References
1. Frey AL, Frank MJ, McCabe C (2021): Social reinforcement learning as
a predictor of real-life experiences in individuals with high and low
depressive symptomatology. Psychol Med . 51:408-415.
2. Zhang D, Shen J, Bi R, Zhang Y, Zhou F, Feng C, et al. (2020):
Differentiating the abnormalities of social and monetary reward
processing associated with depressive symptoms. Psychol Med .1-15.
3. Russo SJ, Nestler EJ (2013): The brain reward circuitry in mood
disorders. Nat Rev Neurosci . 14:609-625.
4. Cremers HR, Veer IM, Spinhoven P, Rombouts SA, Roelofs K (2014):
Neural sensitivity to social reward and punishment anticipation in
social anxiety disorder. Front Behav Neurosci . 8:439.
5. Nawijn L, van Zuiden M, Koch SB, Frijling JL, Veltman DJ, Olff M
(2017): Intranasal oxytocin increases neural responses to social reward
in post-traumatic stress disorder. Soc Cogn Affect Neurosci .
12:212-223.
6. Tobler PN, Preller KH, Campbell-Meiklejohn DK, Kirschner M,
Kraehenmann R, Stampfli P, et al. (2016): Shared neural basis of social
and non-social reward deficits in chronic cocaine users. Soc Cogn
Affect Neurosci . 11:1017-1025.
7. Delmonte S, Gallagher L, O’Hanlon E, McGrath J, Balsters JH (2013):
Functional and structural connectivity of frontostriatal circuitry in
Autism Spectrum Disorder. Front Hum Neurosci . 7:430.
8. Kinard JL, Mosner MG, Greene RK, Addicott M, Bizzell J, Petty C, et
al. (2020): Neural Mechanisms of Social and Nonsocial Reward Prediction
Errors in Adolescents with Autism Spectrum Disorder. Autism Res .
13:715-728.
9. Mow JL, Gandhi A, Fulford D (2020): Imaging the ”social brain” in
schizophrenia: A systematic review of neuroimaging studies of social
reward and punishment. Neurosci Biobehav Rev . 118:704-722.
10. Kendrick KM, Guastella AJ, Becker B (2018): Overview of Human
Oxytocin Research. Curr Top Behav Neurosci . 35:321-348.
11. Quintana DS, Lischke A, Grace S, Scheele D, Ma Y, Becker B (2021):
Advances in the field of intranasal oxytocin research: lessons learned
and future directions for clinical research. Mol Psychiatry .
26:80-91.
12. Cuthbert BN, Insel TR (2013): Toward the future of psychiatric
diagnosis: the seven pillars of RDoC. BMC Med . 11:126.
13. Der-Avakian A, Markou A (2012): The neurobiology of anhedonia and
other reward-related deficits. Trends Neurosci . 35:68-77.
14. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G (2017):
Disruption of Reward Processing in Addiction : An Image-Based
Meta-analysis of Functional Magnetic Resonance Imaging Studies.JAMA Psychiatry . 74:387-398.
15. Fenster RJ, Lebois LAM, Ressler KJ, Suh J (2018): Brain circuit
dysfunction in post-traumatic stress disorder: from mouse to man.Nat Rev Neurosci . 19:535-551.
16. Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B
(2020): Common and separable neural alterations in substance use
disorders: A coordinate-based meta-analyses of functional neuroimaging
studies in humans. Hum Brain Mapp . 41:4459-4477.
17. Gu R, Huang W, Camilleri J, Xu P, Wei P, Eickhoff SB, et al. (2019):
Love is analogous to money in human brain: Coordinate-based and
functional connectivity meta-analyses of social and monetary reward
anticipation. Neurosci Biobehav Rev . 100:108-128.
18. Martins D, Rademacher L, Gabay AS, Taylor R, Richey JA, Smith DV, et
al. (2021): Mapping social reward and punishment processing in the human
brain: A voxel-based meta-analysis of neuroimaging findings using the
social incentive delay task. Neurosci Biobehav Rev . 122:1-17.
19. Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013): Social reward
requires coordinated activity of nucleus accumbens oxytocin and
serotonin. Nature . 501:179-184.
20. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et
al. (2017): Gating of social reward by oxytocin in the ventral tegmental
area. Science . 357:1406-1411.
21. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al.
(2013): Rapid regulation of depression-related behaviours by control of
midbrain dopamine neurons. Nature . 493:532-536.
