an accuracy of 2-3 s.d. for 3 ≤ Z ≤ 5 and 3-4 s.d. for Z ≥ 15 with respect to

the most accurate results! Energy values obtained with this formula are presented in Table

I in the last column.

With regards to the square integrability of the wave function, the quantities A
(ϕ1,ϕ2)
1,2,3 for

the seed wave function ϕ1 and ϕ3 are plotted in Fig. 4. They exhibit an approximate linear

behavior as functions of Z and can be fitted by functions of the form (8). One can observe

from the plots in that figure that the wave function ϕ1 is not normalizable for Z ≤ ZB = 1.26

while the wavefunction ϕ3 is not normalizable for Z ≤ 1.30. In particular, this would mean

that for He− (Z = 2) the state 1 4 0+ is bound. The variational result for the energy at

Z = 2 is included in Table I, even though the spin-quartet ground state energy of He−

(E = −2.1656 a.u.) is larger than that of He in 1s 2s state (E = −2.1752 a.u.). Since the

corresponding wave function is still normalizable if we follow the behavior of Aϕ3

3 i.e. the

state 1 4 0+ of He− is embedded in the continuum and lying above the lowest (1s 2s 2p) 14 P−

state of He− which has an energy E = −2.17646 a.u. [11]. It is not cleat what would happen

if a more accurate function for 1 4 0+ of He− is taken as the trial function. It might be a

subject of a separate study.

III. CONCLUSIONS

In this paper, Part III of the sequence, two (ultra)-compact functions for the Li-like se-

quence in the spin-quartet state 14 0+ are constructed following the principles of physical

adequacy formulated and implemented in Part I [5] for the spin-doublet state 12 0+ of the

Li-like sequence. The simplest function among these functions is a straightforward general-

ization of the exact (at Z → ∞) wave function by including the inter-electronic correlations

in exponential form from one side and allowing the coefficients in the prefactor of the exact

function vary from another side. It contains 9 variational parameters and reproduces 2-3
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Figure 4: Spin-quartet state 1 4 0+: A
(ϕ1,ϕ2)
1,2,3 for Li-like atoms vs the nuclear charge Z:

Ansatz with seed function ϕ1 (top) and with seed function ϕ3 (bottom). All quantities are

fitted by a function of the form (8) with slopes b = 1, 1/2, 1/3 for A
(ϕ1,ϕ2)
1,2,3 , respectively.

The overall normalizability is defined by the (smallest) quantity A
(ϕ1,ϕ2)
3 leading to the

critical charge ZB = 1.26 for ϕ1 and ZB = 1.3 for ϕ3.

s.d. in the energy correctly for Z ≤ 20 as compared to others, probably more accurate

results. In the second trial function the effective Coulomb interactions between electrons

and also between nucleus and electrons due to different charge screening at small and large

distances was realized additionally. It was done by introducing a simple interpolation func-
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tion r̂ instead of the distance r into the Coulomb orbitals: exp(−αir̂i) and ∝ exp(αjkr̂jk),

where αi, αjk are parameters. This introduction of physically relevant behavior into the trial

function results in a significant improvement in 4-6 s.d. in the variational energy. In the

process of optimization it was also observed that the correlation terms rjk in the prefactors

of the second trial function does not lead to an improvement (or changes) in the variational

energy in the first 4-6 s.d. It implies that these terms can be vanished by removing them

from the prefactors without deterioration of the accuracy in the variational energy. Similar

situation occurred in Part II in the analysis of the first excited spin-singlet state 21S of

the He-like sequence, see [7]. Notably, both proposed trial functions describe quite accu-

rately the normalized nucleus-electron cusp with a relative deviation ∼ 0.1% in the domain

3 ≤ Z ≤ 20 (see Table I), the expectation values of the potential and of electron-nucleus

distance squared 〈r2eN〉, which also agree in ∼ 0.1% with other calculations (see Table II).

This analysis indicates that the most accurate trial functions continue to keep, in a first

approximation, the functional structure of the prefactor of the exact wave function, which

occurs in the limit Z → ∞. This observation gives a hint how to proceed building the trial

functions for other excited states. In particular, for the spin-quartet state (1s 2s 2p0) of the

unit total angular momentum L = 1, which is the state of the lowest energy among the

spin-quartet states, see e.g. [12], a natural proposal for a trial function is to consider seed

functions as follows:

ϕ14 P = (1− aZr2) (r3 cos θ3) e
−α1Zr̂1−α2Zr̂2−α3Zr̂3+α12r̂12+α13 r̂13+α23 r̂23 . (27)

Note that this function has an explicit angular dependence. This state will be studied

elsewhere.

It is remarkable that the both variational trial functions yield normalized nucleus-electron

cusp parameters close to the exact value equal to 1, with relative accuracy ∼ 0.1%. Our

variational energies, which might approach to the exact ones from above, are systematically

below the energies obtained by the Hartree Fock method, and agree in 2-3 s.d. of the other

energies obtained, in particular, in extrapolated Full CI calculations. Critical charges, at

which the used trial functions stop to be normalizable, are found for both states with zero

angular momentum, the spin-doublet ground state and for the spin-quartet state, they are

ZB(1
2 0+) ≈ 1.65 and ZB(1

4 0+) ≈ 1.30, respectively. It might be considered as surprising

that the critical charge for the (excited) spin-quartet state 14 0+ is significantly smaller than
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the critical charge for the spin-doublet ground state 12 0+(!). The present authors have no

explanation for this result. It must be noted that the variational energies for Z = 2 obtained

in our variational calculations indicate that He− ion in the spin-quartet state 14 0+ is bound

being embedded into the continuum. This result deserves a profound analysis.