22. Grimm C, Balsters JH, Zerbi V (2021): Shedding Light on Social
Reward Circuitry: (Un)common Blueprints in Humans and Rodents.Neuroscientist . 27:159-183.
23. Grimm O, Nagele M, Kupper-Tetzel L, de Greck M, Plichta M, Reif A
(2021): No effect of a dopaminergic modulation fMRI task by amisulpride
and L-DOPA on reward anticipation in healthy volunteers.Psychopharmacology (Berl) . 238:1333-1342.
24. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006):
Dopamine-dependent prediction errors underpin reward-seeking behaviour
in humans. Nature . 442:1042-1045.
25. Swiercz AP, Iyer L, Yu Z, Edwards A, Prashant NM, Nguyen BN, et al.
(2020): Evaluation of an angiotensin Type 1 receptor blocker on the
reconsolidation of fear memory. Transl Psychiatry . 10:363.
26. Zhou F, Geng Y, Xin F, Li J, Feng P, Liu C, et al. (2019): Human
Extinction Learning Is Accelerated by an Angiotensin Antagonist via
Ventromedial Prefrontal Cortex and Its Connections With Basolateral
Amygdala. Biol Psychiatry . 86:910-920.
27. Reinecke A, Browning M, Klein Breteler J, Kappelmann N, Ressler KJ,
Harmer CJ, et al. (2018): Angiotensin Regulation of Amygdala Response to
Threat in High-Trait-Anxiety Individuals. Biol Psychiatry Cogn
Neurosci Neuroimaging . 3:826-835.
28. Marvar PJ, Goodman J, Fuchs S, Choi DC, Banerjee S, Ressler KJ
(2014): Angiotensin type 1 receptor inhibition enhances the extinction
of fear memory. Biol Psychiatry . 75:864-872.
29. Pulcu E, Shkreli L, Holst CG, Woud ML, Craske MG, Browning M, et al.
(2019): The Effects of the Angiotensin II Receptor Antagonist Losartan
on Appetitive Versus Aversive Learning: A Randomized Controlled Trial.Biol Psychiatry . 86:397-404.
30. Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, et
al. (2000): Distribution of angiotensin IV binding sites (AT4 receptor)
in the human forebrain, midbrain and pons as visualised by in vitro
receptor autoradiography. Journal of Chemical Neuroanatomy .
20:339-348.
31. Medelsohn FAO, Jenkins TA, Berkovic SF (1993): Effects of
angiotensin II on dopamine and serotonin turnover in the striatum of
conscious rats. Brain Research . 613:221-229.
32. Brown DC, Steward LJ, Ge J, Barnes NM (1996): Ability of angiotensin
II to modulate striatal dopamine release via the AT1 receptor in vitro
and in vivo. Br J Pharmacol . 118:414-420.
33. Narayanaswami V, Somkuwar SS, Horton DB, Cassis LA, Dwoskin LP
(2013): Angiotensin AT1 and AT2 receptor antagonists modulate
nicotine-evoked [(3)H]dopamine and [(3)H]norepinephrine release.Biochem Pharmacol . 86:656-665.
34. Li D, Scott L, Crambert S, Zelenin S, Eklof AC, Di Ciano L, et al.
(2012): Binding of losartan to angiotensin AT1 receptors increases
dopamine D1 receptor activation. J Am Soc Nephrol . 23:421-428.
35. Hosseini M, Alaei HA, Havakhah S, Neemati Karimooy HA, Gholamnezhad
Z (2009): Effects of microinjection of angiotensin II and captopril to
VTA on morphine self-administration in rats. Acta Biol Hung .
60:241-252.
36. Maul B, Krause W, Pankow K, Becker M, Gembardt F, Alenina N, et al.
(2005): Central angiotensin II controls alcohol consumption via its AT1
receptor. FASEB J . 19:1474-1481.
37. Maes EJP, Sharpe MJ, Usypchuk AA, Lozzi M, Chang CY, Gardner MPH, et
al. (2020): Causal evidence supporting the proposal that dopamine
transients function as temporal difference prediction errors. Nat
Neurosci . 23:176-178.
38. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak
PH (2013): A causal link between prediction errors, dopamine neurons and
learning. Nat Neurosci . 16:966-973.
39. Sharpe MJ, Batchelor HM, Mueller LE, Yun Chang C, Maes EJP, Niv Y,
et al. (2020): Dopamine transients do not act as model-free prediction
errors during associative learning. Nat Commun . 11:106.
40. Sharpe MJ, Chang CY, Liu MA, Batchelor HM, Mueller LE, Jones JL, et
al. (2017): Dopamine transients are sufficient and necessary for
acquisition of model-based associations. Nat Neurosci .
20:735-742.
41. Wake SJ, Izuma K (2017): A common neural code for social and
monetary rewards in the human striatum. Soc Cogn Affect Neurosci .
12:1558-1564.
42. Izuma K, Saito DN, Sadato N (2008): Processing of social and
monetary rewards in the human striatum. Neuron . 58:284-294.
43. Corlett PR, Mollick JA, Kober H Substrates of Human Prediction Error
for Incentives, Perception, Cognition, and Action.
44. Lerner TN, Holloway AL, Seiler JL (2021): Dopamine, Updated: Reward
Prediction Error and Beyond. Curr Opin Neurobiol . 67:123-130.
45. Zhang L, Glascher J (2020): A brain network supporting social
influences in human decision-making. Sci Adv . 6:eabb4159.
46. Birn RM, Roeber BJ, Pollak SD (2017): Early childhood stress
exposure, reward pathways, and adult decision making. Proc Natl
Acad Sci U S A . 114:13549-13554.
47. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T,
et al. (2003): Development and validation of a brief screening version
of the Childhood Trauma Questionnaire. Child Abuse Negl .
27:169-190.
48. Barratt ES (1959): Anxiety and impulsiveness related to psychomotor
efficiency. perceptual and motor skills .
49. Torrubia R, Ávila C, Moltó J, Caseras X (2001): The Sensitivity to
Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure
of Gray’s anxiety and impulsivity dimensions. Personality and
Individual Differences . 31:837-862.
50. Ohtawa M, Takayama F, Saitoh K, Yoshinaga T, Nakashima M (1993):
Pharmacokinetics and biochemical efficacy after single and multiple oral
administration of losartan, an orally active nonpeptide angiotensin II
receptor antagonist, in humans. Br J Clin Pharmacol . 35:290-297.
51. Sica DA, Gehr TW, Ghosh S (2005): Clinical pharmacokinetics of
losartan. Clin Pharmacokinet . 44:797-814.
52. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD (1995):
Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and
its active metabolite EXP3174 in humans. Clin Pharmacol Ther .
58:641-649.
53. Mechaeil R, Gard P, Jackson A, Rusted J (2011): Cognitive
enhancement following acute losartan in normotensive young adults.Psychopharmacology (Berl) . 217:51-60.
54. Culman J, von Heyer C, Piepenburg B, Rascher W, Unger T (1999):
Effects of systemic treatment with irbesartan and losartan on central
responses to angiotensin II in conscious, normotensive rats. Eur J
Pharmacol . 367:255-265.
55. Li ZH, Bains JS, Ferguson AV (1993): Functional Evidence That the
Angiotensin Antagonist Losartan Crosses the Blood-Brain-Barrier in the
Rat. Brain Research Bulletin . 30:33-39.
56. Spielberger C, Goruch R, Lushene R, Vagg P, Jacobs G (1983): Manual
for the state-trait inventory STAI (form Y). Mind Garden, Palo
Alto, CA, USA .
57. Watson D, Clark LA, Tellegen A (1988): Development and validation of
brief measures of positive and negative affect: the PANAS scales.J Pers Soc Psychol . 54:1063-1070.
58. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A,
et al. (2019): fMRIPrep: a robust preprocessing pipeline for functional
MRI. Nat Methods . 16:111-116.
59. Friston KJ, Jezzard P, Turner R (1994): Analysis of Functional MRI
Time-Series Human Brain Mapping .
60. Faulkner ML, Momenan R, Leggio L (2021): A neuroimaging
investigation into the role of peripheral metabolic biomarkers in the
anticipation of reward in alcohol use. Drug Alcohol Depend .
221:108638.
61. Lawn W, Hill J, Hindocha C, Yim J, Yamamori Y, Jones G, et al.
(2020): The acute effects of cannabidiol on the neural correlates of
reward anticipation and feedback in healthy volunteers. J
Psychopharmacol . 34:969-980.
62. Rademacher L, Krach S, Kohls G, Irmak A, Grunder G, Spreckelmeyer KN
(2010): Dissociation of neural networks for anticipation and consumption
of monetary and social rewards. Neuroimage . 49:3276-3285.
63. Zhou X, Zimmermann K, Xin F, Zhao W, Derckx RT, Sassmannshausen A,
et al. (2019): Cue Reactivity in the Ventral Striatum Characterizes
Heavy Cannabis Use, Whereas Reactivity in the Dorsal Striatum Mediates
Dependent Use. Biol Psychiatry Cogn Neurosci Neuroimaging .