Figure 5: Plots of non-linear parameters α, β, γ vs Z for the Hylleraas-CI expansion of the
spin-quartet (1s2s3s) wave function (28) used in [12]. The dotted lines correspond to fits
(29), which have the correct linear slope at Z → ∞. The extrapolation of the fit for γ(Z)
to domain where it vanishes γ(Z) = 0 yields a critical charge ZB ≈ 1.4974 for which the

wave function (28) stops to be normalizable (see the text).

A similar analysis of the square integrability of the spin-quartet state (1s 2s 3s) of the

lithium iso-electronic series can be done for the Hylleraas-CI trial function

Ψ4S =
∑

i

ci A{rai1 rbi2 rci3 rλi

23r
µi

13r
γi
12 exp[−(αr1 + βr2 + γr3)]χ} , (28)

used in [12]; here A is the antisymmetrizer (2) and χ is a three-electron (symmetric) eigen-

function of spin 3/2. In Fig.5 we have plotted the non-linear parameters α, β, γ vs Z

(3 ≤ Z ≤ 10) presented in [12] in Table 4. From these plots it is seen clear that natu-

ral smoothness of these parameters vs Z does not occur, which we think it must, it was

not taken into account in [12]. It indicates a deficiency in the optimization procedure used

in [12] in finding those parameters. Although the approximate linear behavior of these pa-

rameters vs Z seems evident (except for Z = 3, 4), a straightforward linear fit shows that
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the linear slopes of α, β, γ, being, respectively, ∼ 0.9584, 0.4675, 0.3405, fail to reproduce

the correct asymptotic behavior as Z → ∞ that should be 1, 1/2, 1/3, correspondingly. It

is one more indication to the deficiency of the optimization procedure performed in [12]. If

linear slops found in [12] remain one can expect that the results obtained in (28) will lose

accuracy significantly for larger values of the charge Z > 10. It will happen not only for

the energy, but, more importantly, for expectation values, which require higher accuracy in

a domain different from one giving dominant contribution to the energy, especially, when at

large distances r → ∞ - this domain is very relevant when dispersion processes are studied.

In spite of the deficiencies in localizing optimal parameters α, β, γ carried out in [12], the

analysis of square integrability of the function (28) can be performed in a complete analogy

to one for the parameters A1,2,3 introduced beforehand for the compact functions for the

states 12 0+ and 14 0+. Fitting α, β, γ with a function (8) while fixing ad hoc the correct

linear slopes at large Z → ∞, we get

α(Z) = −0.21592
√
Z + 0.51853 + (Z + 0.51853) ,

β(Z) = −0.17973
√
Z + 0.30397 +

1

2
(Z + 0.30397) , (29)

γ(Z) = 0.03155
√
Z − 1.49737 +

1

3
(Z − 1.49737) ,

see Fig.5. Following our previous experience, the fitted parameters (29) should lead to more

accurate energies than ones obtained in [12].

One can see explicitly in Fig.5 that there exists a hierarchy γ < β < α for all Z and

the normalizability of the trial function depends mostly on the smallest of these parameters

γ. Therefore, from the fit of γ(Z) (29), we can see that the function (28) is characterized

by the critical charge at ZB(1
4 0+) ≈ 1.4974, where it vanishes, γ(Z) = 0, and the function

(28) stops to be normalizable. This value of the critical charge is larger than our estimates

ZB(1
4 0+) ∼ 1.26−1.30 and, thus, it represents a better approximation to the critical charge.

In any case, for Z = 2 (He−) the systems is predicted to be bound in the 14 0+ spin-quartet

state. We can only assume that similar situation with the non-linear parameters but used for

the ground state, or other quartet states like 4 P studied within the Hylleraas-CI expansions

must hold. Present authors were unable to find such an information for those states.

In Parts I, II and III it was developed a formalism to construct some compact trial

functions for few states of He-like and Li-like sequences for Z ≤ 20 leading to reasonably
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accurate variational energies, expectation values and cusp parameters. The formalism is

based on three elements:

• employing the exact eigenfunctions at Z = ∞, where the problem is reduced to the

study of the system of two-three non-interacting, independent Hydrogen atoms, taking

the parameters of the Coulomb orbitals as variational,

• introducing electronic correlations in the form of rij-dependence in exponential and

pre-exponential forms,

• introducing electron-electron and electron-nuclear (anti)-screening in the form of mero-

morphic (rational) function in the exponents.

Additionally, it is assumed that variational parameters are smooth functions of the charge

Z. Evidently, this formalism can be extended to other excited states of the He-like and

Li-like sequences as well as to other atomic systems like Be-like sequence. It will be done

elsewhere.
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