4:751-762.
64. Trutti AC, Fontanesi L, Mulder MJ, Bazin PL, Hommel B, Forstmann BU
(2021): A probabilistic atlas of the human ventral tegmental area (VTA)
based on 7 Tesla MRI data. Brain Struct Funct . 226:1155-1167.
65. McLaren DG, Ries ML, Xu G, Johnson SC (2012): A generalized form of
context-dependent psychophysiological interactions (gPPI): a comparison
to standard approaches. Neuroimage . 61:1277-1286.
66. Volman I, Pringle A, Verhagen L, Browning M, Cowen PJ, Harmer CJ
(2021): Lithium modulates striatal reward anticipation and prediction
error coding in healthy volunteers. Neuropsychopharmacology .
46:386-393.
67. Sambrook TD, Goslin J (2016): Principal components analysis of
reward prediction errors in a reinforcement learning task.Neuroimage . 124:276-286.
68. Rescorla RA, Wagner AR (1972): A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement.
In: Black H, Prokasy WF, editors. Classical conditioning II:
Current research and theory . New York: Appleton-Century-Crofts.
69. Cao Z, Bennett M, Orr C, Icke I, Banaschewski T, Barker GJ, et al.
(2019): Mapping adolescent reward anticipation, receipt, and prediction
error during the monetary incentive delay task. Hum Brain Mapp .
40:262-283.
70. Glascher JP, O’Doherty JP (2010): Model-based approaches to
neuroimaging: combining reinforcement learning theory with fMRI data.Wiley Interdiscip Rev Cogn Sci . 1:501-510.
71. Metereau E, Dreher JC (2013): Cerebral correlates of salient
prediction error for different rewards and punishments. Cereb
Cortex . 23:477-487.
72. Slotnick SD (2017): Cluster success: fMRI inferences for spatial
extent have acceptable false-positive rates. Cogn Neurosci .
8:150-155.
73. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, et al.
(2017): Combined Social and Spatial Coding in a Descending Projection
from the Prefrontal Cortex. Cell . 171:1663-1677 e1616.
74. Modi ME, Sahin M (2019): A unified circuit for social behavior.Neurobiol Learn Mem . 165:106920.
75. Gordon I, Jack A, Pretzsch CM, Vander Wyk B, Leckman JF, Feldman R,
et al. (2016): Intranasal Oxytocin Enhances Connectivity in the Neural
Circuitry Supporting Social Motivation and Social Perception in Children
with Autism. Sci Rep . 6:35054.
76. Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner MG, et
al. (2018): The effects of intranasal oxytocin on reward circuitry
responses in children with autism spectrum disorder. J Neurodev
Disord . 10:12.
77. Averbeck BB, Costa VD (2017): Motivational neural circuits
underlying reinforcement learning. Nat Neurosci . 20:505-512.
78. Uddin LQ (2015): Salience processing and insular cortical function
and dysfunction. Nat Rev Neurosci . 16:55-61.
79. Zhou F, Li J, Zhao W, Xu L, Zheng X, Fu M, et al. (2020): Empathic
pain evoked by sensory and emotional-communicative cues share common and
process-specific neural representations. Elife . 9.
80. Dohmatob E, Dumas G, Bzdok D (2020): Dark control: The default mode
network as a reinforcement learning agent. Hum Brain Mapp .
41:3318-3341.
81. Gueguen MCM, Lopez-Persem A, Billeke P, Lachaux JP, Rheims S, Kahane
P, et al. (2021): Anatomical dissociation of intracerebral signals for
reward and punishment prediction errors in humans. Nat Commun .
12:3344.
82. Keren H, Chen G, Benson B, Ernst M, Leibenluft E, Fox NA, et al.
(2018): Is the encoding of Reward Prediction Error reliable during
development? Neuroimage . 178:266-276.
83. Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT (2021):
Distinct regions of the striatum underlying effort, movement initiation
and effort discounting. Nat Hum Behav . 5:378-388.
84. Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA,
et al. (2021): Human Fronto-Striatal Connectivity is Organized into
Discrete Functional Subnetworks.
85. Hetu S, Luo Y, D’Ardenne K, Lohrenz T, Montague PR (2017): Human
substantia nigra and ventral tegmental area involvement in computing
social error signals during the ultimatum game. Soc Cogn Affect
Neurosci . 12:1972-1982.